Misplaced Pages

London Area Control Centre

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Standard instrument departure ( SID ) routes, also known as departure procedures ( DP ), are published flight procedures followed by aircraft on an IFR flight plan immediately after takeoff from an airport .

#266733

103-525: The London Area Control Centre ( LACC ) is an air traffic control centre based at Swanwick near Fareham in Hampshire , southern England . It is operated by National Air Traffic Services (NATS), starting operations on 27 January 2002, and handles aircraft over much of England and Wales . The Swanwick facility replaces that of the former site at West Drayton . LACC shares the Swanwick site with

206-441: A DME distance. It also includes a climb profile, instructing the pilot to cross certain points at or above a certain altitude . A SID procedure ends at a waypoint lying on an airway , which the pilot will follow from there. SID procedures are defined by local authorities ( governments , airports , and air traffic control organizations) to ensure safety and expedite handling of departing traffic and, when possible, to minimize

309-477: A ' Flight Information Service ', which is similar to flight following. In the United Kingdom, it is known as a 'basic service'. En-route air traffic controllers issue clearances and instructions for airborne aircraft, and pilots are required to comply with these instructions. En-route controllers also provide air traffic control services to many smaller airports around the country, including clearance off

412-451: A 'Single European Sky', hoping to boost efficiency and gain economies of scale. The primary method of controlling the immediate airport environment is visual observation from the airport control tower. The tower is typically a tall, windowed structure, located within the airport grounds. The air traffic controllers , usually abbreviated 'controller', are responsible for separation and efficient movement of aircraft and vehicles operating on

515-414: A SID. A SID clearance is issued to the pilot based on a combination of the destination, the first waypoint in the flight plan , and the takeoff runway used. A standard instrument departure procedure consists of a number of waypoints or fixes, which may either be given by their geographical coordinates or be defined by radio beacons , such as VOR or NDB and radial headings, or a radial heading with

618-400: A bordering terminal or approach control). Terminal control is responsible for ensuring that aircraft are at an appropriate altitude when they are handed off, and that aircraft arrive at a suitable rate for landing. Not all airports have a radar approach or terminal control available. In this case, the en-route centre or a neighbouring terminal or approach control may co-ordinate directly with

721-433: A certain airport or airspace becomes a factor, there may be ground 'stops' (or 'slot delays'), or re-routes may be necessary to ensure the system does not get overloaded. The primary responsibility of clearance delivery is to ensure that the aircraft has the correct aerodrome information, such as weather and airport conditions, the correct route after departure, and time restrictions relating to that flight. This information

824-416: A controller can review the last radar returns from the aircraft to determine its likely position. For an example, see the crash report in the following citation. RAS is also useful to technicians who are maintaining radar systems. The mapping of flights in real-time is based on the air traffic control system, and volunteer ADS-B receivers. In 1991, data on the location of aircraft was made available by

927-469: A cumulative nine months on strike between 2004 and 2016. Standard Instrument Departure A SID is an air traffic control coded departure procedure that has been established at certain airports to simplify clearance delivery procedures. SIDs are supposed to be easy to understand and, if possible, limited to one page. Although a SID will keep aircraft away from terrain, it is optimized for air traffic control route of flight and will not always provide

1030-400: A distance of 100 nautical miles (185 kilometres; 115 miles). Terminal controllers are responsible for providing all ATC services within their airspace. Traffic flow is broadly divided into departures, arrivals, and overflights. As aircraft move in and out of the terminal airspace, they are 'handed off' to the next appropriate control facility (a control tower, an en-route control facility, or

1133-432: A large airspace area, they will typically use long-range radar, that has the capability, at higher altitudes, to see aircraft within 200 nautical miles (370 kilometres; 230 miles) of the radar antenna. They may also use radar data to control when it provides a better 'picture' of the traffic, or when it can fill in a portion of the area not covered by the long range radar. In the U.S. system, at higher altitudes, over 90% of

SECTION 10

#1732773310267

1236-414: A large amount of data being available to the controller. To address this, automation systems have been designed that consolidate the radar data for the controller. This consolidation includes eliminating duplicate radar returns, ensuring the best radar for each geographical area is providing the data, and displaying the data in an effective format. Centres also exercise control over traffic travelling over

1339-417: A map of the area, the position of various aircraft, and data tags that include aircraft identification, speed, altitude, and other information described in local procedures. In adverse weather conditions, the tower controllers may also use surface movement radar (SMR), surface movement guidance and control system (SMGCS), or advanced surface movement guidance and control system (ASMGCS) to control traffic on

1442-746: A new area control centre into service at the London Area Control Centre (LACC) at Swanwick in Hampshire, relieving a busy suburban centre at West Drayton in Middlesex, north of London Heathrow Airport . Software from Lockheed-Martin predominates at the London Area Control Centre. However, the centre was initially troubled by software and communications problems causing delays and occasional shutdowns. Some tools are available in different domains to help

