Misplaced Pages

L-selectin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

2LGF , 3CFW

#482517

94-524: 6402 20343 ENSG00000188404 ENSMUSG00000026581 P14151 P18337 NM_000655 NM_001164059 NM_011346 NP_000646 NP_001157531 NP_035476 L-selectin , also known as CD62L, is a cell adhesion molecule found on the cell surface of leukocytes , and the blastocyst . It is coded for in the human by the SELL gene. L-selectin belongs to the selectin family of proteins, which recognize sialylated carbohydrate groups containing

188-789: A "homing receptor" for lymphocytes to enter secondary lymphoid tissues via high endothelial venules. Ligands present on endothelial cells will bind to lymphocytes expressing L-selectin, slowing lymphocyte trafficking through the blood, and facilitating entry into a secondary lymphoid organ at that point. The receptor is commonly found on the cell surfaces of T cells . Naive T-lymphocytes, which have not yet encountered their specific antigen, need to enter secondary lymph nodes to encounter their antigen. Central memory T-lymphocytes, which have encountered antigen, express L-selectin to localize in secondary lymphoid organs. Here they reside ready to proliferate upon re-encountering antigen. Effector memory T-lymphocytes do not express L-selectin, as they circulate in

282-435: A CD4 , both CD8 and CD4 cells are now single positive cells. This process does not filter for thymocytes that may cause autoimmunity . The potentially autoimmune cells are removed by the following process of negative selection, which occurs in the thymic medulla. Negative selection removes thymocytes that are capable of strongly binding with "self" MHC molecules. Thymocytes that survive positive selection migrate towards

376-518: A DN4 cell (CD25 CD44 ). These cells then undergo a round of proliferation, and begin to re-arrange the TCRα locus during the double-positive stage. The process of positive selection takes 3 to 4 days and occurs in the thymic cortex. Double-positive thymocytes (CD4 /CD8 ) migrate deep into the thymic cortex , where they are presented with self- antigens . These self-antigens are expressed by thymic cortical epithelial cells on MHC molecules, which reside on

470-457: A Sialyl LewisX (sLeX) determinant. L-selectin plays an important role in both the innate and adaptive immune responses by facilitating leukocyte-endothelial cell adhesion events. These tethering interactions are essential for the trafficking of monocytes and neutrophils into inflamed tissue as well as the homing of lymphocytes to secondary lymphoid organs. L-selectin is also expressed by lymphoid primed hematopoietic stem cells and may participate in

564-467: A T cell has been appropriately activated (i.e. has received signal one and signal two) it alters its cell surface expression of a variety of proteins. Markers of T cell activation include CD69, CD71 and CD25 (also a marker for Treg cells), and HLA-DR (a marker of human T cell activation). CTLA-4 expression is also up-regulated on activated T cells, which in turn outcompetes CD28 for binding to the B7 proteins. This

658-409: A class of CAMs. One classification system involves the distinction between calcium-independent CAMs and calcium-dependent CAMs. The Ig-superfamily CAMs do not depend on Ca while integrins, cadherins and selectins depend on Ca . In addition, integrins participate in cell–matrix interactions, while other CAM families participate in cell–cell interactions. Immunoglobulin superfamily CAMs (IgSF CAMs)

752-450: A co-stimulatory molecule (like CD28 , or ICOS ) on the T cell by the major histocompatibility complex (MHCII) peptide and co-stimulatory molecules on the APC . Both are required for production of an effective immune response; in the absence of co-stimulation , T cell receptor signalling alone results in anergy . The signalling pathways downstream from co-stimulatory molecules usually engages

846-415: A critical role in the interstitial chemotaxis of neutrophils along a cytokine gradient. L-selectin on neutrophils can result in its own ectodomain shedding, drived by activation of p38 MAPK followed by antibody-mediated clustering (AMC), after which L-selectin can behave as a cell adhesion molecule and signaling receptor. L-selectin shedding is not strictly consequence of neutrohpil transmigration, because it

940-438: A crucial role in orchestrating circulating lymphocytes. CAM function in cancer metastasis, inflammation, and thrombosis makes it a viable therapeutic target that is currently being considered. For example, they block the metastatic cancer cells' ability to extravasate and home to secondary sites. This has been successfully demonstrated in metastatic melanoma that hones to the lungs. In mice, when antibodies directed against CAMs in

1034-440: A functional alpha chain. Once a working TCR has been produced, the cells then must test if their TCR will identify threats correctly, and to do this it is required to recognize the body’s major histocompatibility complex (MHC) in a process known as positive selection. The thymocyte must also ensure that it does not react adversely to "self" antigens , called negative selection. If both positive and negative selection are successful,

SECTION 10

#1732772769483

1128-445: A role in T cell exhaustion are regulatory cells. Treg cells can be a source of IL-10 and TGF-β and therefore they can play a role in T cell exhaustion. Furthermore, T cell exhaustion is reverted after depletion of Treg cells and blockade of PD1. T cell exhaustion can also occur during sepsis as a result of cytokine storm. Later after the initial septic encounter anti-inflammatory cytokines and pro-apoptotic proteins take over to protect

