Geology (from Ancient Greek γῆ ( gê ) 'earth' and λoγία ( -logía ) 'study of, discourse') is a branch of natural science concerned with the Earth and other astronomical objects , the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth sciences , including hydrology . It is integrated with Earth system science and planetary science .
171-1013: The Lassen volcanic area presents a geological record of sedimentation and volcanic activity in and around Lassen Volcanic National Park in Northern California , U.S. The park is located in the southernmost part of the Cascade Mountain Range in the Pacific Northwest region of the United States. Pacific Oceanic tectonic plates have plunged below the North American Plate in this part of North America for hundreds of millions of years. Heat and molten rock from these subducting plates has fed scores of volcanoes in California , Oregon , Washington and British Columbia over at least
342-535: A characteristic fabric . All three types may melt again, and when this happens, new magma is formed, from which an igneous rock may once again solidify. Organic matter, such as coal, bitumen, oil, and natural gas, is linked mainly to organic-rich sedimentary rocks. To study all three types of rock, geologists evaluate the minerals of which they are composed and their other physical properties, such as texture and fabric . Geologists also study unlithified materials (referred to as superficial deposits ) that lie above
513-534: A dike , a sill , a laccolith , a pluton , or a batholith . While the study of magma has relied on observing magma after its transition into a lava flow , magma has been encountered in situ three times during geothermal drilling projects , twice in Iceland (see Use in energy production ) and once in Hawaii. Magma consists of liquid rock that usually contains suspended solid crystals. As magma approaches
684-485: A petrographic microscope , where the minerals can be identified through their different properties in plane-polarized and cross-polarized light, including their birefringence , pleochroism , twinning , and interference properties with a conoscopic lens . In the electron microprobe, individual locations are analyzed for their exact chemical compositions and variation in composition within individual crystals. Stable and radioactive isotope studies provide insight into
855-456: A combination of these processes. Other mechanisms, such as melting from a meteorite impact , are less important today, but impacts during the accretion of the Earth led to extensive melting, and the outer several hundred kilometers of the early Earth was probably a magma ocean . Impacts of large meteorites in the last few hundred million years have been proposed as one mechanism responsible for
1026-434: A definite homogeneous chemical composition and an ordered atomic arrangement. Each mineral has distinct physical properties, and there are many tests to determine each of them. Minerals are often identified through these tests. The specimens can be tested for: A rock is any naturally occurring solid mass or aggregate of minerals or mineraloids . Most research in geology is associated with the study of rocks, as they provide
1197-420: A depth of 2,488 m (8,163 ft). The temperature of this magma was estimated at 1,050 °C (1,920 °F). Temperatures of deeper magmas must be inferred from theoretical computations and the geothermal gradient. Most magmas contain some solid crystals suspended in the liquid phase. This indicates that the temperature of the magma lies between the solidus , which is defined as the temperature at which
1368-427: A dissolved water content in excess of 10%. Water is somewhat less soluble in low-silica magma than high-silica magma, so that at 1,100 °C and 0.5 GPa , a basaltic magma can dissolve 8% H 2 O while a granite pegmatite magma can dissolve 11% H 2 O . However, magmas are not necessarily saturated under typical conditions. Carbon dioxide is much less soluble in magmas than water, and frequently separates into
1539-406: A distinct fluid phase even at great depth. This explains the presence of carbon dioxide fluid inclusions in crystals formed in magmas at great depth. Viscosity is a key melt property in understanding the behaviour of magmas. Whereas temperatures in common silicate lavas range from about 800 °C (1,470 °F) for felsic lavas to 1,200 °C (2,190 °F) for mafic lavas, the viscosity of
1710-522: A divide with ice north of it moving into the depression containing Snag and Butte Lakes, while those to the south entered Warner Valley. The ice varied from a thickness of 1,600 ft (490 m) in Warner Valley to much thinner sheets in the higher mountains. Subsequent to the rise of Lassen Peak, several dacitic pumice cones developed in a rift extending northwest from the base of Lassen Peak. Then about 1,100 years ago several dacitic domes,
1881-509: A few inches (several cm) to about three feet (one meter) deep. Because these eruptions are relatively nonviolent, they rarely cause human fatalities. Dacite eruptions in the Lassen area typically begin with steam explosions caused by the interaction of rising magma with ground water. When dacite magma charged with volcanic gases reaches the surface, it erupts explosively, usually as a vertical column of gas and ash that can rise several miles into
SECTION 10
#17327909537752052-435: A high charge (the high-field-strength elements, or HSFEs), which include such elements as zirconium , niobium , hafnium , tantalum , the rare-earth elements , and the actinides . Potassium can become so enriched in melt produced by a very low degree of partial melting that, when the magma subsequently cools and solidifies, it forms unusual potassic rock such as lamprophyre , lamproite , or kimberlite . When enough rock
2223-546: A hypothetical magma formed entirely from melted silica, NBO/T would be 0, while in a hypothetical magma so low in network formers that no polymerization takes place, NBO/T would be 4. Neither extreme is common in nature, but basalt magmas typically have NBO/T between 0.6 and 0.9, andesitic magmas have NBO/T of 0.3 to 0.5, and rhyolitic magmas have NBO/T of 0.02 to 0.2. Water acts as a network modifier, and dissolved water drastically reduces melt viscosity. Carbon dioxide neutralizes network modifiers, so dissolved carbon dioxide increases
2394-470: A large conical stratovolcano called Mount Tehama (also called Brokeoff Volcano) in what is now the southwest corner of the park within the Rockland caldera complex. It was made of roughly alternating layers of andesitic lavas and tephra ( volcanic ash , breccia , and pumice ) with increasing amounts of tephra with elevation. Tehama eventually reached an elevation of about 11,000 ft (3,400 m),