1545-472: A number of airlines, particularly in Europe, have started using alphanumeric call signs that are not based on flight numbers (e.g. DLH23LG, spoken as Lufthansa -two-three-lima-golf , to prevent confusion between incoming DLH23 and outgoing DLH24 in the same frequency). Additionally, it is the right of the air traffic controller to change the 'audio' call sign for the period the flight is in his sector if there

1648-510: A radar control facility that is associated with that specific airport. In most countries, this is referred to as terminal control and abbreviated to TMC; in the U.S., it is referred to as a 'terminal radar approach control' or TRACON. While every airport varies, terminal controllers usually handle traffic in a 30-to-50-nautical-mile (56 to 93 km; 35 to 58 mi) radius from the airport. Where there are many busy airports close together, one consolidated terminal control centre may service all

1751-543: A radar controller. When it is quieter sectors are "bandboxed" with one controller operating multiple sectors, until at night there may only be one controller operating the whole bank. Each bank will also have up to two further supernumerary controllers acting as co-ordinators (to liaise with other sectors and other units, and generally assist the radar controllers), and up to two assistants to prepare flight progress strips , operate computer systems and assist with flight data duties. Aircraft departing Heathrow, Gatwick, Luton (to

1854-428: A seamless manner; in other cases, local agreements may allow 'silent handovers', such that the receiving centre does not require any co-ordination if traffic is presented in an agreed manner. After the hand-off, the aircraft is given a frequency change, and its pilot begins talking to the next controller. This process continues until the aircraft is handed off to a terminal controller ('approach'). Since centres control

1957-520: A single hole in a line of thunderstorms. Occasionally, weather considerations cause delays to aircraft prior to their departure as routes are closed by thunderstorms. Much money has been spent on creating software to streamline this process. However, at some ACCs, air traffic controllers still record data for each flight on strips of paper and personally coordinate their paths. In newer sites, these flight progress strips have been replaced by electronic data presented on computer screens. As new equipment

2060-453: A specific ground track be flown. A radar vector SID is used where air traffic control provides radar navigational guidance to a filed or assigned route or to a fix depicted on a SID. Flying a vector SID may require first flying an obstacle departure procedure (ODP). This is usually annotated in the ODP section stating, "Fly runway heading to (xxx altitude) prior to making any turns." This ensures

2163-480: A study that compared stress in the general population and this kind of system markedly showed more stress level for controllers. This variation can be explained, at least in part, by the characteristics of the job. Surveillance displays are also available to controllers at larger airports to assist with controlling air traffic. Controllers may use a radar system called secondary surveillance radar for airborne traffic approaching and departing. These displays include

SECTION 20

#1732773310267

2266-451: A target by interrogating the transponder, the ADS-B equipped aircraft 'broadcasts' a position report as determined by the navigation equipment on board the aircraft. ADS-C is another mode of automatic dependent surveillance, however ADS-C operates in the 'contract' mode, where the aircraft reports a position, automatically or initiated by the pilot, based on a predetermined time interval. It

2369-415: A two or three letter combination followed by the flight number such as AAL872 or VLG1011. As such, they appear on flight plans and ATC radar labels. There are also the audio or radio-telephony call signs used on the radio contact between pilots and air traffic control. These are not always identical to their written counterparts. An example of an audio call sign would be 'Speedbird 832', instead of

2472-419: A unique callsign ( Mode S ). Certain types of weather may also register on the radar screen. These inputs, added to data from other radars, are correlated to build the air situation. Some basic processing occurs on the radar tracks, such as calculating ground speed and magnetic headings. Usually, a flight data processing system manages all the flight plan related data, incorporating, in a low or high degree,

2575-541: Is a risk of confusion, usually choosing the aircraft registration identifier instead. Many technologies are used in air traffic control systems. Primary and secondary radars are used to enhance a controller's situational awareness within their assigned airspace; all types of aircraft send back primary echoes of varying sizes to controllers' screens as radar energy is bounced off their skins, and transponder -equipped aircraft reply to secondary radar interrogations by giving an ID ( Mode A ), an altitude ( Mode C ), and / or

2678-508: Is a service provided by ground-based air traffic controllers who direct aircraft on the ground and through a given section of controlled airspace , and can provide advisory services to aircraft in non-controlled airspace. The primary purpose of ATC is to prevent collisions, organize and expedite the flow of traffic in the air, and provide information and other support for pilots. Personnel of air traffic control monitor aircraft location in their assigned airspace by radar , and communicate with

2781-416: Is a wide range of capabilities on these systems as they are being modernised. Older systems will display a map of the airport and the target. Newer systems include the capability to display higher-quality mapping, radar targets, data blocks, and safety alerts, and to interface with other systems, such as digital flight strips. Air control (known to pilots as tower or tower control ) is responsible for