1222-488: A role in facilitating the directional migration of these cells (2019). L-selectin is also present on the surface of human embryo trophoblasts prior to implantation into the uterus. Similar to its function in lymphocytes, L-selectin acts as a receptor to facilitate adhesion of the embryo to the site of invasion on the surface epithelium of the uterine endometrium. The embryo secretes human chorionic gonadotropin (hCG), which downregulates anti-adhesion factor, MUC-1 , located on

1316-547: A round of division and downregulate c-kit and are termed double-negative one (DN1) cells. To become T cells, the thymocytes must undergo multiple DN stages as well as positive selection and negative selection. Double negative thymocytes can be identified by the surface expression of CD2 , CD5 and CD7 . Still during the double negative stages, CD34 expression stops and CD1 is expressed. Expression of both CD4 and CD8 makes them double positive , and matures into either CD4 or CD8 cells. A critical step in T cell maturation

1410-569: A series of subsets based on their function. CD4 and CD8 T cells are selected in the thymus, but undergo further differentiation in the periphery to specialized cells which have different functions. T cell subsets were initially defined by function, but also have associated gene or protein expression patterns. T helper cells (T H cells) assist other lymphocytes, including the maturation of B cells into plasma cells and memory B cells , and activation of cytotoxic T cells and macrophages . These cells are also known as CD4 T cells as they express

1504-765: Is CD28, so co-stimulation for these cells comes from the CD80 and CD86 proteins, which together constitute the B7 protein, (B7.1 and B7.2, respectively) on the APC. Other receptors are expressed upon activation of the T cell, such as OX40 and ICOS, but these largely depend upon CD28 for their expression. The second signal licenses the T cell to respond to an antigen. Without it, the T cell becomes anergic , and it becomes more difficult for it to activate in future. This mechanism prevents inappropriate responses to self, as self-peptides will not usually be presented with suitable co-stimulation. Once

1598-439: Is FOXO 1, on the other hand the mouse sell gene is composed of 9 exons. Subsequent splicing of exons into mature mRNA translates to a protein product with a predicted molecular mass of 30 kDa. L-selectin varies between cell types, has ranging molecular weight from 65 kDa in lymphocytes to 100 kDa in neutrophils, and is due to cell type-specific glycosylation. Most glycoproteins undergo either N- or O-linked glycosylation, and it

1692-529: Is PKC-θ, critical for activating the transcription factors NF-κB and AP-1. IP3 is released from the membrane by PLC-γ and diffuses rapidly to activate calcium channel receptors on the ER , which induces the release of calcium into the cytosol. Low calcium in the endoplasmic reticulum causes STIM1 clustering on the ER membrane and leads to activation of cell membrane CRAC channels that allows additional calcium to flow into

1786-412: Is a checkpoint mechanism to prevent over activation of the T cell. Activated T cells also change their cell surface glycosylation profile. The T cell receptor exists as a complex of several proteins. The actual T cell receptor is composed of two separate peptide chains, which are produced from the independent T cell receptor alpha and beta ( TCRα and TCRβ ) genes. The other proteins in the complex are

1880-505: Is also expressed by naive B cells , with the loss of L-selectin distinguishing activated B cells destined to differentiate to antibody-secreting cells L-selectin is expressed on circulating neutrophils and is shed following neutrophil priming. Expression of L-selectin in neutrophils decreases with neutrophil aging. Classical monocytes express high levels of L-selectin while in circulation. Shedding of L-selectin from monocytes occurs during trans-endothelial migration. L-selectin expression

1974-469: Is also observed on oocytes and early-stage embryos. Blastocysts express L-selectin following, but not prior to emergence from the zona pellucida. An increase in L-selectin expression is observed when both the blastocyst and cytotrophoblast attach to the endometrium.  L-selectin expression decreases by the 17th week of pregnancy, and remains low or non-existent until term (2017). L-selectin acts as

SECTION 20

#1732772769483

2068-449: Is determined during positive selection. Double-positive cells (CD4 /CD8 ) that interact well with MHC class II molecules will eventually become CD4 "helper" cells, whereas thymocytes that interact well with MHC class I molecules mature into CD8 "killer" cells. A thymocyte becomes a CD4 cell by down-regulating expression of its CD8 cell surface receptors. If the cell does not lose its signal, it will continue downregulating CD8 and become

2162-587: Is followed by the loss of high proliferative capacity and cytotoxic potential, and eventually leads to their deletion. Exhausted T cells typically indicate higher levels of CD43 , CD69 and inhibitory receptors combined with lower expression of CD62L and CD127 . Exhaustion can develop during chronic infections, sepsis and cancer. Exhausted T cells preserve their functional exhaustion even after repeated antigen exposure. T cell exhaustion can be triggered by several factors like persistent antigen exposure and lack of CD4 T cell help. Antigen exposure also has effect on