2565-481: A layer that appears to contain silicate melt and that stretches for at least 1,000 kilometers within the middle crust along the southern margin of the Tibetan Plateau. Granite and rhyolite are types of igneous rock commonly interpreted as products of the melting of continental crust because of increases in temperature. Temperature increases also may contribute to the melting of lithosphere dragged down in
2736-627: A length of less than a meter. Rocks at the depth to be ductilely stretched are often also metamorphosed. These stretched rocks can also pinch into lenses, known as boudins , after the French word for "sausage" because of their visual similarity. Where rock units slide past one another, strike-slip faults develop in shallow regions, and become shear zones at deeper depths where the rocks deform ductilely. The addition of new rock units, both depositionally and intrusively, often occurs during deformation. Faulting and other deformational processes result in
2907-420: A magma. In practice, it is difficult to unambiguously identify primary magmas, though it has been suggested that boninite is a variety of andesite crystallized from a primary magma. The Great Dyke of Zimbabwe has also been interpreted as rock crystallized from a primary magma. The interpretation of leucosomes of migmatites as primary magmas is contradicted by zircon data, which suggests leucosomes are
3078-400: A means to provide information about geological history and the timing of geological events. The principle of uniformitarianism states that the geological processes observed in operation that modify the Earth's crust at present have worked in much the same way over geological time. A fundamental principle of geology advanced by the 18th-century Scottish physician and geologist James Hutton
3249-457: A new crater three days later on May 22. A volcanic cloud rose 40,000 ft (12,000 m), but a portion of the explosive force was deflected downward. The resulting pyroclastic flow of super-heated gas, rocks and ash roared down the same path taken by the mudflow, resulting in further damage along the headwaters of Hat and Lost Creeks. Ash from the eruption blew eastward with some fine ash falling at least as far as 200 mi (320 km) from
3420-608: A number of fields, laboratory, and numerical modeling methods to decipher Earth history and to understand the processes that occur on and inside the Earth. In typical geological investigations, geologists use primary information related to petrology (the study of rocks), stratigraphy (the study of sedimentary layers), and structural geology (the study of positions of rock units and their deformation). In many cases, geologists also study modern soils, rivers , landscapes , and glaciers ; investigate past and current life and biogeochemical pathways, and use geophysical methods to investigate
3591-422: A parasite on Lassen's northeast flank, has been more heavily glaciated and thus is older. Other dacite domes which rose on Tehama's flanks are Bumpass Mountain , Helen Ridge, Eagle Peak and Vulcan's Castle. An upper limit of 10,000 years has been set for the domes next to Lost Creek (north domes). All of these domes must have risen with great rapidity. Glaciers existed throughout the park area during most of
SECTION 20
#17327909537753762-612: A relatively flat plain. The activity was followed by an eruption of the Eastern basalts from volcanoes east of the park. These thick flows have subsequently eroded to produce rugged hills that limit the park on the east. Taken together, these flows built the lava plateau upon which the Lassen volcanic area is located. The earliest volcanic activity of the Lassen Volcanic Center commenced 825,000 years ago. The Rockland complex formed between 825,000 and 609,000 years ago. It
3933-425: A rock type commonly enriched in incompatible elements. Bowen's reaction series is important for understanding the idealised sequence of fractional crystallisation of a magma. Magma composition can be determined by processes other than partial melting and fractional crystallization. For instance, magmas commonly interact with rocks they intrude, both by melting those rocks and by reacting with them. Assimilation near
4104-451: A sedimentary rock. Sedimentary rocks are mainly divided into four categories: sandstone, shale, carbonate, and evaporite. This group of classifications focuses partly on the size of sedimentary particles (sandstone and shale), and partly on mineralogy and formation processes (carbonation and evaporation). Igneous and sedimentary rocks can then be turned into metamorphic rocks by heat and pressure that change its mineral content, resulting in
4275-499: A single environment and do not necessarily occur in a single order. The Hawaiian Islands , for example, consist almost entirely of layered basaltic lava flows. The sedimentary sequences of the mid-continental United States and the Grand Canyon in the southwestern United States contain almost-undeformed stacks of sedimentary rocks that have remained in place since Cambrian time. Other areas are much more geologically complex. In
4446-567: A solidified crust. Most basalt lavas are of ʻAʻā or pāhoehoe types, rather than block lavas. Underwater, they can form pillow lavas , which are rather similar to entrail-type pahoehoe lavas on land. Ultramafic magmas, such as picritic basalt, komatiite , and highly magnesian magmas that form boninite , take the composition and temperatures to the extreme. All have a silica content under 45%. Komatiites contain over 18% magnesium oxide, and are thought to have erupted at temperatures of 1,600 °C (2,910 °F). At this temperature there
4617-407: A subduction zone. When rocks melt, they do so over a range of temperature, because most rocks are made of several minerals , which all have different melting points. The temperature at which the first melt appears (the solidus) is lower than the melting temperature of any one of the pure minerals. This is similar to the lowering of the melting point of ice when it is mixed with salt. The first melt
4788-439: A tetrahedral arrangement around the much smaller silicon ion. This is called a silica tetrahedron . In a magma that is low in silicon, these silica tetrahedra are isolated, but as the silicon content increases, silica tetrahedra begin to partially polymerize, forming chains, sheets, and clumps of silica tetrahedra linked by bridging oxygen ions. These greatly increase the viscosity of the magma. The tendency towards polymerization
4959-548: A thickness of up to 10,000 ft (3,000 m) in some areas, forming what is now known as the western Cascades. These have been eroded until they are now rolling hills. The northern end of the San Andreas Fault and the Mendocino Triple Junction have moved northward over time, and with them the southern margin of Cascade volcanism retreats north; it currently is located at the southern end of
