Misplaced Pages

Optical landing system

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

An optical landing system ( OLS ) (nicknamed "meatball" or simply "ball") is used to give glidepath information to pilots in the terminal phase of landing on an aircraft carrier .

#794205

95-648: From the beginning of aircraft landing on ships in the 1920s to the introduction of OLSs, pilots relied solely on their visual perception of the landing area and the aid of the Landing Signal Officer (LSO in the U.S. Navy , or "batsman" in the Commonwealth navies). LSOs used coloured flags, cloth paddles and lighted wands. The OLS was developed after World War II by the British and was deployed on U.S. Navy carriers from 1955. In its developed form,

190-477: A combination of lights attached to the OLS to indicate "go around" using the bright red, flashing wave off lights. Additional signals, such as "cleared to land", "add power", or "divert" can be signaled using with a row of green "cut" lights or a combination thereof. Later systems kept the same basic function of the mirror landing aid, but upgraded components and functionality. The concave mirror, source light combination

285-454: A combination thereof. Often, pictures of LSOs show them holding the pickle switch over their head. This is done as a visual reminder to the LSOs that the deck is "fouled" – unsafe for an approach, with aircraft, debris, or personnel in the landing area. Once the deck becomes clear, the LSOs are free to lower the pickle. LSOs have been rated carrier pilots since the end of World War II, but during

380-432: A constant light (from a fixed lens), one flash per minute (from a rotating lens with eight panels), and two per minute (16 panels). In late 1825, to reduce the loss of light in the reflecting elements, Fresnel proposed to replace each mirror with a catadioptric prism, through which the light would travel by refraction through the first surface, then total internal reflection off the second surface, then refraction through

475-414: A conventional lens by dividing the lens into a set of concentric annular sections. An ideal Fresnel lens would have an infinite number of sections. In each section, the overall thickness is decreased compared to an equivalent simple lens. This effectively divides the continuous surface of a standard lens into a set of surfaces of the same curvature, with stepwise discontinuities between them. In some lenses,

570-455: A cylindrical form while retaining the property of reflecting light from a single point back to that point. Reflectors of this form, paradoxically called "dioptric mirrors", proved particularly useful for returning light from the landward side of the lamp to the seaward side. As lighthouses proliferated, they became harder to distinguish from each other, leading to the use of colored filters, which wasted light. In 1884, John Hopkinson eliminated

665-401: A focal length of 920 mm ( 36 + 1 ⁄ 4  in) and stands about 2.59 m (8 ft 6 in) high, and 1.8 m (6 ft) wide. The smallest (sixth) order has a focal length of 150 mm (6 in) and a height of 433 mm ( 17 + 1 ⁄ 16  in). The largest Fresnel lenses are called hyperradiant (or hyper-radial). One such lens was on hand when it

760-652: A hand-cranked movie camera film every landing to aid in evaluation of landing technique. When not flying, Whiting observed all landings from the aft port corner of the flight deck. Whiting's position remained visible to landing pilots in critical touchdown attitudes when the nose of the aircraft might obscure the pilot's view straight ahead. Pilots found Whiting's body language helpful and suggested an experienced pilot be assigned to occupy that position, using agreed signals which evolved with experience. On one occasion when trying to signal an inexperienced pilot who had missed several approaches by coming in too high, Whiting pioneered

855-474: A highly competitive pecking order of pilot landing skill throughout the airwing. Possible grades: The LSOs also write a comment in shorthand for use in the LSO-Pilot debrief. An example comment might read, "High, a little overshooting start, fly through down on comeback in the middle, low in close to at the ramp. Fair-2." This means the aircraft was high at the start of the approach and had slightly overshot

950-460: A landing was to be aborted. From the late 1950s, carriers evolved from the original straight or axial-deck configuration into the angled flight deck , with an optical landing system (OLS) providing glide slope information to the pilot. As such, the system of using both the OLS and the LSO was developed. Together with the OLS, the LSO provides input to the pilot via a radio handset (that looks like

1045-548: A lens of conventional design. A Fresnel lens can be made much thinner than a comparable conventional lens, in some cases taking the form of a flat sheet. Because of its use in lighthouses, it has been called "the invention that saved a million ships". The first person to focus a lighthouse beam using a lens was apparently the London glass-cutter Thomas Rogers, who proposed the idea to Trinity House in 1788. The first Rogers lenses, 53   cm in diameter and 14   cm thick at

SECTION 10

#1732797278795

1140-414: A metal housing, a reflector, a lamp assembly, and a Fresnel lens. Many Fresnel instruments allow the lamp to be moved relative to the lens' focal point , to increase or decrease the size of the light beam. As a result, they are very flexible, and can often produce a beam as narrow as 7° or as wide as 70°. The Fresnel lens produces a very soft-edged beam, so is often used as a wash light. A holder in front of