2256-1002: Is known as antigen discrimination. The molecular mechanisms that underlie this process are controversial. Causes of T cell deficiency include lymphocytopenia of T cells and/or defects on function of individual T cells. Complete insufficiency of T cell function can result from hereditary conditions such as severe combined immunodeficiency (SCID), Omenn syndrome , and cartilage–hair hypoplasia . Causes of partial insufficiencies of T cell function include acquired immune deficiency syndrome (AIDS), and hereditary conditions such as DiGeorge syndrome (DGS), chromosomal breakage syndromes (CBSs), and B cell and T cell combined disorders such as ataxia-telangiectasia (AT) and Wiskott–Aldrich syndrome (WAS). The main pathogens of concern in T cell deficiencies are intracellular pathogens , including Herpes simplex virus , Mycobacterium and Listeria . Also, fungal infections are also more common and severe in T cell deficiencies. Cancer of T cells

2350-481: Is making a functional T cell receptor (TCR). Each mature T cell will ultimately contain a unique TCR that reacts to a random pattern, allowing the immune system to recognize many different types of pathogens . This process is essential in developing immunity to threats that the immune system has not encountered before, since due to random variation there will always be at least one TCR to match any new pathogen. A thymocyte can only become an active T cell when it survives

2444-586: Is much less common in humans and mice (about 2% of total T cells) and are found mostly in the gut mucosa , within a population of intraepithelial lymphocytes . In rabbits, sheep, and chickens, the number of γδ T cells can be as high as 60% of total T cells. The antigenic molecules that activate γδ T cells are still mostly unknown. However, γδ T cells are not MHC-restricted and seem to be able to recognize whole proteins rather than requiring peptides to be presented by MHC molecules on APCs . Some murine γδ T cells recognize MHC class IB molecules. Human γδ T cells that use

2538-422: Is regarded as the most diverse superfamily of CAMs. This family is characterized by their extracellular domains containing Ig-like domains. The Ig domains are then followed by Fibronectin type III domain repeats and IgSFs are anchored to the membrane by a GPI moiety. This family is involved in both homophilic or heterophilic binding and has the ability to bind integrins or different IgSF CAMs. Integrins , one of

2632-459: Is termed T-cell lymphoma , and accounts for perhaps one in ten cases of non-Hodgkin lymphoma . The main forms of T cell lymphoma are: T cell exhaustion is a poorly defined or ambiguous term. There are three approaches to its definition. "The first approach primarily defines as exhausted the cells that present the same cellular dysfunction (typically, the absence of an expected effector response). The second approach primarily defines as exhausted

2726-436: Is that they are long-lived and can quickly expand to large numbers of effector T cells upon re-exposure to their cognate antigen. By this mechanism they provide the immune system with "memory" against previously encountered pathogens. Memory T cells may be either CD4 or CD8 and usually express CD45RO . Memory T cell subtypes: Regulatory T cells are crucial for the maintenance of immunological tolerance . Their major role

2820-522: Is through homophilic binding, where CAMs bind with the same CAMs. They are also capable of heterophilic binding, meaning a CAM on one cell will bind with different CAMs on another cell. There are four major superfamilies or groups of CAMs: the immunoglobulin super family of cell adhesion molecules ( IgCAMs ), Cadherins , Integrins , and the Superfamily of C-type of lectin-like domains proteins ( CTLDs ). Proteoglycans are also considered to be

2914-621: Is to shut down T cell–mediated immunity toward the end of an immune reaction and to suppress autoreactive T cells that escaped the process of negative selection in the thymus. Two major classes of CD4 T reg cells have been described—FOXP3 T reg cells and FOXP3 T reg cells. Regulatory T cells can develop either during normal development in the thymus, and are then known as thymic Treg cells, or can be induced peripherally and are called peripherally derived Treg cells. These two subsets were previously called "naturally occurring" and "adaptive" (or "induced"), respectively. Both subsets require

L-selectin - Misplaced Pages Continue

3008-445: Is very likely that the type of L-selectin glycosylation determines the specific functions of individual cells, but this has not yet been investigated in detail. L-selectin is expressed on naive T cells and is rapidly shed following T cell priming. L-selectin expression is re-activated in cytotoxic T cells once they exit the lymph node.  Mature central memory T cells express L-selectin while effector memory cells do not. L-selectin

3102-549: The CD3 proteins: CD3εγ and CD3εδ heterodimers and, most important, a CD3ζ homodimer, which has a total of six ITAM motifs. The ITAM motifs on the CD3ζ can be phosphorylated by Lck and in turn recruit ZAP-70 . Lck and/or ZAP-70 can also phosphorylate the tyrosines on many other molecules, not least CD28, LAT and SLP-76 , which allows the aggregation of signalling complexes around these proteins. Phosphorylated LAT recruits SLP-76 to

3196-717: The CD4 glycoprotein on their surfaces. Helper T cells become activated when they are presented with peptide antigens by MHC class II molecules, which are expressed on the surface of antigen-presenting cells (APCs). Once activated, they divide rapidly and secrete cytokines that regulate or assist the immune response. These cells can differentiate into one of several subtypes, which have different roles. Cytokines direct T cells into particular subtypes. Cytotoxic T cells (T C cells, CTLs, T-killer cells, killer T cells) destroy virus-infected cells and tumor cells, and are also implicated in transplant rejection. These cells are defined by