5130-638: A typical viscosity of 3.5 × 10 cP (3,500 Pa⋅s) at 1,200 °C (2,190 °F). This is slightly greater than the viscosity of smooth peanut butter . Intermediate magmas show a greater tendency to form phenocrysts . Higher iron and magnesium tends to manifest as a darker groundmass , including amphibole or pyroxene phenocrysts. Mafic or basaltic magmas have a silica content of 52% to 45%. They are typified by their high ferromagnesian content, and generally erupt at temperatures of 1,100 to 1,200 °C (2,010 to 2,190 °F). Viscosities can be relatively low, around 10 to 10 cP (10 to 100 Pa⋅s), although this
5301-400: A variety of applications. Dating of lava and volcanic ash layers found within a stratigraphic sequence can provide absolute age data for sedimentary rock units that do not contain radioactive isotopes and calibrate relative dating techniques. These methods can also be used to determine ages of pluton emplacement. Thermochemical techniques can be used to determine temperature profiles within
Geology of the Lassen volcanic area - Misplaced Pages Continue
5472-633: A viscosity of about 1 cP (0.001 Pa⋅s). Because of this very high viscosity, felsic lavas usually erupt explosively to produce pyroclastic (fragmental) deposits. However, rhyolite lavas occasionally erupt effusively to form lava spines , lava domes or "coulees" (which are thick, short lava flows). The lavas typically fragment as they extrude, producing block lava flows . These often contain obsidian . Felsic lavas can erupt at temperatures as low as 800 °C (1,470 °F). Unusually hot (>950 °C; >1,740 °F) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in
5643-422: Is accomplished in two primary ways: through faulting and folding . In the shallow crust, where brittle deformation can occur, thrust faults form, which causes the deeper rock to move on top of the shallower rock. Because deeper rock is often older, as noted by the principle of superposition , this can result in older rocks moving on top of younger ones. Movement along faults can result in folding, either because
5814-409: Is added to the rock, the temperature remains at 1274 °C until either the anorthite or diopside is fully melted. The temperature then rises as the remaining mineral continues to melt, which shifts the melt composition away from the eutectic. For example, if the content of anorthite is greater than 43%, the entire supply of diopside will melt at 1274 °C., along with enough of the anorthite to keep
5985-460: Is an intimate coupling between the movement of the plates on the surface and the convection of the mantle (that is, the heat transfer caused by the slow movement of ductile mantle rock). Thus, oceanic parts of plates and the adjoining mantle convection currents always move in the same direction – because the oceanic lithosphere is actually the rigid upper thermal boundary layer of the convecting mantle. This coupling between rigid plates moving on
6156-444: Is called the eutectic and has a composition that depends on the combination of minerals present. For example, a mixture of anorthite and diopside , which are two of the predominant minerals in basalt , begins to melt at about 1274 °C. This is well below the melting temperatures of 1392 °C for pure diopside and 1553 °C for pure anorthite. The resulting melt is composed of about 43 wt% anorthite. As additional heat
6327-410: Is concentrated in a thin layer in the toothpaste next to the tube, and only here does the toothpaste behave as a fluid. Thixotropic behavior also hinders crystals from settling out of the magma. Once the crystal content reaches about 60%, the magma ceases to behave like a fluid and begins to behave like a solid. Such a mixture of crystals with melted rock is sometimes described as crystal mush . Magma
6498-462: Is driven out of the oceanic lithosphere in subduction zones , and it causes melting in the overlying mantle. Hydrous magmas with the composition of basalt or andesite are produced directly and indirectly as results of dehydration during the subduction process. Such magmas, and those derived from them, build up island arcs such as those in the Pacific Ring of Fire . These magmas form rocks of
6669-417: Is expressed as NBO/T, where NBO is the number of non-bridging oxygen ions and T is the number of network-forming ions. Silicon is the main network-forming ion, but in magmas high in sodium, aluminium also acts as a network former, and ferric iron can act as a network former when other network formers are lacking. Most other metallic ions reduce the tendency to polymerize and are described as network modifiers. In
6840-542: Is found beneath the surface of the Earth , and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites . Besides molten rock, magma may also contain suspended crystals and gas bubbles . Magma is produced by melting of the mantle or the crust in various tectonic settings, which on Earth include subduction zones , continental rift zones , mid-ocean ridges and hotspots . Mantle and crustal melts migrate upwards through
7011-405: Is gradational, decreasing away from the location of potential vents. After an initial explosive eruption, extrusion of gas-depleted dacite magma commonly forms lava domes. Growing lava domes are inherently unstable, and collapse of their steep sides often generates pyroclastic flows of lava blocks and ash that can travel several miles. Such a sequence of events is recorded by the deposits related to
Geology of the Lassen volcanic area - Misplaced Pages Continue
7182-433: Is horizontal). The principle of superposition states that a sedimentary rock layer in a tectonically undisturbed sequence is younger than the one beneath it and older than the one above it. Logically a younger layer cannot slip beneath a layer previously deposited. This principle allows sedimentary layers to be viewed as a form of the vertical timeline, a partial or complete record of the time elapsed from deposition of
7353-616: Is important for mineral and hydrocarbon exploration and exploitation, evaluating water resources , understanding natural hazards , remediating environmental problems, and providing insights into past climate change . Geology is a major academic discipline , and it is central to geological engineering and plays an important role in geotechnical engineering . The majority of geological data comes from research on solid Earth materials. Meteorites and other extraterrestrial natural materials are also studied by geological methods. Minerals are naturally occurring elements and compounds with
7524-417: Is magma extruded onto the surface, are almost all in the range 700 to 1,400 °C (1,300 to 2,600 °F), but very rare carbonatite magmas may be as cool as 490 °C (910 °F), and komatiite magmas may have been as hot as 1,600 °C (2,900 °F). Magma has occasionally been encountered during drilling in geothermal fields, including drilling in Hawaii that penetrated a dacitic magma body at