1235-435: A mobile unit that plugs into a power source. Once set up and calibrated, there are no moving parts to the unit. Shipboard units are much more complicated as they must be gyroscopically stabilised to compensate for ship movement. Additionally, shipboard units are mechanically moved (the "roll angle") to adjust the touchdown point of each aircraft. With this adjustment, the tailhook touchdown point can be precisely targeted based on

1330-487: A pitching deck), and for pilot/LSO training. The system is designed to present glideslope information in the same visual form presented by the FLOLS. There are three installation modes aboard ship: STATION 1 is immediately in front of the FLOLS and utilises the FLOLS waveoff, datum, and cut light displays. STATION 2 and 3 are independent of the FLOLS and are located on the flight deck port and starboard side respectively. MOVLAS

1425-859: A position. Perhaps the most widespread use of Fresnel lenses, for a time, occurred in automobile headlamps , where they can shape the roughly parallel beam from the parabolic reflector to meet requirements for dipped and main-beam patterns, often both in the same headlamp unit (such as the European H4 design). For reasons of economy, weight, and impact resistance, newer cars have dispensed with glass Fresnel lenses, using multifaceted reflectors with plain polycarbonate lenses. However, Fresnel lenses continue in wide use in automobile tail, marker, and reversing lights. Glass Fresnel lenses also are used in lighting instruments for theatre and motion pictures (see Fresnel lantern ); such instruments are often called simply Fresnels . The entire instrument consists of

1520-486: A rotating array outside the fixed array. Each panel of the rotating array was to refract part of the fixed light from a horizontal fan into a narrow beam. Also in 1825, Fresnel unveiled the Carte des Phares ('lighthouse map'), calling for a system of 51 lighthouses plus smaller harbor lights, in a hierarchy of lens sizes called "orders" (the first being the largest), with different characteristics to facilitate recognition:

1615-557: A substantial reduction in thickness (and thus mass and volume of material) at the expense of reducing the imaging quality of the lens, which is why precise imaging applications such as photography usually still use larger conventional lenses. Fresnel lenses are usually made of glass or plastic; their size varies from large (old historical lighthouses, meter size) to medium (book-reading aids, OHP viewgraph projectors) to small ( TLR / SLR camera screens, micro-optics). In many cases they are very thin and flat, almost flexible, with thicknesses in

1710-553: A system similar to Condorcet's in 1811, and by 1820 was advocating its use in British lighthouses. The French Commission des Phares  [ FR ] (Commission of Lighthouses) was established by Napoleon in 1811, and placed under the authority of French physicist Augustin-Jean Fresnel 's employer, the Corps of Bridges and Roads. As the members of the commission were otherwise occupied, it achieved little in its early years. However, on 21 June 1819—three months after winning

1805-432: A telephone handset), advising of power requirements, position relative to glide path and centerline. The LSO also holds a "pickle" (a handheld switch box) that controls a combination of lights attached to the OLS to indicate "go around" using the bright red, flashing wave off lights. Additional signals, such as "cleared to land", "add power", or "divert" can be signaled using an upper row of green lights called "cut lights", or

1900-598: A waveoff if the deck was "fouled" with aircraft or personnel in the landing area. LSOs faced the incoming plane and held colored flags for visibility. Because LSOs waved colored paddles, flags, or wands, the officers became unofficially known as "Paddles" in the United States Navy , or "Batsmen" in the Royal Navy , while the trade was referring to as "waving". Both the U.S. Navy and Royal Navy employed LSOs. The main difference between American and British LSOs

1995-513: A way to remove defects by reheating and remolding the glass. Arago assisted Fresnel with the design of a modified Argand lamp with concentric wicks (a concept that Fresnel attributed to Count Rumford ), and accidentally discovered that fish glue was heat-resistant, making it suitable for use in the lens. The prototype, finished in March 1820, had a square lens panel 55   cm on a side, containing 97 polygonal (not annular) prisms—and so impressed

SECTION 20

#1732797278795

2090-605: A wind screen, the LSO Base Console and a HUD unit, with actual configuration varying dependent on ship type, age and technology. Integrated Launch And Recovery Television Surveillance System (ILARTS) provides the LSO with a reference for aircraft lineup and glideslope information during recovery operations, and is used as a debriefing medium for pilots. Additionally, the system is used for recording significant flight deck events and, when necessary, for mishap or incident analysis. Every carrier landing made by US pilots

2185-543: Is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections. The simpler dioptric (purely refractive ) form of the lens was first proposed by Georges-Louis Leclerc, Comte de Buffon , and independently reinvented by the French physicist Augustin-Jean Fresnel (1788–1827) for use in lighthouses . The catadioptric (combining refraction and reflection) form of