2884-510: Is also coordinated with the relevant radar centre or flow control unit and ground control, to ensure that the aircraft reaches the runway in time to meet the time restriction provided by the relevant unit. At some airports, clearance delivery also plans aircraft push-backs and engine starts, in which case it is known as the ground movement planner (GMP): this position is particularly important at heavily congested airports to prevent taxiway and aircraft parking area gridlock. Flight data (which

2987-464: Is also possible for controllers to request more frequent reports to more quickly establish aircraft position for specific reasons. However, since the cost for each report is charged by the ADS service providers to the company operating the aircraft, more frequent reports are not commonly requested, except in emergency situations. ADS-C is significant, because it can be used where it is not possible to locate

3090-402: Is brought in, more and more sites are upgrading away from paper flight strips. Constrained control capacity and growing traffic lead to flight cancellation and delays : By then the market for air-traffic services was worth $ 14bn. More efficient ATC could save 5-10% of aviation fuel by avoiding holding patterns and indirect airways . The military takes 80% of Chinese airspace, congesting

3193-571: Is known as TC Thames because its holding stacks are also used by Biggin Hill traffic. Thames INT vectors Biggin Hill traffic out of controlled airspace, and onto an approach, before handoff to Biggin Approach (not located at TC). In addition, Thames has responsibility for some Southend and all low-level London CTR traffic (the latter due to its much lower workload, compared to the Heathrow sectors). TC

London Area Control Centre - Misplaced Pages Continue

3296-518: Is required to have clearance from ground control. This is normally done via VHF / UHF radio, but there may be special cases where other procedures are used. Aircraft or vehicles without radios must respond to ATC instructions via aviation light signals , or else be led by official airport vehicles with radios. People working on the airport surface normally have a communications link through which they can communicate with ground control, commonly either by handheld radio or even cell phone . Ground control

3399-480: Is responsible for the airport movement areas, as well as areas not released to the airlines or other users. This generally includes all taxiways, inactive runways, holding areas, and some transitional aprons or intersections where aircraft arrive, having vacated the runway or departure gate. Exact areas and control responsibilities are clearly defined in local documents and agreements at each airport. Any aircraft, vehicle, or person walking or working in these areas

3502-438: Is routinely combined with clearance delivery) is the position that is responsible for ensuring that both controllers and pilots have the most current information: pertinent weather changes, outages, airport ground delays / ground stops, runway closures, etc. Flight data may inform the pilots using a recorded continuous loop on a specific frequency known as the automatic terminal information service (ATIS). Many airports have

3605-486: Is slightly unusual for a Terminal Control Centre in that it also has a number of en-route sectors responsible for lower levels of airspace on the outside, on top of and in the outer parts the TMA. These sectors not only include Class A airspace in the TMA and surrounding CTAs below FL195 (19,500 feet [5,944 m]), but also Class C airspace above FL195. These are controlled from TC because they mainly feed traffic into and out of

3708-608: Is that military SIDs depict obstacles, ATC climb gradients, and obstacle climb gradients, while civilian SIDs depict only minimum obstacle climb gradients. There are three main types of SIDs: pilot-nav SIDs, radar vector SIDs, and hybrid SIDs. A pilot-nav SID is a SID where the pilot is primarily responsible for navigation along the SID route. It allows for the aircraft to get from the runway to its assigned route with no vectoring required from air traffic control. They are established for airports where terrain and related safety factors dictate

3811-596: Is that some of the INT (Intermediate Approach) sectors can be staffed by two controllers at a time, making transmissions on the same frequency in the following fashion: This allows both controllers to maintain greater situational awareness, whilst limiting unnecessary frequency changes. Stansted's approach control unit is known as TC Essex because its holding stacks are also used by Luton traffic. Essex INT separates Luton traffic from Stansted traffic but does not sequence it before handoff to TC Luton. City's approach control unit

3914-546: Is the only facility with radio or phone coverage. The first airport traffic control tower, regulating arrivals, departures, and surface movement of aircraft in the US at a specific airport, opened in Cleveland in 1930. Approach / departure control facilities were created after adoption of radar in the 1950s to monitor and control the busy airspace around larger airports. The first air route traffic control center (ARTCC), which directs

4017-606: Is the position that issues route clearances to aircraft, typically before they commence taxiing. These clearances contain details of the route that the aircraft is expected to fly after departure. Clearance delivery, or, at busy airports, ground movement planner (GMP) or traffic management coordinator (TMC) will, if necessary, coordinate with the relevant radar centre or flow control unit to obtain releases for aircraft. At busy airports, these releases are often automatic, and are controlled by local agreements allowing 'free-flow' departures. When weather or extremely high demand for