3290-636: The NF-κB pathway . DAG activates PKC-θ, which then phosphorylates CARMA1, causing it to unfold and function as a scaffold. The cytosolic domains bind an adapter BCL10 via CARD (Caspase activation and recruitment domains) domains; that then binds TRAF6, which is ubiquitinated at K63. This form of ubiquitination does not lead to degradation of target proteins. Rather, it serves to recruit NEMO, IKKα and -β, and TAB1-2/ TAK1. TAK 1 phosphorylates IKK-β, which then phosphorylates IκB allowing for K48 ubiquitination: leads to proteasomal degradation. Rel A and p50 can then enter

3384-532: The PI3K pathway generating PIP3 at the plasma membrane and recruiting PH domain containing signaling molecules like PDK1 that are essential for the activation of PKC-θ , and eventual IL-2 production. Optimal CD8 T cell response relies on CD4 signalling. CD4 cells are useful in the initial antigenic activation of naive CD8 T cells, and sustaining memory CD8 T cells in the aftermath of an acute infection. Therefore, activation of CD4 T cells can be beneficial to

3478-683: The T-Cell Activation in Space (TCAS) experiment was launched to the International Space Station on the SpaceX CRS-3 mission to study how "deficiencies in the human immune system are affected by a microgravity environment". T cell activation is modulated by reactive oxygen species . A unique feature of T cells is their ability to discriminate between healthy and abnormal (e.g. infected or cancerous) cells in

3572-483: The adaptive immune response and has a memory-like phenotype. Furthermore, MAIT cells are thought to play a role in autoimmune diseases , such as multiple sclerosis , arthritis and inflammatory bowel disease , although definitive evidence is yet to be published. Gamma delta T cells (γδ T cells) represent a small subset of T cells which possess a γδ TCR rather than the αβ TCR on the cell surface. The majority of T cells express αβ TCR chains. This group of T cells

3666-428: The bone marrow . Developing T cells then migrate to the thymus gland to develop (or mature). T cells derive their name from the thymus . After migration to the thymus, the precursor cells mature into several distinct types of T cells. T cell differentiation also continues after they have left the thymus. Groups of specific, differentiated T cell subtypes have a variety of important functions in controlling and shaping

3760-477: The extracellular matrix (ECM), in a process called cell adhesion . In essence, CAMs help cells stick to each other and to their surroundings. CAMs are crucial components in maintaining tissue structure and function. In fully developed animals, these molecules play an integral role in generating force and movement and consequently ensuring that organs are able to execute their functions normally. In addition to serving as "molecular glue", CAMs play important roles in

3854-602: The immune response . One of these functions is immune-mediated cell death, and it is carried out by two major subtypes: CD8 "killer" (cytotoxic) and CD4 "helper" T cells. (These are named for the presence of the cell surface proteins CD8 or CD4 .) CD8 T cells, also known as "killer T cells", are cytotoxic – this means that they are able to directly kill virus-infected cells, as well as cancer cells. CD8 T cells are also able to use small signalling proteins, known as cytokines , to recruit other types of cells when mounting an immune response. A different population of T cells,

L-selectin - Misplaced Pages Continue

3948-568: The CAMS that are particularly important in the lymphocyte homing is addressin . Lymphocyte homing is a key process occurring in a strong immune system. It controls the process of circulating lymphocytes adhering to particular regions and organs of the body. The process is highly regulated by cell adhesion molecules, particularly, the addressin also known as MADCAM1. This antigen is known for its role in tissue-specific adhesion of lymphocytes to high endothelium venules. Through these interactions they play

4042-568: The CD4 T cells, function as "helper cells". Unlike CD8 killer T cells, the CD4 helper T (T H ) cells function by further activating memory B cells and cytotoxic T cells, which leads to a larger immune response. The specific adaptive immune response regulated by the T H cell depends on its subtype (such as T-helper1, T-helper2, T-helper17, regulatory T-cell), which is distinguished by the types of cytokines they secrete. Regulatory T cells are yet another distinct population of T cells that provide

4136-453: The ECDs are necessary for cell adhesion . The cytoplasmic domain has specific regions where catenin proteins bind. The selectins are a family of heterophilic CAMs that are dependent on fucosylated carbohydrates, e.g., mucins for binding. The three family members are E-selectin ( endothelial ), L-selectin ( leukocyte ), and P-selectin ( platelet ). The best-characterized ligand for

4230-784: The HIV envelope. This binding allows for rolling adhesion to T cells and thus facilitates the binding of HIV to its target receptors. Infection of the cell triggers shedding of L-selectin. The loss of L-selectin likely aids in the release of new virus from the cell. The binding of L-selectin to its ligands plays an important role in embryo implantation during human pregnancy. Deficiency epithelial expression of L-selectin ligands has been associated with infertility, while increased expression has been implicated in ectopic pregnancies The adhesive properties of L-selectin have been shown to contribute to cancer progression. L-selectin interactions participate in trafficking of chronic lymphocytic leukemia cells to