2280-414: Is further delineated based on what is "fouling" the landing area. With personnel or aircraft in the landing area, the "waveoff window" is adjusted so that approaching aircraft get no lower than 100 feet above the highest obstacle in the landing area. If there is neither personnel nor aircraft in the landing area but the deck is still foul, aircraft must be waved off in time to pass no lower than 10 feet above

2375-421: Is graded for safety and technique, using a complex shorthand to denote what each aircraft did during various phases of each approach. Approaches are divided into parts: Deviations from optimal glideslope, centerline, and angle of attack are noted for each phase, resulting in an overall grade, which is debriefed to each pilot by the LSO teams after each cycle. Average grades are computed for each pilot, resulting in

2470-550: Is nothing more than a vertical series of orange lamps manually controlled by the LSO with a hand controller to simulate the ball; it does not automatically compensate for the ship's movement in any way. All MOVLAS equipment is maintained and rigged by the ICs and EMs within V2 Division of Air Department. The IFLOLS has two modes of stabilisation: line and inertial . The most precise is inertial stabilisation. In line stabilisation,

2565-459: Is on. They attach to the passenger-side window. Another automobile application of a Fresnel lens is a rear view enhancer, as the wide view angle of a lens attached to the rear window permits examining the scene behind a vehicle, particularly a tall or bluff-tailed one, more effectively than a rear-view mirror alone. Fresnel lenses have been used on rangefinding equipment and projected map display screens. Fresnel lenses have also been used in

2660-523: Is primarily responsible for aircraft glideslope and angle of attack. He or she also issues a "grade" for each landing. The Backup LSO is typically more experienced than the Controlling LSO, and is primarily responsible for aircraft lineup and ensuring that the landing area is clear. He helps in the grading. He may provide glideslope/angle of attack commentary on that grade. This individual monitors deck status as either "clear" or "foul". Foul deck

2755-475: Is the double-flashing lens of the Point Arena Light , which was in service from 1908 to 1977. The development of hyper-radial lenses was driven in part by the need for larger light sources, such as gas lights with multiple jets, which required a longer focal length for a given beam-width, hence a larger lens to collect a given fraction of the generated light. The first hyper-radial lens was built for

2850-414: The École Polytechnique , in order to save his remaining time and energy for his lighthouse work. In the same year he designed the first fixed lens—for spreading light evenly around the horizon while minimizing waste above or below. Ideally the curved refracting surfaces would be segments of toroids about a common vertical axis, so that the dioptric panel would look like a cylindrical drum. If this

2945-478: The 1 to 5 mm ( 1 ⁄ 32 to 3 ⁄ 16  in) range. Most modern Fresnel lenses consist only of refractive elements. Lighthouse lenses, however, tend to include both refracting and reflecting elements, the latter being outside the metal rings seen in the photographs. While the inner elements are sections of refractive lenses, the outer elements are reflecting prisms, each of which performs two refractions and one total internal reflection , avoiding

Optical landing system - Misplaced Pages Continue

3040-513: The Isle of May , Scotland, on 22 September 1836. The first large catadioptric lenses were made in 1842 for the lighthouses at Gravelines and Île Vierge , France; these were fixed third-order lenses whose catadioptric rings (made in segments) were one metre in diameter. Stevenson's first-order Skerryvore lens, lit in 1844, was only partly catadioptric; it was similar to the Cordouan lens except that

3135-454: The LSO , who can also communicate with the pilot via radio. An optical landing system has several related components: the lights used to give visual cues to approaching aircraft, the light control system, and the mounting system. At least three sets of lights are used, regardless of the actual technology: Some (particularly later) optical landing systems include additional lamps: Collectively,

3230-560: The Meta Quest Pro , have switched to a pancake lens design due to its smaller form factor and less chromatic aberration than Fresnel lenses. Multi-focal Fresnel lenses are also used as a part of retina identification cameras, where they provide multiple in- and out-of-focus images of a fixation target inside the camera. For virtually all users, at least one of the images will be in focus, thus allowing correct eye alignment. Canon and Nikon have used Fresnel lenses to reduce

3325-514: The Sinclair TV80 . They are also used in traffic lights . Fresnel lenses are used in left-hand-drive European lorries entering the UK and Republic of Ireland (and vice versa, right-hand-drive Irish and British trucks entering mainland Europe) to overcome the blind spots caused by the driver operating the lorry while sitting on the wrong side of the cab relative to the side of the road the car

3420-488: The transverse wave hypothesis. Shortly after the Cordouan lens was lit, Fresnel started coughing up blood. In May 1824, Fresnel was promoted to Secretary of the Commission des Phares , becoming the first member of that body to draw a salary, albeit in the concurrent role of Engineer-in-Chief. Late that year, being increasingly ill, he curtailed his fundamental research and resigned his seasonal job as an examiner at