4120-466: Is vital to the smooth operation of the airport because this position impacts the sequencing of departure aircraft, affecting the safety and efficiency of the airport's operation. Some busier airports have surface movement radar (SMR), such as ASDE-3, AMASS, or ASDE-X , designed to display aircraft and vehicles on the ground. These are used by ground control as an additional tool to control ground traffic, particularly at night or in poor visibility. There

4223-564: The approach sequence of aircraft arriving at the airport, so the airport's approach control does not need to handle the aircraft and it is transferred straight to the TMA controller on departure. The TMA controllers then climb the departures through the arrivals to the airports that they are also working. Arrivals to the London airports are handed over from LACC at Swanwick or the TC en-route sectors, usually following STARs and are descended against

London Area Control Centre - Misplaced Pages Continue

4326-903: The Federal Aviation Administration to the airline industry. The National Business Aviation Association (NBAA), the General Aviation Manufacturers Association, the Aircraft Owners and Pilots Association, the Helicopter Association International, and the National Air Transportation Association, petitioned the FAA to make ASDI information available on a 'need-to-know' basis. Subsequently, NBAA advocated

4429-746: The London Terminal Control Centre (LTCC), which moved there in 2007. AC-based controllers provide air traffic services mainly within the London Flight Information Region (FIR). This airspace is split into five Local Area Groups (LAGs) which relate to the position of the airspace sector groups within the FIR. All sectors have the R/T callsign "London Control". Also within the AC Operations room sit

4532-733: The pilots by radio . To prevent collisions, ATC enforces traffic separation rules, which ensure each aircraft maintains a minimum amount of 'empty space' around it at all times. It is also common for ATC to provide services to all private , military , and commercial aircraft operating within its airspace; not just civilian aircraft. Depending on the type of flight and the class of airspace, ATC may issue instructions that pilots are required to obey, or advisories (known as flight information in some countries) that pilots may, at their discretion, disregard. The pilot in command of an aircraft always retains final authority for its safe operation, and may, in an emergency, deviate from ATC instructions to

4635-531: The EU called for a 'Digital European Sky', focusing on cutting costs by including a common digitisation standard, and allowing controllers to move to where they are needed instead of merging national ATCs, as it would not solve all problems. Single air-traffic control services in continent-sized America and China does not alleviate congestion. Eurocontrol tries to reduce delays by diverting flights to less busy routes: flight paths across Europe were redesigned to accommodate

4738-839: The East and North East of London. This LAG is responsible for the largest amount of airspace within AC, extending from the West of Bournemouth down across the Western approaches and up into the south of Wales. These sectors adjoin the airspace controlled by the Prestwick Centre to the North, airspace overlying some of the airspace around Manchester formerly controlled by the Manchester Centre (now also at Prestwick ) and airspace over

4841-620: The FIR Flight Information Service Officers (FISOs) who provide an information service to aircraft operating within the London FIR as a whole using the callsign "London Information". 'Swanwick Military' controllers are also based in the AC Operations room. Each sector is assigned a sector number which is used when co-ordinating the passage of aircraft between each other. Colloquial names are also in use for each group of sectors and are sometimes used within

4944-558: The London TMA, including Heathrow , Gatwick and Stansted . It is also responsible for handling lower level enroute traffic in airspace surrounding the main London TMA up to FL245 (24,500 feet [7,468 m]). TC-based controllers provide air traffic services within the London Terminal Control Area (TMA). This airspace is split into two groups or banks , TC North and TC South, which not only relates to

5047-475: The North of Wales across to Ireland. This LAG comprises the sectors along the South Coast of England , bordering France and Maastricht airspace. Since November 2007, terminal control (TC) facilities have also been provided from the Swanwick facility, after moving from the London Terminal Control Centre at West Drayton . TC is largely responsible for dealing with aircraft inbound/outbound to airports in

5150-472: The SID lateral route with different altitude restrictions. Pilots must follow the published SID route, unless otherwise directed by an Air Traffic Controller. Small deviations are allowed (usually there are flight paths of some kilometers wide), but bigger deviations may cause separation conflicts . Pilots can be fined for too large deviations from the prescribed path. The precision of SIDs also varies by region. In some countries and regions, every detail of

5253-918: The Southern Daventry Corridor (including overflights). Airspace adjoins the Northern Daventry Corridor, which is controlled from the Manchester Area Control Centre (located in Prestwick ). TC Capital Controls traffic overflying the London TMA between FL155-FL215 (15,500–21,500 feet [4,700–6,600 m]) (including overflights and departures/arrivals which must cross the TMA). Positions: 50°53′12″N 1°17′10″W  /  50.8868°N 1.2861°W  / 50.8868; -1.2861 Air traffic control Air traffic control ( ATC )