4324-639: The TCR becomes fully operational and the thymocyte becomes a T cell. At the DN2 stage (CD44 CD25 ), cells upregulate the recombination genes RAG1 and RAG2 and re-arrange the TCRβ locus, combining V-D-J recombination and constant region genes in an attempt to create a functional TCRβ chain. As the developing thymocyte progresses through to the DN3 stage (CD44 CD25 ), the thymocyte expresses an invariant α-chain called pre-Tα alongside

4418-449: The TCRβ gene. If the rearranged β-chain successfully pairs with the invariant α-chain, signals are produced which cease rearrangement of the β-chain (and silence the alternate allele). Although these signals require the pre-TCR at the cell surface, they are independent of ligand binding to the pre-TCR. If the chains successfully pair a pre-TCR forms, and the cell downregulates CD25 and is termed

4512-558: The Vγ9 and Vδ2 gene fragments constitute the major γδ T cell population in peripheral blood. These cells are unique in that they specifically and rapidly respond to a set of nonpeptidic phosphorylated isoprenoid precursors, collectively named phosphoantigens , which are produced by virtually all living cells. The most common phosphoantigens from animal and human cells (including cancer cells) are isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMPP). Many microbes produce

4606-497: The action of CD8 T cells. The first signal is provided by binding of the T cell receptor to its cognate peptide presented on MHCII on an APC. MHCII is restricted to so-called professional antigen-presenting cells , like dendritic cells, B cells, and macrophages, to name a few. The peptides presented to CD8 T cells by MHC class I molecules are 8–13 amino acids in length; the peptides presented to CD4 cells by MHC class II molecules are longer, usually 12–25 amino acids in length, as

4700-464: The active compound hydroxy-DMAPP ( HMB-PP ) and corresponding mononucleotide conjugates, in addition to IPP and DMAPP. Plant cells produce both types of phosphoantigens. Drugs activating human Vγ9/Vδ2 T cells comprise synthetic phosphoantigens and aminobisphosphonates , which upregulate endogenous IPP/DMAPP. Activation of CD4 T cells occurs through the simultaneous engagement of the T-cell receptor and

4794-453: The alpha and beta subunits there is a large extracellular domain, a transmembrane domain and a short cytoplasmic domain. The extracellular domain is where the ligand binds through the use of divalent cations . The integrins contain multiple divalent cation binding sites in the extracellular domain ). The integrin cation binding sites can be occupied by Ca2+ or by Mn2+ ions. Cations are necessary but not sufficient for integrins to convert from

SECTION 50

#1732772769483

4888-450: The basement membrane likely control quite different signals. The binding lifetime of L-selectin with apical ligands will be on the order of milliseconds, so in contrast, L-selectin-dependent adhesion in a microenvironment without hydrodynamic shear stress (e.g., within transmigrating pseudopods) will take seconds to minutes. L-selectin is expressed constitutively on most circulating leukocytes. Over time, these molecules are released through

4982-413: The blood to the thymus, where they engraft: . Henceforth they are known as thymocytes , the immature stage of a T cell. The earliest cells which arrived in the thymus are commonly termed double-negative , as they express neither the CD4 nor CD8 co-receptor. The newly arrived CLP cells are CD4 CD8 CD44 CD25 ckit cells, and are termed early thymic progenitor (ETP) cells. These cells will then undergo

5076-525: The blood, liver, lungs, and mucosa , defending against microbial activity and infection. The MHC class I -like protein, MR1 , is responsible for presenting bacterially-produced vitamin B metabolites to MAIT cells. After the presentation of foreign antigen by MR1, MAIT cells secrete pro-inflammatory cytokines and are capable of lysing bacterially-infected cells. MAIT cells can also be activated through MR1-independent signaling. In addition to possessing innate-like functions, this T cell subset supports

5170-407: The body from damage. Sepsis also carries high antigen load and inflammation. In this stage of sepsis T cell exhaustion increases. Currently there are studies aiming to utilize inhibitory receptor blockades in treatment of sepsis. While during infection T cell exhaustion can develop following persistent antigen exposure after graft transplant similar situation arises with alloantigen presence. It

5264-533: The body. Healthy cells typically express a large number of self derived pMHC on their cell surface and although the T cell antigen receptor can interact with at least a subset of these self pMHC, the T cell generally ignores these healthy cells. However, when these very same cells contain even minute quantities of pathogen derived pMHC, T cells are able to become activated and initiate immune responses. The ability of T cells to ignore healthy cells but respond when these same cells contain pathogen (or cancer) derived pMHC

5358-408: The bone marrow. In some cases, the origin might be the foetal liver during embryonic development . The HSC then differentiate into multipotent progenitors (MPP) which retain the potential to become both myeloid and lymphoid cells . The process of differentiation then proceeds to a common lymphoid progenitor (CLP), which can only differentiate into T, B or NK cells. These CLP cells then migrate via

5452-782: The boundary of the cortex and medulla in the thymus. While in the medulla, they are again presented with a self-antigen presented on the MHC complex of medullary thymic epithelial cells (mTECs). mTECs must be Autoimmune regulator positive (AIRE ) to properly express tissue-specific antigens on their MHC class I peptides. Some mTECs are phagocytosed by thymic dendritic cells ; this makes them AIRE antigen presenting cells (APCs), allowing for presentation of self-antigens on MHC class II molecules (positively selected CD4 cells must interact with these MHC class II molecules, thus APCs, which possess MHC class II, must be present for CD4 T-cell negative selection). Thymocytes that interact too strongly with