3515-473: The 1970s when the use of arresting gear and catapults was discontinued (and aircraft shifted to STOVL aircraft such as Harriers). In contrast, the Imperial Japanese Navy had no LSOs. Instead, its carriers employed a system of colored lights much like today's general aviation runway edge lights at most airports . However, each Japanese carrier assigned a sailor to wave a red flag in case

3610-547: The 1981 movie The Final Countdown . The CBS television series JAG features several episodes centering on LSOs. In Battlestar Galactica , Aaron Kelly serves as the ship's LSO, responsible for the comings and goings of spacecraft. G.I. Joe produced a 1/6 scale uniform and accessories for the LSO. Fresnel lens A Fresnel lens ( / ˈ f r eɪ n ɛ l , - n əl / FRAY -nel, -⁠nəl ; / ˈ f r ɛ n ɛ l , - əl / FREN -el, -⁠əl ; or / f r eɪ ˈ n ɛ l / fray- NEL )

3705-475: The 2-wire, and received a grade of "fair". The LSO in popular culture is romantically represented by "Beer Barrel", the colorful officer in James Michener 's best-seller The Bridges at Toko-Ri . Actor Robert Strauss played the role in the 1954 motion picture. LSOs can be seen aiding in the recovery process of F-14s in the beginning of the 1986 movie Top Gun . They also play an integral part in

3800-576: The Commission that Fresnel was asked for a full eight-panel version. This model, completed a year later in spite of insufficient funding, had panels 76   cm square. In a public spectacle on the evening of 13 April 1821, it was demonstrated by comparison with the most recent reflectors, which it suddenly rendered obsolete. Soon after this demonstration, Fresnel published the idea that light, including apparently unpolarized light, consists exclusively of transverse waves , and went on to consider

3895-562: The LSO School at NAS Oceana , Virginia, for Initial Formal Ground Training. Additional qualifications include: All LSOs work directly for the Air Wing LSO (aka "Cag Paddles"), who is ultimately responsible for the safe and expeditious recovery of aircraft, and for training/qualifying junior LSOs. There are typically two Air Wing LSOs per Air Wing, and one of them is usually on the LSO platform for every landing. The Controlling LSO

Optical landing system - Misplaced Pages Continue

3990-415: The OLS consists of a horizontal row of green lights, used as a reference, and a column of vertical lights. The vertical lights signal whether the aircraft is too high, too low, or at the correct altitude as the pilot descends the glide slope towards the carrier's deck. Other lights give various commands and can be used to require the pilot to abort the landing and "go around." The OLS remains under control of

4085-464: The Rogers mirror of 60 years earlier, except that it subtended a whole hemisphere). Light radiated into the forward hemisphere but missing the bull's-eye lens was deflected by the paraboloid into a parallel beam surrounding the bull's-eye lens, while light radiated into the backward hemisphere was reflected back through the lamp by the spherical reflector (as in Rogers' arrangement), to be collected by

4180-467: The Stevensons in 1885 by F. Barbier & Cie of France, and tested at South Foreland Lighthouse with various light sources. Chance Brothers (Hopkinson's employers) then began constructing hyper-radials, installing their first at Bishop Rock Lighthouse in 1887. In the same year, Barbier installed a hyper-radial at Tory Island . But only about 30 hyper-radials went into service before

4275-527: The United States by the 1870s. In 1858 the company produced "a very small number of pressed flint-glass sixth-order lenses" for use in lighthouses—the first Fresnel lighthouse lenses made in America. By the 1950s, the substitution of plastic for glass made it economic to use Fresnel lenses as condensers in overhead projectors. The Fresnel lens reduces the amount of material required compared to

4370-557: The actors and the camera, distorting the scale and composition of the scene to humorous effect. The Pixar movie Wall-E features a Fresnel lens in the scenes where the protagonist watches the musical Hello, Dolly! magnified on an iPod . Virtual reality headsets, such as the Meta Quest 2 and the HTC Vive Pro use Fresnel lenses, as they allow a thinner and lighter form factor than regular lenses. Newer devices, such as

4465-432: The apparatus that the lights are mounted on is called the "lens". It is turned on/off and brightness is adjusted at the lens itself for ground-based units, and remotely for shipboard units. In both cases, the lens is connected to a hand-controller (called the "pickle") used by the LSOs. The pickle has buttons that control the wave-off and cut lights. For shore-based optical landing systems, the lights are typically mounted on