SECTION 50

#1732773310267

5356-407: The U.S. airspace is covered by radar, and often by multiple radar systems; however, coverage may be inconsistent at lower altitudes used by aircraft, due to high terrain or distance from radar facilities. A centre may require numerous radar systems to cover the airspace assigned to them, and may also rely on pilot position reports from aircraft flying below the floor of radar coverage. This results in

5459-492: The U.S., TRACONs are additionally designated by a three-digit alphanumeric code. For example, the Chicago TRACON is designated C90. Air traffic control also provides services to aircraft in flight between airports. Pilots fly under one of two sets of rules for separation: visual flight rules (VFR), or instrument flight rules (IFR). Air traffic controllers have different responsibilities to aircraft operating under

5562-465: The active runway surfaces. Air control gives clearance for aircraft takeoff or landing, whilst ensuring that prescribed runway separation will exist at all times. If the air controller detects any unsafe conditions, a landing aircraft may be instructed to ' go-around ', and be re-sequenced into the landing pattern. This re-sequencing will depend on the type of flight, and may be handled by the air controller, approach, or terminal area controller. Within

5665-471: The air by holding over specified locations until they may be safely sequenced to the runway. Up until the 1990s, holding, which has significant environmental and cost implications, was a routine occurrence at many airports. Advances in computers now allow the sequencing of aircraft hours in advance. Thus, aircraft may be delayed before they even take off (by being given a 'slot'), or may reduce speed in flight and proceed more slowly thus significantly reducing

5768-468: The air controllers aware of the traffic flow towards their runways to maximise runway utilisation through effective approach spacing. Crew resource management (CRM) procedures are often used to ensure this communication process is efficient and clear. Within ATC, it is usually known as 'team resource management' (TRM), and the level of focus on TRM varies within different ATC organisations. Clearance delivery

5871-900: The air traffic control system are primarily related to the volume of air traffic demand placed on the system, and weather. Several factors dictate the amount of traffic that can land at an airport in a given amount of time. Each landing aircraft must touch down, slow, and exit the runway , before the next aircraft crosses the approach end of the runway. This process requires at least one, and up to four minutes for each aircraft. Allowing for departures between arrivals, each runway can thus handle about 30 aircraft arrivals per hour. A large airport with two arrival runways can handle about 60 arrivals per hour in good weather. Problems arise when airlines schedule more arrivals into an airport than can be physically handled, or when delays elsewhere cause groups of aircraft – that would otherwise be separated in time – to arrive simultaneously. Aircraft must then be delayed in

5974-454: The air, a ground delay programme may be established, delaying aircraft on the ground before departure due to conditions at the arrival airport. In Area Control Centres, a major weather problem is thunderstorms , which present a variety of hazards to aircraft. Airborne aircraft will deviate around storms, reducing the capacity of the en-route system, by requiring more space per aircraft, or causing congestion, as many aircraft try to move through

6077-412: The aircraft approaches its destination, the centre is responsible for issuing instructions to pilots so that they will meet altitude restrictions by specific points, as well as providing many destination airports with a traffic flow, which prohibits all of the arrivals being 'bunched together'. These 'flow restrictions' often begin in the middle of the route, as controllers will position aircraft landing in

6180-461: The aircraft is clear of any obstacles. Vector SIDs give air traffic control more control over air traffic routing than do pilot-nav SIDs. A hybrid SID is a departure that combines elements of both the pilot-nav and radar vector departures. A hybrid SID usually requires the pilot to fly a set of instructions, then be vectored to a defined route to a transition to leave the terminal area. Air traffic control clearance must be received prior to flying

6283-481: The aircraft operator, and identical call sign might be used for the same scheduled journey each day it is operated, even if the departure time varies a little across different days of the week. The call sign of the return flight often differs only by the final digit from the outbound flight. Generally, airline flight numbers are even if east-bound, and odd if west-bound. In order to reduce the possibility of two call signs on one frequency at any time sounding too similar,

SECTION 60

#1732773310267

6386-406: The airports. The airspace boundaries and altitudes assigned to a terminal control centre, which vary widely from airport to airport, are based on factors such as traffic flows, neighbouring airports, and terrain. A large and complex example was the London Terminal Control Centre (LTCC), which controlled traffic for five main London airports up to an altitude of 20,000 feet (6,096 metres) and out to

6489-578: The amount of holding. Air traffic control errors occur when the separation (either vertical or horizontal) between airborne aircraft falls below the minimum prescribed separation set (for the domestic United States) by the US Federal Aviation Administration. Separation minimums for terminal control areas (TCAs) around airports are lower than en-route standards. Errors generally occur during periods following times of intense activity, when controllers tend to relax and overlook

6592-421: The amount of noise over inhabited areas such as cities. Naming conventions for SID procedures vary by region. In most of Europe, SID procedures are usually named after the final waypoint ( fix ) of the procedure, which often lies on an airway, followed optionally by a version number and often a single letter. The version number starts at 1 and is increased each time the procedure is altered. The letter designates