5546-506: The cells that are produced by a given cause (typically, but not necessarily, chronic exposure to an antigen). Finally, the third approach primarily defines as exhausted the cells that present the same molecular markers (typically, programmed cell death protein 1 [PD-1])." Dysfunctional T cells are characterized by progressive loss of function, changes in transcriptional profiles and sustained expression of inhibitory receptors. At first, cells lose their ability to produce IL-2 and TNFα , which

5640-472: The cellular mechanisms of growth, contact inhibition, and apoptosis. Aberrant expression of CAMs may result in a wide range of pathologies, ranging from frostbite to cancer. CAMs are typically single-pass transmembrane receptors and are composed of three conserved domains: an intracellular domain that interacts with the cytoskeleton , a transmembrane domain, and an extracellular domain. These proteins can interact in several different ways. The first method

5734-491: The consensus repeat units homologous to those found in C3/C4-binding proteins, an extracellular cleavage site, a short transmembrane domain, and a cytoplasmic tail. It is cleaved by ADAM17 . The nature of the interactions between L-selectin and ligand depends on many circumstances, primarily the location of anatomically defined sites in the high vessel venules (perivascular, extravascular and intravascular). Because of

SECTION 60

#1732772769483

5828-627: The context of an MHC molecule on the surface of a professional antigen presenting cell (e.g. a dendritic cell). Appropriate co-stimulation must be present at the time of antigen encounter for this process to occur. Historically, memory T cells were thought to belong to either the effector or central memory subtypes, each with their own distinguishing set of cell surface markers (see below). Subsequently, numerous new populations of memory T cells were discovered including tissue-resident memory T (Trm) cells, stem memory TSCM cells, and virtual memory T cells. The single unifying theme for all memory T cell subtypes

5922-941: The context of infections and cancer. Furthermore, these T cell subsets are being translated into many therapies against malignancies such as leukemia, for example. Natural killer T cells (NKT cells – not to be confused with natural killer cells of the innate immune system) bridge the adaptive immune system with the innate immune system . Unlike conventional T cells that recognize protein peptide antigens presented by major histocompatibility complex (MHC) molecules, NKT cells recognize glycolipid antigens presented by CD1d . Once activated, these cells can perform functions ascribed to both helper and cytotoxic T cells: cytokine production and release of cytolytic/cell killing molecules. They are also able to recognize and eliminate some tumor cells and cells infected with herpes viruses. Mucosal associated invariant T (MAIT) cells display innate , effector-like qualities. In humans, MAIT cells are found in

6016-525: The course of exhaustion because longer exposure time and higher viral load increases the severity of T cell exhaustion. At least 2–4 weeks exposure is needed to establish exhaustion. Another factor able to induce exhaustion are inhibitory receptors including programmed cell death protein 1 (PD1), CTLA-4 , T cell membrane protein-3 (TIM3), and lymphocyte activation gene 3 protein (LAG3). Soluble molecules such as cytokines IL-10 or TGF-β are also able to trigger exhaustion. Last known factors that can play

6110-552: The critical mechanism of tolerance , whereby immune cells are able to distinguish invading cells from "self". This prevents immune cells from inappropriately reacting against one's own cells, known as an " autoimmune " response. For this reason, these regulatory T cells have also been called "suppressor" T cells. These same regulatory T cells can also be co-opted by cancer cells to prevent the recognition of, and an immune response against, tumor cells. All T cells originate from c-kit Sca1 haematopoietic stem cells (HSC) which reside in

6204-426: The cytosol from the extracellular space. This aggregated cytosolic calcium binds calmodulin, which can then activate calcineurin . Calcineurin, in turn, activates NFAT , which then translocates to the nucleus. NFAT is a transcription factor that activates the transcription of a pleiotropic set of genes, most notable, IL-2, a cytokine that promotes long-term proliferation of activated T cells. PLC-γ can also initiate

6298-408: The diversity of L-selectin ligands, signals that propagate downstream of L-selectin provide information about the position of the leukocyte within the multistep adhesion cascade (binding, rolling, adhesion, and transmigration). While L-selectin ligands on the apical side of the endothelium have long been characterized as receptors for binding and rolling, glycans enriched on the basolateral side and in

6392-407: The ends of the binding cleft of the MHC class II molecule are open. The second signal comes from co-stimulation, in which surface receptors on the APC are induced by a relatively small number of stimuli, usually products of pathogens, but sometimes breakdown products of cells, such as necrotic -bodies or heat shock proteins . The only co-stimulatory receptor expressed constitutively by naive T cells

6486-599: The expression of the CD8 protein on their cell surface. Cytotoxic T cells recognize their targets by binding to short peptides (8-11 amino acids in length) associated with MHC class I molecules, present on the surface of all nucleated cells. Cytotoxic T cells also produce the key cytokines IL-2 and IFNγ. These cytokines influence the effector functions of other cells, in particular macrophages and NK cells. Antigen-naive T cells expand and differentiate into memory and effector T cells after they encounter their cognate antigen within