4560-510: The center, were installed at the Old Lower Lighthouse at Portland Bill in 1789. Behind each lamp was a back-coated spherical glass mirror, which reflected rear radiation back through the lamp and into the lens. Further samples were installed at Howth Baily , North Foreland , and at least four other locations by 1804. But much of the light was wasted by absorption in the glass. In 1748, Georges-Louis Leclerc, Comte de Buffon

4655-405: The center. The result was an all-glass holophote, with no losses from metallic reflections. James Timmins Chance modified Thomas Stevenson's all-glass holophotal design by arranging the double-reflecting prisms about a vertical axis. The prototype was shown at the 1862 International Exhibition in London. Later, to ease manufacturing, Chance divided the prisms into segments, and arranged them in

4750-512: The completion of Augustin Fresnel's original Carte des Phares . Thomas Stevenson (younger brother of Alan) went a step beyond Fresnel with his "holophotal" lens, which focused the light radiated by the lamp in nearly all directions, forward or backward, into a single beam. The first version, described in 1849, consisted of a standard Fresnel bull's-eye lens, a paraboloidal reflector, and a rear hemispherical reflector (functionally equivalent to

4845-631: The curved surfaces are replaced with flat surfaces, with a different angle in each section. Such a lens can be regarded as an array of prisms arranged in a circular fashion with steeper prisms on the edges and a flat or slightly convex center. In the first (and largest) Fresnel lenses, each section was actually a separate prism. 'Single-piece' Fresnel lenses were later produced, being used for automobile headlamps, brake, parking, and turn signal lenses, and so on. In modern times, computer-controlled milling equipment (CNC) or 3-D printers might be used to manufacture more complex lenses. Fresnel lens design allows

SECTION 50

#1732797278795

4940-432: The desired glidepath : if the ball was above the datum, the plane was high; below the datum, the plane was low; between the datum, the plane was on glidepath. The gyro stabilisation compensated for much of the movement of the flight deck due to the sea, giving a constant glidepath. Initially, the device was thought able to allow the pilot to land without direction from the LSO. However, accident rates actually increased upon

5035-549: The development of more compact bright lamps rendered such large optics unnecessary (see Hyperradiant Fresnel lens ). Production of one-piece stepped dioptric lenses—roughly as envisaged by Buffon—became feasible in 1852, when John L. Gilliland of the Brooklyn Flint-Glass Company patented a method of making lenses from pressed and molded glass. The company made small bull's-eye lenses for use on railroads, steamboats, and docks; such lenses were common in

5130-475: The exact date on which Fresnel formally recommended lentilles à échelons is unknown. Much to Fresnel's embarrassment, one of the assembled commissioners, Jacques Charles , recalled Buffon's suggestion. However, whereas Buffon's version was biconvex and in one piece, Fresnel's was plano-convex and made of multiple prisms for easier construction. With an official budget of 500 francs, Fresnel approached three manufacturers. The third, François Soleil, found

5225-572: The field of popular entertainment. The British rock artist Peter Gabriel made use of them in his early solo live performances to magnify the size of his head, in contrast to the rest of his body, for dramatic and comic effect. In the Terry Gilliam film Brazil , plastic Fresnel screens appear ostensibly as magnifiers for the small CRT monitors used throughout the offices of the Ministry of Information. However, they occasionally appear between

5320-478: The forward components. The first unit was installed at North Harbour, Peterhead , in August 1849. Stevenson called this version a "catadioptric holophote", although each of its elements was either purely reflective or purely refractive. In the second version of the holophote concept, the bull's-eye lens and paraboloidal reflector were replaced by a catadioptric Fresnel lens—as conceived by Fresnel, but expanded to cover

5415-532: The glide path is stabilised to infinity. As the deck pitches and rolls, the source lights are rolled to maintain a steady glide-slope fixed in space. Inertial stabilisation functions like line, but also compensates for the flight deck heave (the straight up and down component of deck motion). If the IFLOLS cannot keep up with the motion of the deck, the LSO can switch to the MOVLAS or simply perform "LSO talk downs." Only

5510-408: The glideslope. A prototype IFLOLS was tested on board USS George Washington (CVN-73) in 1997, and every deploying aircraft carrier since 2004 has had the system. The improved fresnel lens optical landing system, IFLOLS, uses a fiber optic "source" light, projected through lenses to present a sharper, crisper light. This has enabled pilots to begin to fly "the ball" further away from the ship making

5605-433: The implications for double refraction and partial reflection. Fresnel acknowledged the British lenses and Buffon's invention in a memoir read on 29 July 1822 and printed in the same year. The date of that memoir may be the source of the claim that Fresnel's lighthouse advocacy began two years later than Brewster's; but the text makes it clear that Fresnel's involvement began no later than 1819. Fresnel's next lens