6695-470: The broad-scale dissemination of air traffic data. The Aircraft Situational Display to Industry ( ASDI ) system now conveys up-to-date flight information to the airline industry and the public. Some companies that distribute ASDI information are Flightradar24 , FlightExplorer, FlightView, and FlyteComm. Each company maintains a website that provides free updated information to the public on flight status. Stand-alone programmes are also available for displaying

6798-528: The centre provides a clearance. Centre controllers are responsible for issuing instructions to pilots to climb their aircraft to their assigned altitude, while, at the same time, ensuring that the aircraft is properly separated from all other aircraft in its immediate area. Additionally, the aircraft must be placed in a flow consistent with the aircraft's route of flight. This effort is complicated by crossing traffic, severe weather, special missions that require large airspace allocations, and traffic density. When

6901-412: The co-ordination process when sectors are bandboxed together to indicate that one sector team is operating a whole group of sectors. LACC is unusual in that it uses Class A airspace at lower levels. Therefore, VFR operation is prohibited. These sectors comprise the airspace above the London TMA airspace controlled from the TC operations room. These sectors comprise the airspace above TC East sectors to

7004-666: The controller further: In the United States, some alterations to traffic control procedures are being examined: In Europe, the Single European Sky ATM Research (SESAR) programme plans to develop new methods, technologies, procedures, and systems to accommodate future (2020 and beyond) air traffic needs. In October 2018, European controller unions dismissed setting targets to improve ATC as "a waste of time and effort", as new technology could cut costs for users but threaten their jobs. In April 2019,

7107-490: The departing traffic, sorted out into different levels, and routed to various holds (generally at the end of STARs), where they will hold until the approach control units are ready to position them into an approach sequence to land. The Approach Control units for the five major London airports are also controlled from TC, plus the radar approach services for Biggin Hill and initial sequencing for some Southend traffic. Each approach unit has more than one sector. The majority of

7210-472: The different sets of rules. While IFR flights are under positive control, in the US and Canada, VFR pilots can request 'flight following' (radar advisories), which provides traffic advisory services on a time permitting basis, and may also provide assistance in avoiding areas of weather and flight restrictions, as well as allowing pilots into the air traffic control system prior to the need to a clearance into certain airspace. Throughout Europe, pilots may request

7313-598: The equivalent term air route traffic control center. Each centre is responsible for a given flight information region (FIR). Each flight information region typically covers many thousands of square miles of airspace, and the airports within that airspace. Centres control IFR aircraft from the time they depart from an airport or terminal area's airspace, to the time they arrive at another airport or terminal area's airspace. Centres may also 'pick up' VFR aircraft that are already airborne, and integrate them into their system. These aircraft must continue under VFR flight rules until

7416-575: The extent required to maintain safe operation of the aircraft. Pursuant to requirements of the International Civil Aviation Organization (ICAO), ATC operations are conducted either in the English language, or the local language used by the station on the ground. In practice, the native language for a region is used; however, English must be used upon request. In 1920, Croydon Airport near London, England,

7519-523: The following provides a general concept of the delegation of responsibilities within the air traffic control tower environment. Remote and virtual tower (RVT) is a system based on air traffic controllers being located somewhere other than at the local airport tower, and still able to provide air traffic control services. Displays for the air traffic controllers may be live video, synthetic images based on surveillance sensor data, or both. Ground control (sometimes known as ground movement control , GMC)

7622-432: The geographic location of airborne instrument flight rules (IFR) air traffic anywhere in the FAA air traffic system. Positions are reported for both commercial and general aviation traffic. The programmes can overlay air traffic with a wide selection of maps such as, geo-political boundaries, air traffic control centre boundaries, high altitude jet routes, satellite cloud and radar imagery. The day-to-day problems faced by

7725-427: The ground and clearance for approach to an airport. Controllers adhere to a set of separation standards that define the minimum distance allowed between aircraft. These distances vary depending on the equipment and procedures used in providing ATC services. En-route air traffic controllers work in facilities called air traffic control centres, each of which is commonly referred to as a 'centre'. The United States uses

7828-408: The information of the track once the correlation between them (flight plan and track) is established. All this information is distributed to modern operational display systems , making it available to controllers. The Federal Aviation Administration (FAA) has spent over US$ 3 billion on software, but a fully automated system is still yet to be achieved. In 2002, the United Kingdom commissioned

7931-571: The infrastructure for a radar system (e.g., over water). Computerised radar displays are now being designed to accept ADS-C inputs as part of their display. This technology is currently used in portions of the North Atlantic and the Pacific by a variety of states who share responsibility for the control of this airspace. 'Precision approach radars' (PAR) are commonly used by military controllers of air forces of several countries, to assist