7695-647: Is melted before the heat supply is exhausted. Pegmatite may be produced by low degrees of partial melting of the crust. Some granite -composition magmas are eutectic (or cotectic) melts, and they may be produced by low to high degrees of partial melting of the crust, as well as by fractional crystallization . Most magmas are fully melted only for small parts of their histories. More typically, they are mixes of melt and crystals, and sometimes also of gas bubbles. Melt, crystals, and bubbles usually have different densities, and so they can separate as magmas evolve. As magma cools, minerals typically crystallize from
7866-416: Is melted, the small globules of melt (generally occurring between mineral grains) link up and soften the rock. Under pressure within the earth, as little as a fraction of a percent of partial melting may be sufficient to cause melt to be squeezed from its source. Melt rapidly separates from its source rock once the degree of partial melting exceeds 30%. However, usually much less than 30% of a magma source rock
8037-634: Is practically no polymerization of the mineral compounds, creating a highly mobile liquid. Viscosities of komatiite magmas are thought to have been as low as 100 to 1000 cP (0.1 to 1 Pa⋅s), similar to that of light motor oil. Most ultramafic lavas are no younger than the Proterozoic , with a few ultramafic magmas known from the Phanerozoic in Central America that are attributed to a hot mantle plume . No modern komatiite lavas are known, as
8208-484: Is primarily accomplished through normal faulting and through the ductile stretching and thinning. Normal faults drop rock units that are higher below those that are lower. This typically results in younger units ending up below older units. Stretching of units can result in their thinning. In fact, at one location within the Maria Fold and Thrust Belt , the entire sedimentary sequence of the Grand Canyon appears over
8379-448: Is still many orders of magnitude higher than water. This viscosity is similar to that of ketchup . Basalt lavas tend to produce low-profile shield volcanoes or flood basalts , because the fluidal lava flows for long distances from the vent. The thickness of a basalt lava, particularly on a low slope, may be much greater than the thickness of the moving lava flow at any one time, because basalt lavas may "inflate" by supply of lava beneath
8550-568: Is that "the present is the key to the past." In Hutton's words: "the past history of our globe must be explained by what can be seen to be happening now." The principle of intrusive relationships concerns crosscutting intrusions. In geology, when an igneous intrusion cuts across a formation of sedimentary rock , it can be determined that the igneous intrusion is younger than the sedimentary rock. Different types of intrusions include stocks, laccoliths , batholiths , sills and dikes . The principle of cross-cutting relationships pertains to
8721-453: Is the fifth volcanic center to be active in the region. Latour , Yana , Maidu and Dittmar were the four preceding centers; Latour and Yana are only poorly known. One major source of the formation was Mount Yana; centered a few miles (5 km) southwest of Butt Mountain and south of the park. Mount Yana had probably reached its full size of 10,000 ft (3,000 m) in elevation and 15 mi (24 km) in diameter before Mount Maidu,
SECTION 50
#17327909537758892-413: Is typically also viscoelastic , meaning it flows like a liquid under low stresses, but once the applied stress exceeds a critical value, the melt cannot dissipate the stress fast enough through relaxation alone, resulting in transient fracture propagation. Once stresses are reduced below the critical threshold, the melt viscously relaxes once more and heals the fracture. Temperatures of molten lava, which
9063-408: Is typically the most abundant magmatic gas, followed by carbon dioxide and sulfur dioxide . Other principal magmatic gases include hydrogen sulfide , hydrogen chloride , and hydrogen fluoride . The solubility of magmatic gases in magma depends on pressure, magma composition, and temperature. Magma that is extruded as lava is extremely dry, but magma at depth and under great pressure can contain
9234-523: Is used for geologically young materials containing organic carbon . The geology of an area changes through time as rock units are deposited and inserted, and deformational processes alter their shapes and locations. Rock units are first emplaced either by deposition onto the surface or intrusion into the overlying rock . Deposition can occur when sediments settle onto the surface of the Earth and later lithify into sedimentary rock, or when as volcanic material such as volcanic ash or lava flows blanket
9405-547: The Chaos Crags domes generated huge rockfalls, creating an area now called the Chaos Jumbles . The first and largest of these traveled 4 mi (6.4 km) downslope and was able to climb 400 feet (120 m) up the side of Table Mountain. The trigger for the rockfall is unknown, but was most likely a large earthquake . Normal weathering also weakens fractured volcanic rock and contributes to small rockfalls. In
9576-575: The Columbia Plateau , this great lava bed of flood basalt covers much of Oregon and Washington and even parts of Idaho . Northern California's Modoc Plateau is a thinner basaltic flow which some geologists associate with the Columbia Plateau, but there are technical objections to this. The High Cascades took shape as a distinct mountain belt as a result of this upheaval and the bending of the thick blanket of volcanic rocks. During
9747-502: The Pleistocene with smaller ones persisting at higher elevations until comparatively recent times. Lassen Peak is situated at a center from which many of these glaciers originated. Glacial ice that filled Mill Creek (whose canyon is mostly post-glacial), Blue Lake Canyon, Kings Creek Meadows, Flatiron Ridge, Warner Valley and the valley of Manzanita, Hat and Lost Creeks originated from there. Indeed, Lassen Peak appears to be sitting in
9918-678: The Snake River Plain of the northwestern United States. Intermediate or andesitic magmas contain 52% to 63% silica, and are lower in aluminium and usually somewhat richer in magnesium and iron than felsic magmas. Intermediate lavas form andesite domes and block lavas, and may occur on steep composite volcanoes , such as in the Andes . They are also commonly hotter, in the range of 850 to 1,100 °C (1,560 to 2,010 °F)). Because of their lower silica content and higher eruptive temperatures, they tend to be much less viscous, with
10089-463: The Wisconsin glaciation . In turn the growth of Lassen Peak intercepted moisture, allowing a glacier on its northern flank to grow to almost 10 kilometers (6.2 mi) long. Later, but not precisely dated, eruptions from the Lassen volcanic area have formed over 30 smaller steep-sided, mound-shaped accumulations of volcanic rock, called lava domes. Crescent Crater, which at first glance appears as