6580-814: The expression of the transcription factor FOXP3 which can be used to identify the cells. Mutations of the FOXP3 gene can prevent regulatory T cell development, causing the fatal autoimmune disease IPEX . Several other types of T cells have suppressive activity, but do not express FOXP3 constitutively. These include Tr1 and Th3 cells, which are thought to originate during an immune response and act by producing suppressive molecules. Tr1 cells are associated with IL-10, and Th3 cells are associated with TGF-beta . Recently, Th17 cells have been added to this list. Innate-like T cells or unconventional T cells represent some subsets of T cells that behave differently in immunity. They trigger rapid immune responses, regardless of

6674-842: The formation of the mesoderm , endoderm , and ectoderm . Cadherins also contribute significantly to the development of the nervous system. The distinct temporal and spatial localization of cadherins implicates these molecules as major players in the process of synaptic stabilization . Each cadherin exhibits a unique pattern of tissue distribution that is carefully controlled by calcium. The diverse family of cadherins include epithelial (E-cadherins), placental (P-cadherins), neural (N-cadherins), retinal ( R-cadherins ), brain (B-cadherins and T-cadherins), and muscle (M-cadherins). Many cell types express combinations of cadherin types. The extracellular domain has major repeats called extracellular cadherin domains (ECD). Sequences involved in Ca binding between

6768-407: The host. β-selection is the first checkpoint, where thymocytes that are able to form a functional pre-TCR (with an invariant alpha chain and a functional beta chain) are allowed to continue development in the thymus. Next, positive selection checks that thymocytes have successfully rearranged their TCRα locus and are capable of recognizing MHC molecules with appropriate affinity. Negative selection in

6862-553: The inactive bent conformation into the active extended conformation. Both the presence of cations bound to the multiple cation binding sites is required, along with the direct physical association with ECM ligands for integrins to attain the extended structure and concomitant activation. Thus, rise in extracellular Ca2+ ions may serve to prime the integrin heterodimer. The release of intracellular Ca2+ have been shown to be important for integrin inside-out activation. However, extracellular Ca2+ binding may exert different effects depending on

6956-498: The integrin into its high affinity state, which causes increased fibrinogen binding, causing platelet aggregation. The cadherins are homophilic Ca -dependent glycoproteins . The classic cadherins ( E- , N- and P- ) are concentrated at the intermediate cell junctions , which link to the actin filament network through specific linking proteins called catenins . Cadherins are notable in embryonic development. For example, cadherins are crucial in gastrulation for

7050-463: The lung endothelium were used as treatment there was a significant reduction in the number of metastatic sites. T cell T cells are one of the important types of white blood cells of the immune system and play a central role in the adaptive immune response . T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell surface . T cells are born from hematopoietic stem cells , found in

7144-523: The lymph nodes where they are able to proliferate and evolve. Additionally, L-selectin interactions may play a role in metastasis . This article incorporates text from the United States National Library of Medicine , which is in the public domain . Cell adhesion molecule Cell adhesion molecules ( CAMs ) are a subset of cell surface proteins that are involved in the binding of cells with other cells or with

7238-639: The major classes of receptors within the ECM, mediate cell–ECM interactions with collagen , fibrinogen , fibronectin , and vitronectin . Integrins provide essential links between the extracellular environment and the intracellular signalling pathways, which can play roles in cell behaviours such as apoptosis , differentiation , survival , and transcription . Integrins are heterodimeric , as they consist of an alpha and beta subunit. There are currently 18 alpha subunits and 8 beta subunits, which combine to make up 24 different integrin combinations. Within each of

7332-419: The major histocompatibility complex (MHC) expression, unlike their conventional counterparts (CD4 T helper cells and CD8 cytotoxic T cells), which are dependent on the recognition of peptide antigens in the context of the MHC molecule. Overall, there are three large populations of unconventional T cells: NKT cells, MAIT cells, and gammadelta T cells. Now, their functional roles are already being well established in

7426-464: The medulla then eliminates thymocytes that bind too strongly to self-antigens expressed on MHC molecules. These selection processes allow for tolerance of self by the immune system. Typical naive T cells that leave the thymus (via the corticomedullary junction) are self-restricted, self-tolerant, and single positive. About 98% of thymocytes die during the development processes in the thymus by failing either positive selection or negative selection, whereas

7520-458: The membrane, where it can then bring in PLC-γ , VAV1 , Itk and potentially PI3K . PLC-γ cleaves PI(4,5)P2 on the inner leaflet of the membrane to create the active intermediaries diacylglycerol ( DAG ), inositol-1,4,5-trisphosphate ( IP3 ); PI3K also acts on PIP2, phosphorylating it to produce phosphatidlyinositol-3,4,5-trisphosphate (PIP3). DAG binds and activates some PKCs. Most important in T cells