5700-473: The introduction of optical landing systems in the 1950s, LSOs assist pilots by giving information via radio handsets. In the United States Navy , aircraft carrier operations began with USS Langley (CV-1) in 1922, and it served as a platform to experiment and develop aircraft launch and recovery procedures. The first pilots had no signaling system for assistance from shipboard personnel. Langley' s first executive officer, Commander Kenneth Whiting , had

5795-418: The landing area centerline. As the pilot corrected to centerline, he did not add enough power so he flew through the glideslope from high to low. The LSO likely would have given the pilot a signal at this time to add power. For the last portion of the approach, the aircraft remained below glideslope (but was on centerline because of the lack of a comment), touching down prior to the target 3-wire. The pilot caught

SECTION 60

#1732797278795

5890-494: The landing area. LSOs do their waving from the LSO Platform, which is on the port side of the ship aft of the port side aircraft elevator. It is protected by a wind deflector, and has an escape area into which deck personnel can jump in an emergency. The platform is outfitted with communications gear, deck status and ship indications, as well as controls for the OLS. The LSO work station consists of three pickle switches,

5985-502: The lens can hold a colored plastic film ( gel ) to tint the light or wire screens or frosted plastic to diffuse it. The Fresnel lens is useful in the making of motion pictures not only because of its ability to focus the beam brighter than a typical lens, but also because the light is a relatively consistent intensity across the entire width of the beam of light. Aircraft carriers and naval air stations typically use Fresnel lenses in their optical landing systems . The "meatball" light aids

6080-403: The lens, entirely invented by Fresnel, has outer prismatic elements that use total internal reflection as well as refraction to capture more oblique light from the light source and add it to the beam, making it visible at greater distances. The design allows the construction of lenses of large aperture and short focal length without the mass and volume of material that would be required by

6175-468: The light loss that occurs in reflection from a silvered mirror. Fresnel designed six sizes of lighthouse lenses, divided into four orders based on their size and focal length. The 3rd and 4th orders were sub-divided into "large" and "small". In modern use, the orders are classified as first through sixth order. An intermediate size between third and fourth order was added later, as well as sizes above first order and below sixth. A first-order lens has

6270-460: The light source. The light path through these elements can include an internal reflection , rather than the simple refraction in the planar Fresnel element. These lenses conferred many practical benefits upon the designers, builders, and users of lighthouses and their illumination. Among other things, smaller lenses could fit into more compact spaces. Greater light transmission over longer distances, and varied patterns, made it possible to triangulate

6365-555: The lower slats were replaced by French-made catadioptric prisms, while mirrors were retained at the top. The first fully catadioptric first-order lens, installed at Pointe d'Ailly in 1852, also gave eight rotating beams plus a fixed light at the bottom; but its top section had eight catadioptric panels focusing the light about 4 degrees ahead of the main beams, in order to lengthen the flashes. The first fully catadioptric lens with purely revolving beams—also of first order—was installed at Saint-Clément-des-Baleines in 1854, and marked

6460-402: The main beam, increasing the duration of the flash. Below the main panels were 128 small mirrors arranged in four rings, stacked like the slats of a louver or Venetian blind . Each ring, shaped like a frustum of a cone , reflected the light to the horizon, giving a fainter steady light between the flashes. The official test, conducted on the unfinished Arc de Triomphe on 20 August 1822,

6555-428: The middle of the 20th centuries; most lighthouses have now retired glass Fresnel lenses from service and replaced them with much less expensive and more durable aerobeacons , which themselves often contain plastic Fresnel lenses. Lighthouse Fresnel lens systems typically include extra annular prismatic elements, arrayed in faceted domes above and below the central planar Fresnel, in order to catch all light emitted from

6650-638: The most experienced LSOs will perform talk downs or control aircraft with MOVLAS during heavy sea states. Landing Signal Officer A landing signal officer or landing safety officer ( LSO ), also informally known as paddles ( United States Navy ) or batsman ( Royal Navy ), is a naval aviator specially trained to facilitate the "safe and expeditious recovery" of naval aircraft aboard aircraft carriers . LSOs aboard smaller air capable ships that launch and recover helicopters are informally known as deck. Originally LSOs were responsible for bringing aircraft aboard ship using hand-operated signals. Since

6745-476: The need for filters by inventing the "group-flashing" lens, in which the dioptric and/or the catadioptric panels were split so as to give multiple flashes—allowing lighthouses to be identified not only by frequency of flashes, but also by multiplicity of flashes. Double-flashing lenses were installed at Tampico (Mexico) and Little Basses (Sri Lanka) in 1875, and a triple-flashing lens at Casquets Lighthouse ( Channel Islands ) in 1876. The example shown (right)