10260-506: The bedrock . This study is often known as Quaternary geology , after the Quaternary period of geologic history, which is the most recent period of geologic time. Magma is the original unlithified source of all igneous rocks . The active flow of molten rock is closely studied in volcanology , and igneous petrology aims to determine the history of igneous rocks from their original molten source to their final crystallization. In
10431-458: The calc-alkaline series, an important part of the continental crust . With low density and viscosity, hydrous magmas are highly buoyant and will move upwards in Earth's mantle. The addition of carbon dioxide is relatively a much less important cause of magma formation than the addition of water, but genesis of some silica-undersaturated magmas has been attributed to the dominance of carbon dioxide over water in their mantle source regions. In
SECTION 60
#173279095377510602-453: The convection of solid mantle, it will cool slightly as it expands in an adiabatic process , but the cooling is only about 0.3 °C per kilometer. Experimental studies of appropriate peridotite samples document that the solidus temperatures increase by 3 °C to 4 °C per kilometer. If the rock rises far enough, it will begin to melt. Melt droplets can coalesce into larger volumes and be intruded upwards. This process of melting from
10773-512: The geochemical evolution of rock units. Petrologists can also use fluid inclusion data and perform high temperature and pressure physical experiments to understand the temperatures and pressures at which different mineral phases appear, and how they change through igneous and metamorphic processes. This research can be extrapolated to the field to understand metamorphic processes and the conditions of crystallization of igneous rocks. This work can also help to explain processes that occur within
10944-451: The lava plateau upon which the park is situated. About 600,000 years ago, Mount Tehama started to rise as a stratovolcano in the southwestern corner of the park, eventually reaching an estimated 11,000 ft (3,400 m) in height. Roughly 27,000 years ago, a dacite lava dome quickly pushed its way through Tehama's former north-eastern flank, becoming the approximately 1,000 ft (300 m) shorter Lassen Peak . Lassen's shape
11115-402: The mantle below (separated within itself by seismic discontinuities at 410 and 660 kilometers), and the outer core and inner core below that. More recently, seismologists have been able to create detailed images of wave speeds inside the earth in the same way a doctor images a body in a CT scan . These images have led to a much more detailed view of the interior of the Earth, and have replaced
11286-483: The structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study the mineralogical composition of rocks in order to get insight into their history of formation. Geology determines the relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages . By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle
11457-510: The 1915 eruption of Lassen Peak is conspicuously banded with light streaks of dacite and dark andesite, which appears to represent two distinct magmas imperfectly mixed during the eruption. The 1915 eruption of Lassen Peak was the second most recent volcanic outburst in the contiguous 48 U.S. states (after the 1980 eruption of Mount St. Helens in Washington ). The Lassen area remains volcanically active. The most common volcanic activity over
11628-440: The 1960s, it was discovered that the Earth's lithosphere , which includes the crust and rigid uppermost portion of the upper mantle , is separated into tectonic plates that move across the plastically deforming, solid, upper mantle, which is called the asthenosphere . This theory is supported by several types of observations, including seafloor spreading and the global distribution of mountain terrain and seismicity. There
11799-558: The Chaos Crags, protruded through these cones and obliterated all but half of the southernmost cone. At least 300 years ago a series of large avalanches, possibly triggered by steam explosions , occurred on the north side of the Crags. These avalanches created their own 'air cushions' that helped accelerate them to speeds exceeding 100 mph (160 km/h) and push them partway up Table Mountain. The resulting wilderness of debris,
11970-479: The Chaos Jumbles, covers an area of 2.5 sq mi (6.5 km). Manzanita Lake was formed as a result of Manzanita Creek being dammed by the debris. Steam rose from the domes of Chaos Crags until 1857. Around the mid-18th century a series of eruptions produced Cinder Cone in the northeast corner of the park, mantling an area of 30 sq mi (78 km) with ejecta in the process. Ash falling on
12141-472: The Earth's mantle has cooled too much to produce highly magnesian magmas. Some silicic magmas have an elevated content of alkali metal oxides (sodium and potassium), particularly in regions of continental rifting , areas overlying deeply subducted plates , or at intraplate hotspots . Their silica content can range from ultramafic ( nephelinites , basanites and tephrites ) to felsic ( trachytes ). They are more likely to be generated at greater depths in
12312-465: The Earth's upper crust, but this varies widely by region, from a low of 5–10 °C/km within oceanic trenches and subduction zones to 30–80 °C/km along mid-ocean ridges or near mantle plumes . The gradient becomes less steep with depth, dropping to just 0.25 to 0.3 °C/km in the mantle, where slow convection efficiently transports heat. The average geothermal gradient is not normally steep enough to bring rocks to their melting point anywhere in
12483-424: The Earth, such as subduction and magma chamber evolution. Structural geologists use microscopic analysis of oriented thin sections of geological samples to observe the fabric within the rocks, which gives information about strain within the crystalline structure of the rocks. They also plot and combine measurements of geological structures to better understand the orientations of faults and folds to reconstruct
12654-484: The Grand Canyon in the southwestern United States being a very visible example, the lower rock units were metamorphosed and deformed, and then deformation ended and the upper, undeformed units were deposited. Although any amount of rock emplacement and rock deformation can occur, and they can occur any number of times, these concepts provide a guide to understanding the geological history of an area. Geologists use
12825-551: The Lassen area in May 1915 were generated by relatively small eruptions of Lassen Peak. Nonetheless, they traveled down creek beds as far as 12 mi (19 km) and released floods that affected valleys for 30 mi (48 km) downstream. Additional volcano hazards at Lassen are rockfalls and landslides not directly related to eruptions. Recently erupted volcanic domes are unstable and can collapse, generating small to large rockfalls. Approximately 350 years ago, collapse of one of