7614-429: The migration of these stem cells to the primary lymphoid organs. In addition to its function in the immune response, L-selectin is expressed on embryonic cells and facilitates the attachment of the blastocyst to the endometrial endothelium during human embryo implantation . L-selectin is composed of multiple structural regions: an N-terminus C-type lectin domain , an adjacent epidermal growth factor-like domain, two to

7708-524: The nucleus and bind the NF-κB response element. This coupled with NFAT signaling allows for complete activation of the IL-2 gene. While in most cases activation is dependent on TCR recognition of antigen, alternative pathways for activation have been described. For example, cytotoxic T cells have been shown to become activated when targeted by other CD8 T cells leading to tolerization of the latter. In spring 2014,

7802-404: The other 2% survive and leave the thymus to become mature immunocompetent T cells. The thymus contributes fewer cells as a person ages. As the thymus shrinks by about 3% a year throughout middle age, a corresponding fall in the thymic production of naive T cells occurs, leaving peripheral T cell expansion and regeneration to play a greater role in protecting older people. T cells are grouped into

7896-455: The periphery and have immediate effector functions upon encountering antigen. High expression of L-selectin on human bone marrow progenitor cells is an early sign of cells becoming committed to lymphoid differentiation. Similar to its role in homing lymphocytes to secondary lymphoid tissues, L-selectin expressed on the surface of monocytes and neutrophils is essential for facilitating the first stage of adhesion to venule epithelial cells (known as

7990-415: The process of developing a functional TCR. The TCR consists of two major components, the alpha and beta chains. These both contain random elements designed to produce a wide variety of different TCRs, but due to this huge variety they must be tested to make sure they work at all. First, the thymocytes attempt to create a functional beta chain, testing it against a 'mock' alpha chain. Then they attempt to create

8084-406: The process of ectodomain shedding and are replaced by newly synthesized L-selectin proteins. Ectodomain shedding is largely accomplished through cleavage by ADAM17. The human L-selectin gene ( sell ) is located on the long arm of chromosome 1 (1q24.2), and is arranged in tandem with its family members (in the order: L-, P-, and E-selectin). Human sell consists of 10 exons and its transcription factor

8178-416: The self-antigen receive an apoptotic signal that leads to cell death. However, some of these cells are selected to become Treg cells. The remaining cells exit the thymus as mature naive T cells , also known as recent thymic emigrants. This process is an important component of central tolerance and serves to prevent the formation of self-reactive T cells that are capable of inducing autoimmune diseases in

8272-539: The surface of cortical epithelial cells. Only thymocytes that interact well with MHC-I or MHC-II will receive a vital "survival signal", while those that cannot interact strongly enough will receive no signal and die from neglect . This process ensures that the surviving thymocytes will have an 'MHC affinity' that means they will exhibit stronger binding affinity for specific MHC alleles in that organism. The vast majority of developing thymocytes will not pass positive selection, and die during this process. A thymocyte's fate

8366-450: The three selectins is P-selectin glycoprotein ligand-1 ( PSGL-1 ), which is a mucin-type glycoprotein expressed on all white blood cells. Selectins have been implicated in several roles but they are especially important in the immune system by helping white blood cell homing and trafficking. The variety in CAMs leads to diverse functionality of these proteins in the biological setting. One of

8460-432: The type of integrin and the cation concentration. Integrins regulate their activity within the body by changing conformation. Most exist at rest in a low affinity state, which can be altered to high affinity through an external agonist which causes a conformational change within the integrin, increasing their affinity. An example of this is the aggregation of platelets ; Agonists such as thrombin or collagen trigger

8554-413: The uterine epithelium at the site of invasion. Removal of MUC-1 exposes the oligosaccharide ligands of the uterine epithelium, thus allowing binding by the L-selectin receptor of the trophoblast cell, followed by embryo adhesion and invasion. L-selectin expressed on CD4 T lymphocytes has been implicated in mediating adhesion and entry of HIV . L-selectin binds gp120 , one of the many glycans present on

8648-418: The “rolling stage”). Adhesion to activated epithelial cells is a critical step in the immune response as it allows these immune cells to emigrate from the bloodstream into inflamed tissue. Prolonged rolling and transmigration of neutrophils can trigger shedding of L-selectin from the neutrophil plasma membrane. The membrane-bound fragment left behind following cleavage of L-selectin has also been suggested to play

8742-477: Was observed that there is differences between neutrophil migration toward acute or chronic inflammation could differ in the expression and turnover of adhesion molecules. L-selectin shedding also occurs in monocytes; however, in these cells shedding is triggered only during trans-endothelial and not by earlier stages of the adhesion process. The specific shedding of L-selectin from the leading migratory fronts of transmigrating monocytes suggests that this process plays

8836-663: Was shown that T cell response diminishes over time after kidney transplant. These data suggest T cell exhaustion plays an important role in tolerance of a graft mainly by depletion of alloreactive CD8 T cells. Several studies showed positive effect of chronic infection on graft acceptance and its long-term survival mediated partly by T cell exhaustion. It was also shown that recipient T cell exhaustion provides sufficient conditions for NK cell transfer. While there are data showing that induction of T cell exhaustion can be beneficial for transplantation it also carries disadvantages among which can be counted increased number of infections and

#482517