6840-423: The number of segments increases, the two types of lens become more similar to each other. In the abstract case of an infinite number of segments, the difference between curved and flat segments disappears. Imaging lenses can be classified as: Non-imaging lenses can be classified as: High-quality glass Fresnel lenses were used in lighthouses, where they were considered state of the art in the late 19th and through

6935-634: The physics Grand Prix of the Academy of Sciences for his celebrated memoir on diffraction —Fresnel was "temporarily" seconded to the commission on the recommendation of François Arago (a member since 1813), to review possible improvements in lighthouse illumination. By the end of August 1819, unaware of the Buffon-Condorcet-Brewster proposal, Fresnel made his first presentation to the commission, recommending what he called lentilles à échelons ('lenses by steps') to replace

7030-412: The pilot in maintaining proper glide slope for the landing. In the center are amber and red lights composed of Fresnel lenses. Although the lights are always on, the angle of the lens from the pilot's point of view determines the color and position of the visible light. If the lights appear above the green horizontal bar, the pilot is too high. If it is below, the pilot is too low, and if the lights are red,

7125-399: The pilot is very low. Fresnel lenses are also commonly used in searchlights , spotlights , and flashlights . Fresnel lenses are used as simple hand-held magnifiers . They are also used to correct several visual disorders, including ocular-motility disorders such as strabismus . Fresnel lenses have been used to increase the visual size of CRT displays in pocket televisions , notably

7220-408: The plane's tailhook and wheels were down. The final signal was "the cut" (a slashing motion at the throat) ordering the pilot to reduce power and land the aircraft. In a properly executed landing, the aircraft's tailhook snagged an arresting wire that brought the plane to a halt. A "waveoff" was a mandatory order to abort the landing and go around for another attempt. Sometimes a proper approach drew

7315-431: The reflectors then in use, which reflected only about half of the incident light. Another report by Fresnel, dated 29 August 1819 (Fresnel, 1866–70, vol. 3, pp. 15–21), concerns tests on reflectors, and does not mention stepped lenses except in an unrelated sketch on the last page of the manuscript. The minutes of the meetings of the Commission go back only to 1824, when Fresnel himself took over as Secretary. Thus

7410-415: The size of telephoto lenses. Photographic lenses that include Fresnel elements can be much shorter than corresponding conventional lens design. Nikon calls the technology Phase Fresnel . The Polaroid SX-70 camera used a Fresnel reflector as part of its viewing system. View and large format cameras can utilize a Fresnel lens in conjunction with the ground glass , to increase the perceived brightness of

7505-544: The system's initial introduction, so the current system of including the LSO was developed. This development, along with the others mentioned, contributed to the US carrier landing accident rate plummeting from 35 per 10,000 landings in 1954 to 7 per 10,000 landings in 1957. The LSO, who is a specially qualified and experienced Navy pilot, provides additional input to the pilot via radios, advising of power requirements, position relative to glide path and centerline. The LSO can also use

7600-595: The tailhook-to-pilot's-eye distance for each aircraft type. The first OLS was the mirror landing aid , one of several British inventions made after the Second World War revolutionising the design of aircraft carriers. The others were the steam catapult and the angled flight deck . The mirror landing aid was invented by Nicholas Goodhart . It was tested on the carriers HMS Illustrious and HMS Indomitable before being introduced on British carriers in 1954 and on US carriers in 1955. The mirror landing aid

7695-696: The test of the Cordouan lens in Paris, a committee of the Academy of Sciences reported on Fresnel's memoir and supplements on double refraction—which, although less well known to modern readers than his earlier work on diffraction, struck a more decisive blow for the wave theory of light. Between the test and the reassembly at Cordouan, Fresnel submitted his papers on photoelasticity (16 September 1822), elliptical and circular polarization and optical rotation (9 December), and partial reflection and total internal reflection (7 January 1823), essentially completing his reconstruction of physical optics on

7790-534: The third surface. The result was the lighthouse lens as we now know it. In 1826 he assembled a small model for use on the Canal Saint-Martin , but he did not live to see a full-sized version: he died on 14 July 1827, at the age of 39. The first stage of the development of lighthouse lenses after the death of Augustin Fresnel consisted in the implementation of his designs. This was driven in part by his younger brother Léonor—who, like Augustin,

7885-466: The transition from instrument flight to visual flight smoother. Additional improvements include better deck motion compensation due to internalisation of the stabilising mechanisms, as well as multiple sources of stabilisation from gyroscopes as well as radar. The MOVLAS is a backup visual landing aid system used when the primary optical system (IFLOLS) is inoperable, stabilisation limits are exceeded or unreliable (primarily due to extreme sea states causing