12996-457: The Lassen domefield, which consists of a core of dacite lava domes surrounded by an arc of hybrid andesite flows. The dacite domes erupted along the northern flank of Brokeoff Volcano and are divided on the basis of age into the Bumpass sequence (about 300,000–190,000 years ago) and Eagle Peak sequence (about 70,000 years ago to present day). The hybrid andesite units erupted in two groups called
13167-512: The Lassen hydrothermal system. A prominent steam plume marks the site of Big Boiler, the largest fumarole in the park. The temperature of the high-velocity steam jetting from it has been measured as high as 322 °F (161 °C). A thin crust of material often covers these boiling hot features, making them a serious burn hazard to anyone walking off trail. The waters of the features are typically acidic and, even if cool enough, are not safe for bathing. Geological Geology describes
13338-659: The Lassen national park. The extensional tectonics of the Basin and Range and the widespread fault system of the Walker Lane are also encroaching on the Lassen region and faults associated with them provide pathways for magma to reach the surface. Meanwhile, toward the end of this activity, eruptions of a different kind took place on an unprecedented scale in eastern Oregon and Washington. From innumerable cracks, floods of highly fluid basaltic lava spread to cover an area of over 200,000 sq mi (520,000 km). Now known as
13509-632: The Lassen volcanic area occurs mainly along chains of vents aligned in a north or northwest direction, parallel to regional faults. Examples include Poison Buttes, Subglacial Buttes, Tumble Buttes, the Prospect Peak-Red Cinder area, the east side of the Hat Creek Valley and Potato Buttes-Sugarloaf area, and the Red Lake Mountain area. Prolonged basaltic volcanism at a single site can produce a sizeable edifice, like
13680-403: The Lassen volcanic area, and another five episodes produced basaltic and andesitic lava flows. Eruptions have occurred at sites including Lassen Peak, Chaos Crags, and Sunflower Flat (explosive dacite eruptions followed by dome growth) and Tumble Buttes, Hat Mountain, and Prospect Peak (basalt eruptions). In addition, about 30 smaller volcanoes erupted basaltic lavas in the larger region surrounding
13851-505: The Lassen volcanic center. These volcanoes are geologically related to the Basin and Range volcanic province. Radiometric dating indicates that around 31,000 years ago a new vent opened up on the northeastern slope of Tehama, probably close to where Lassen Peak now stands. Streams of fluid dacite flowed chiefly toward the north, reaching a thickness of 1,500 ft (460 m) and covering perhaps 20 square miles (52 km). Known as
14022-466: The Loomis Sequence, these pre-Lassen dacites are the black, glassy, columnar lavas that now surround Lassen Peak. Sometime between 25,000 and 31,000 years ago, Lassen Peak, a Pelean lava dome volcano, was pushed up through the pre-Lassen dacites. Lassen grew past the normal maximum size of plug dome volcanoes, 1,000 ft (300 m), and reached a height of 1,800 feet (550 m) above
14193-517: The Pliocene, basaltic lavas poured forth in the vicinity of Willow Lake in the southwestern portion of the park. These were followed by a very thick sequence of very fluid andesitic lavas which erupted near Juniper Lake and flowed westward about four miles (6 km). At about the same time, other andesitic lavas poured from several vents on the central plateau to cover an area of at least 30 sq mi (78 km). Included among these flows were
14364-485: The Twin Lake lavas of black porphyritic andesite, which are notable in that they contain xenocrysts of quartz . The Flatiron andesites spread over the southwestern part of the park area around this time. Somewhat later, andesitic lavas poured out from what is now Reading Peak and mainly flowed to the south and east, reaching the head of Warner Valley. By this time, the park's eastern portion had been transformed into
14535-476: The anorthite is melted. If the anorthite content of the mixture is less than 43%, then all the anorthite will melt at the eutectic temperature, along with part of the diopside, and the remaining diopside will then gradually melt as the temperature continues to rise. Because of eutectic melting, the composition of the melt can be quite different from the source rock. For example, a mixture of 10% anorthite with diopside could experience about 23% partial melting before
14706-406: The atmosphere. Heavy fallback of hot ash and rock fragments from eruption columns may generate highly mobile pyroclastic flows that can rush several miles down a volcano's slopes and adjacent valleys. Fallout from the eruption column can blanket areas within a few miles (about 8 km) of the vent with a thick layer of pumice, and high-altitude winds may carry finer ash tens to hundreds of miles from
14877-537: The beginning of the 20th century, advancement in geological science was facilitated by the ability to obtain accurate absolute dates to geological events using radioactive isotopes and other methods. This changed the understanding of geological time. Previously, geologists could only use fossils and stratigraphic correlation to date sections of rock relative to one another. With isotopic dates, it became possible to assign absolute ages to rock units, and these absolute dates could be applied to fossil sequences in which there
15048-526: The broad, relatively flat shield volcanoes of Prospect Peak and Sifford Mountain. Unlike other Cascade volcanoes, Lassen's large plug dome and composite volcanoes are in close proximity to the smaller cinder cone volcanoes that surround the volcanic center. Northwest of the park lies the Klamath Mountains (a collective term for the Siskiyou , Trinity , Salmon and Marble mountain ranges). To
15219-432: The caldera. Tehama collapsed during the late Pleistocene, and numerous glacial advances tore down its remnants. The largest remnants of Tehama include Brokeoff Mountain, Mount Conard, Mount Diller, and Pilot Pinnacle. Between about 385,000 and 315,000 years ago the character and locus of volcanism in the Lassen Volcanic Center changed dramatically from the andesitic ( silica content between basalt and dacite) stratocone to
15390-401: The coast of northernmost California and southern Oregon every year. The composition of the molten rock ( magma ) that feeds volcanism in the Lassen volcanic area ranges widely in its content of silica or SiO 2 ; the higher the silica content, the greater the ability of the magma to trap and hold on to gas and water vapor. When high-silica ( dacitic ) magma rises to the Earth's surface,
15561-494: The corners of the central plateau. Raker Peak erupted andesite lavas while basalt flowed from the others. Each of these volcanoes developed a cinder cone on its summit during their last stages of eruption. Later, a mass of rhyolite was forced through the north flank of Sifford Mountain and a plug of dacite was pushed up through the west flank of Raker Peak. In the past 50,000 years, at least seven major episodes of dacitic volcanism produced lava domes and pyroclastic deposits in