8034-424: The last three numbers (e.g. three-four-five for N12345). In the United States, the prefix may be an aircraft type, model, or manufacturer in place of the first registration character, for example, 'N11842' could become 'Cessna 842'. This abbreviation is only allowed after communications have been established in each sector. Before around 1980, International Air Transport Association (IATA) and ICAO were using

8137-533: The lateral and vertical flight path to be followed is specified exactly in the SID; in other areas, the SID may be much more general, with details being left either to pilot discretion or to ATC. In general, however, SIDs are quite detailed. As of 21 October 2010, there were seven published SIDs from runway 22 at Amsterdam Airport Schiphol , The Netherlands . Among them, the ANDIK2G Standard Instrument Departure for reaching

8240-506: The lowest climb gradient. It strikes a balance between terrain and obstacle avoidance, noise abatement (if necessary), and airspace management considerations. In order to legally fly a SID, a pilot must possess at least the current version of the SID's textual description. SIDs in the United States are created by either the military (the USAF or USN) or the FAA (which includes US Army fields). The main difference between US military and civilian SIDs

8343-729: The main London airports. They are grouped as TC East (4 sectors), TC Midlands (4 sectors) and TC Capital (2 sectors). TC Midlands is somewhat of a hybrid since it also interacts directly with airports and the aircraft departing from them in the same way as the TMA sectors. TC East Controls traffic below FL215 (21,500 feet [6,553 m]) to the East of the London TMA. Airspace adjoins the international boundary with Amsterdam and Brussels lower-level airspace. Most traffic will speak to 2 TC East Sectors. The primary flows are: TC DAGGA -> TC REDFA (Departures) and TC JACKO -> TC SABER (Arrivals) with any differences from this pattern noted below. TC Midlands Controls traffic below FL195-215 in

8446-517: The manoeuvring area (taxiways and runways). The areas of responsibility for tower controllers fall into three general operational disciplines: local control or air control, ground control, and flight data / clearance delivery. Other categories, such as airport apron control, or ground movement planner, may also exist at extremely busy airports. While each tower may have unique airport-specific procedures, such as multiple teams of controllers ( crews ) at major or complex airports with multiple runways,

8549-465: The movement of aircraft between departure and destination, was opened in Newark in 1935, followed in 1936 by Chicago and Cleveland. Currently in the US, the Federal Aviation Administration (FAA) operates 22 Air Route Traffic Control Centers . After the 1956 Grand Canyon mid-air collision , killing all 128 on board, the FAA was given the air-traffic responsibility in the United States in 1958, and this

8652-530: The new airport in Istanbul, which opened in April, but the extra capacity will be absorbed by rising demand for air travel. Well-paid jobs in western Europe could move east with cheaper labour. The average Spanish controller earn over €200,000 a year, over seven times the country average salary, more than pilots, and at least ten controllers were paid over €810,000 ($ 1.1m) a year in 2010. French controllers spent

8755-468: The north or west only), and Stansted mostly depart on a free-flow principle: the radar controllers do not release each individual flight for departure, they just receive a pre-note via a computer system that the flight is pending. This cuts down on inter-unit co-ordination and allows the tower controller at the airport to decide the most efficient departure order. In many cases the aircraft's Standard Instrument Departure (SID) routing does not conflict with

8858-438: The overall capacity for any given route. The North Atlantic Track system is a notable example of this method. Some air navigation service providers (e.g., Airservices Australia, the U.S. Federal Aviation Administration, Nav Canada , etc.) have implemented automatic dependent surveillance – broadcast (ADS-B) as part of their surveillance capability. This newer technology reverses the radar concept. Instead of radar 'finding'

8961-482: The pilot in final phases of landing in places where instrument landing system and other sophisticated airborne equipment are unavailable to assist the pilots in marginal or near zero visibility conditions. This procedure is also called a 'talk-down'. A radar archive system (RAS) keeps an electronic record of all radar information, preserving it for a few weeks. This information can be useful for search and rescue . When an aircraft has 'disappeared' from radar screens,

9064-491: The position of the airspace sector relative to London Heathrow, but also the direction in the Terminal Control Room in which that sector's controllers face when at their radar consoles. TC North is further split into North East (3 sectors) and North West (2 sectors). TC South is further split into South East (3 sectors) and South West (3 sectors). TC North TC South At its busiest, each sector will have

9167-544: The presence of traffic and conditions that lead to loss of minimum separation. Beyond runway capacity issues, the weather is a major factor in traffic capacity. Rain, ice , snow, or hail on the runway cause landing aircraft to take longer to slow and exit, thus reducing the safe arrival rate, and requiring more space between landing aircraft. Fog also requires a decrease in the landing rate. These, in turn, increase airborne delay for holding aircraft. If more aircraft are scheduled than can be safely and efficiently held in