7980-424: The use of paddles or flags by grabbing the white hats of two nearby sailors and holding one in each hand to emphasize his hand positions. From the 1920s into the 1950s, U.S. Navy and Royal Navy LSOs used a variety of signals to assist pilots landing aboard aircraft carriers. The signals provided information on lineup with the deck, height relative to proper glide slope , angle of attack (fast or slow), and whether

8075-535: The war the need was such that some non-aviators were trained. Because of the importance of LSOs, the duty offers great responsibility for junior officers, generally lieutenants (junior grade) to lieutenant commander. Prospective LSOs are selected among junior pilots from each fixed wing USN and USMC carrier aviation squadron. The first qualification they receive is a "field qualification", which allows them to wave aircraft at shore runways during Field Carrier Landing Practice (FCLPs) without supervision. The LSO next attends

8170-410: The whole forward hemisphere. The third version, which Stevenson confusingly called a "dioptric holophote", was more innovative: it retained the catadioptric Fresnel lens for the front hemisphere, but replaced the rear hemispherical reflector with a hemispherical array of annular prisms, each of which used two total internal reflections to turn light diverging from the center of the hemisphere back toward

8265-437: Was a gyroscopically controlled concave mirror on the port side of the flight deck . On either side of the mirror was a line of green coloured "datum lights". A bright orange "source" light was shone into the mirror creating the "ball" (or "meatball" in later USN parlance) which could be seen by the aviator who was about to land. The position of the ball compared to the datum lights indicated the aircraft's position in relation to

8360-407: Was a rotating apparatus with eight "bull's-eye" panels, made in annular arcs by Saint-Gobain , giving eight rotating beams—to be seen by mariners as a periodic flash. Above and behind each main panel was a smaller, sloping bull's-eye panel of trapezoidal outline with trapezoidal elements. This refracted the light to a sloping plane mirror, which then reflected it horizontally, 7 degrees ahead of

8455-593: Was decided to build and outfit the Makapuu Point Light in Hawaii. Rather than order a new lens, the huge optic construction, 3.7 metres (12 ft) tall and with over a thousand prisms, was used there. There are two main types of Fresnel lens: imaging and non-imaging . Imaging Fresnel lenses use segments with curved cross-sections and produce sharp images, while non-imaging lenses have segments with flat cross-sections, and do not produce sharp images. As

8550-446: Was replaced with a series of fresnel lenses . The Mk 6 Mod 3 FLOLS was tested in 1970 and had not changed much, except for when ship's heave was taken into account with an inertial stabilisation system. These systems are still in wide use on runways at US Naval Air Stations. The IFLOLS, designed by engineers at NAEC Lakehurst , keeps the same basic design but improves on the FLOLS, giving a more precise indication of aircraft position on

8645-447: Was supplemented by reflecting ( catoptric ) rings above and below the refracting (dioptric) parts, the entire apparatus would look like a beehive. The second Fresnel lens to enter service was indeed a fixed lens, of third order, installed at Dunkirk by 1 February 1825. However, due to the difficulty of fabricating large toroidal prisms, this apparatus had a 16-sided polygonal plan. In 1825 Fresnel extended his fixed-lens design by adding

8740-578: Was the first to replace a convex lens with a series of concentric annular prisms, ground as steps in a single piece of glass, to reduce weight and absorption. In 1790 (although secondary sources give the date as 1773 or 1788 ), the Marquis de Condorcet suggested that it would be easier to make the annular sections separately and assemble them on a frame; but even that was impractical at the time. These designs were intended not for lighthouses, but for burning glasses . David Brewster , however, proposed

8835-515: Was the nature of their signals. Generally, U.S. Navy signals were advisory, such as indicating whether the plane was on glide slope, too high, or too low. On the other hand, Royal Navy signals were usually mandatory, such as ordering the pilot to add power, or come port. When "crossdecking" (pilots from one navy operating off a carrier of the other), the two navies had to decide whether to use the American or British system. Britain stopped using LSOs in

8930-595: Was trained as a civil engineer but, unlike Augustin, had a strong aptitude for management. Léonor entered the service of the Lighthouse Commission in 1825, and went on to succeed Augustin as Secretary. The first fixed lens to be constructed with toroidal prisms was a first-order apparatus designed by the Scottish engineer Alan Stevenson under the guidance of Léonor Fresnel, and fabricated by Isaac Cookson & Co. using French glass; it entered service at

9025-511: Was witnessed by the Commission—and by Louis XVIII and his entourage—from 32 kilometres (20 mi) away. The apparatus was stored at Bordeaux for the winter, and then reassembled at Cordouan Lighthouse under Fresnel's supervision—in part by Fresnel's own hands. On 25 July 1823, the world's first lighthouse Fresnel lens was lit. As expected, the light was visible to the horizon, more than 32 kilometres (20 mi) out. The day before

#794205