15732-515: The creation of topographic gradients, causing material on the rock unit that is increasing in elevation to be eroded by hillslopes and channels. These sediments are deposited on the rock unit that is going down. Continual motion along the fault maintains the topographic gradient in spite of the movement of sediment and continues to create accommodation space for the material to deposit. Deformational events are often also associated with volcanism and igneous activity. Volcanic ashes and lavas accumulate on
15903-458: The crust or upper mantle, so magma is produced only where the geothermal gradient is unusually steep or the melting point of the rock is unusually low. However, the ascent of magma towards the surface in such settings is the most important process for transporting heat through the crust of the Earth. Rocks may melt in response to a decrease in pressure, to a change in composition (such as an addition of water), to an increase in temperature, or to
16074-432: The crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During magma's storage in the crust, its composition may be modified by fractional crystallization , contamination with crustal melts, magma mixing, and degassing. Following its ascent through the crust, magma may feed a volcano and be extruded as lava, or it may solidify underground to form an intrusion , such as
16245-437: The crust, the uplift of mountain ranges, and paleo-topography. Fractionation of the lanthanide series elements is used to compute ages since rocks were removed from the mantle. Other methods are used for more recent events. Optically stimulated luminescence and cosmogenic radionuclide dating are used to date surfaces and/or erosion rates. Dendrochronology can also be used for the dating of landscapes. Radiocarbon dating
16416-455: The crystallization process would not change the overall composition of the melt plus solid minerals. This situation is described as equillibrium crystallization . However, in a series of experiments culminating in his 1915 paper, Crystallization-differentiation in silicate liquids , Norman L. Bowen demonstrated that crystals of olivine and diopside that crystallized out of a cooling melt of forsterite , diopside, and silica would sink through
16587-655: The depression carved by the Lost Creek Glacier. Reading Peak formed a second center from which ice moved north into Hat Creek and Summit Creek. Ice moving southward united with some of the above glaciers and emptied into Warner Valley. On the central plateau, the ridge connecting Hat Mountain with Crater Butte served as a divide between ice flowing northward to Badger Flat and Hat Creek and that moving southward to Corral Meadows, Kings Creek and Warner Valley. Ice from Mount Harkness and Sifford Mountain also wound up in Warner Valley. The crest of Saddle Mountain served as
16758-404: The emplacement of Chaos Crags domes between 1,100 and 1,000 years ago. Interaction of hot pyroclastic flows with snow and ice can generate highly mobile flows of mud and debris (called lahars) that may rush down valleys leading away from a volcano. Because of this, active volcanoes that have a significant snow and ice cover can be particularly dangerous. The lahars that threatened residents of
16929-399: The eutectic temperature of 1274 °C. This shifts the remaining melt towards its eutectic composition of 43% diopside. The eutectic is reached at 1274 °C, the temperature at which diopside and anorthite begin crystallizing together. If the melt was 90% diopside, the diopside would begin crystallizing first until the eutectic was reached. If the crystals remained suspended in the melt,
17100-512: The extensive basalt magmatism of several large igneous provinces. Decompression melting occurs because of a decrease in pressure. It is the most important mechanism for producing magma from the upper mantle. The solidus temperatures of most rocks (the temperatures below which they are completely solid) increase with increasing pressure in the absence of water. Peridotite at depth in the Earth's mantle may be hotter than its solidus temperature at some shallower level. If such rock rises during
17271-570: The fault is a normal fault or a thrust fault . The principle of inclusions and components states that, with sedimentary rocks, if inclusions (or clasts ) are found in a formation, then the inclusions must be older than the formation that contains them. For example, in sedimentary rocks, it is common for gravel from an older formation to be ripped up and included in a newer layer. A similar situation with igneous rocks occurs when xenoliths are found. These foreign bodies are picked up as magma or lava flows, and are incorporated, later to cool in
17442-403: The faults are not planar or because rock layers are dragged along, forming drag folds as slip occurs along the fault. Deeper in the Earth, rocks behave plastically and fold instead of faulting. These folds can either be those where the material in the center of the fold buckles upwards, creating " antiforms ", or where it buckles downwards, creating " synforms ". If the tops of the rock units within
17613-483: The folds remain pointing upwards, they are called anticlines and synclines , respectively. If some of the units in the fold are facing downward, the structure is called an overturned anticline or syncline, and if all of the rock units are overturned or the correct up-direction is unknown, they are simply called by the most general terms, antiforms, and synforms. Even higher pressures and temperatures during horizontal shortening can cause both folding and metamorphism of
17784-404: The formation of faults and the age of the sequences through which they cut. Faults are younger than the rocks they cut; accordingly, if a fault is found that penetrates some formations but not those on top of it, then the formations that were cut are older than the fault, and the ones that are not cut must be younger than the fault. Finding the key bed in these situations may help determine whether
17955-579: The geological history of the Earth as a whole. One aspect is to demonstrate the age of the Earth . Geology provides evidence for plate tectonics , the evolutionary history of life , and the Earth's past climates . Geologists broadly study the properties and processes of Earth and other terrestrial planets. Geologists use a wide variety of methods to understand the Earth's structure and evolution, including fieldwork , rock description , geophysical techniques , chemical analysis , physical experiments , and numerical modelling . In practical terms, geology