9270-468: The runway (the route to be flown to a particular fix depends on the takeoff runway). In the United States, SID procedure names are less rigidly formatted, and may simply refer to some notable characteristic of the procedure, a waypoint, or its geographical situation, along with a single digit that is incremented with each revision of the procedure. Thus, the LOOP5 SID at Los Angeles International Airport

9373-400: The same destination so that when the aircraft are close to their destination they are sequenced. As an aircraft reaches the boundary of a centre's control area, it is 'handed off' or 'handed over' to the next area control centre . In some cases, this 'hand-off' process involves a transfer of identification and details between controllers so that air traffic control services can be provided in

9476-550: The same two-letter call signs. Due to the larger number of new airlines after deregulation, the ICAO established the three-letter call signs as mentioned above. The IATA call signs are currently used in aerodromes on the announcement tables, but are no longer used in air traffic control. For example, AA is the IATA call sign for American Airlines ; the ATC equivalent is AAL. Flight numbers in regular commercial flights are designated by

9579-418: The taxiways and runways of the airport itself, and aircraft in the air near the airport, generally 5 to 10 nautical miles (9 to 19 kilometres ; 6 to 12 miles ), depending on the airport procedures. A controller must carry out the job using the precise and effective application of rules and procedures; however, they need flexible adjustments according to differing circumstances, often under time pressure. In

9682-418: The thin corridors open to airliners. The United Kingdom closes its military airspace only during military exercises. A prerequisite to safe air traffic separation is the assignment and use of distinctive call signs . These are permanently allocated by ICAO on request, usually to scheduled flights , and some air forces and other military services for military flights . There are written call signs with

9785-452: The tower on the airport and vector inbound aircraft to a position from where they can land visually. At some of these airports, the tower may provide a non-radar procedural approach service to arriving aircraft handed over from a radar unit before they are visual to land. Some units also have a dedicated approach unit, which can provide the procedural approach service either all the time, or for any periods of radar outage for any reason. In

9888-432: The tower, a highly disciplined communications process between the air control and ground control is an absolute necessity. Air control must ensure that ground control is aware of any operations that will impact the taxiways, and work with the approach radar controllers to create gaps in the arrival traffic; to allow taxiing traffic to cross runways, and to allow departing aircraft to take off. Ground control needs to keep

9991-409: The work for the approach units is controlling the sequence of aircraft making an approach at an airport from the holds until established on final approach about four miles (3 nmi; 6 km) away from the airport. The approach units also handle some aircraft departing from the airport, when that aircraft's departure conflicts with the approach sequence. Slightly unusual to the approach units at TC

10094-557: The world's ocean areas. These areas are also flight information regions (FIRs). Because there are no radar systems available for oceanic control, oceanic controllers provide ATC services using procedural control . These procedures use aircraft position reports, time, altitude, distance, and speed, to ensure separation. Controllers record information on flight progress strips , and in specially developed oceanic computer systems, as aircraft report positions. This process requires that aircraft be separated by greater distances, which reduces

10197-496: The written 'BAW832'. This is used to reduce the chance of confusion between ATC and the aircraft. By default, the call sign for any other flight is the registration number (or tail number in US parlance) of the aircraft, such as 'N12345', 'C-GABC', or 'EC-IZD'. The short radio-telephony call signs for these tail numbers is the last three letters using the NATO phonetic alphabet (e.g. ABC, spoken alpha-bravo-charlie for C-GABC), or

10300-507: Was created in 1922, after World War I, when the U.S. Post Office began using techniques developed by the U.S. Army to direct and track the movements of reconnaissance aircraft . Over time, the AMRS morphed into flight service stations . Today's flight service stations do not issue control instructions, but provide pilots with many other flight related informational services. They do relay control instructions from ATC in areas where flight service

10403-702: Was followed by other countries. In 1960, Britain, France, Germany, and the Benelux countries set up Eurocontrol , intending to merge their airspaces. The first and only attempt to pool controllers between countries is the Maastricht Upper Area Control Centre (MUAC), founded in 1972 by Eurocontrol, and covering Belgium, Luxembourg, the Netherlands, and north-western Germany. In 2001, the European Union (EU) aimed to create

10506-518: Was so called because it was the fifth revision of a procedure that required aircraft to take off toward the west, over the ocean, and then make a roughly 180-degree turn (i.e., a loop) back toward the mainland. Though SID procedures are primarily designed for IFR traffic to join airways, air traffic control at busy airports can request that VFR traffic also follows such a procedure so that aircraft separation can be more easily maintained. Usually VFR pilots will be given radar vectors corresponding to

10609-415: Was the first airport in the world to introduce air traffic control. The 'aerodrome control tower' was a wooden hut 15 feet (5 metres) high with windows on all four sides. It was commissioned on 25 February 1920, and provided basic traffic, weather, and location information to pilots. In the United States, air traffic control developed three divisions. The first of several air mail radio stations (AMRS)

#266733