18126-418: The highest temperature of water generally is close to the boiling temperature at the altitude of the particular spring or fumarole 198 °F (92 °C ) at Bumpass Hell and 191 °F (88 °C) on the northwest flanks of Lassen Peak. The hottest and most vigorous hydrothermal features in the Lassen volcanic area are at Bumpass Hell, which marks the principal area of upflow and steam discharge from
18297-425: The history of rock deformation in the area. In addition, they perform analog and numerical experiments of rock deformation in large and small settings. Magma Magma (from Ancient Greek μάγμα ( mágma ) 'thick unguent ') is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as lava )
18468-420: The importance of each mechanism being a topic of continuing research. The change of rock composition most responsible for the creation of magma is the addition of water. Water lowers the solidus temperature of rocks at a given pressure. For example, at a depth of about 100 kilometers, peridotite begins to melt near 800 °C in the presence of excess water, but near 1,500 °C in the absence of water. Water
18639-423: The internal composition and structure of the Earth. Seismologists can use the arrival times of seismic waves to image the interior of the Earth. Early advances in this field showed the existence of a liquid outer core (where shear waves were not able to propagate) and a dense solid inner core . These advances led to the development of a layered model of the Earth, with a lithosphere (including crust) on top,
18810-435: The last 50,000 years in the Lassen volcanic area consists of small to moderate-sized eruptions that produce basaltic lava flows and localized ash falls. These eruptions typically last a few months to a year, but may continue for several years. They can cover more than 1 sq mi (2.6 km) with lava flows, build cinder cones as high as 1,000 ft (300 m), and blanket many square miles (square kilometers) with ash
18981-464: The later end of the scale, it is marked by the present day (in the Holocene epoch ). The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to the present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in
19152-454: The lowest layer to deposition of the highest bed. The principle of faunal succession is based on the appearance of fossils in sedimentary rocks. As organisms exist during the same period throughout the world, their presence or (sometimes) absence provides a relative age of the formations where they appear. Based on principles that William Smith laid out almost a hundred years before the publication of Charles Darwin 's theory of evolution ,
19323-476: The magma completely solidifies, and the liquidus , defined as the temperature at which the magma is completely liquid. Calculations of solidus temperatures at likely depths suggests that magma generated beneath areas of rifting starts at a temperature of about 1,300 to 1,500 °C (2,400 to 2,700 °F). Magma generated from mantle plumes may be as hot as 1,600 °C (2,900 °F). The temperature of magma generated in subduction zones, where water vapor lowers
19494-408: The magma. Gabbro may have a liquidus temperature near 1,200 °C, and the derivative granite-composition melt may have a liquidus temperature as low as about 700 °C. Incompatible elements are concentrated in the last residues of magma during fractional crystallization and in the first melts produced during partial melting: either process can form the magma that crystallizes to pegmatite ,
19665-497: The mantle and show the crystallographic structures expected in the inner core of the Earth. The geological time scale encompasses the history of the Earth. It is bracketed at the earliest by the dates of the first Solar System material at 4.567 Ga (or 4.567 billion years ago) and the formation of the Earth at 4.54 Ga (4.54 billion years), which is the beginning of the Hadean eon – a division of geological time. At
19836-419: The mantle than subalkaline magmas. Olivine nephelinite magmas are both ultramafic and highly alkaline, and are thought to have come from much deeper in the mantle of the Earth than other magmas. Tholeiitic basalt magma Rhyolite magma Some lavas of unusual composition have erupted onto the surface of the Earth. These include: The concentrations of different gases can vary considerably. Water vapor
20007-405: The matrix. As a result, xenoliths are older than the rock that contains them. The principle of original horizontality states that the deposition of sediments occurs as essentially horizontal beds. Observation of modern marine and non-marine sediments in a wide variety of environments supports this generalization (although cross-bedding is inclined, the overall orientation of cross-bedded units
20178-424: The melt at different temperatures. This resembles the original melting process in reverse. However, because the melt has usually separated from its original source rock and moved to a shallower depth, the reverse process of crystallization is not precisely identical. For example, if a melt was 50% each of diopside and anorthite, then anorthite would begin crystallizing from the melt at a temperature somewhat higher than
20349-438: The melt at the eutectic composition. Further heating causes the temperature to slowly rise as the remaining anorthite gradually melts and the melt becomes increasingly rich in anorthite liquid. If the mixture has only a slight excess of anorthite, this will melt before the temperature rises much above 1274 °C. If the mixture is almost all anorthite, the temperature will reach nearly the melting point of pure anorthite before all
20520-449: The melt deviated from the eutectic, which has the composition of about 43% anorthite. This effect of partial melting is reflected in the compositions of different magmas. A low degree of partial melting of the upper mantle (2% to 4%) can produce highly alkaline magmas such as melilitites , while a greater degree of partial melting (8% to 11%) can produce alkali olivine basalt. Oceanic magmas likely result from partial melting of 3% to 15% of
20691-402: The melt on geologically relevant time scales. Geologists subsequently found considerable field evidence of such fractional crystallization . When crystals separate from a magma, then the residual magma will differ in composition from the parent magma. For instance, a magma of gabbroic composition can produce a residual melt of granitic composition if early formed crystals are separated from
20862-429: The melting temperature, may be as low as 1,060 °C (1,940 °F). Magma densities depend mostly on composition, iron content being the most important parameter. Magma expands slightly at lower pressure or higher temperature. When magma approaches the surface, its dissolved gases begin to bubble out of the liquid. These bubbles had significantly reduced the density of the magma at depth and helped drive it toward
21033-490: The mid- to late 17th century and the eruption of Lassen Peak in the early 20th century. The only activity since then has been the constant bubbling of mud pots and steaming of fumaroles from the various geothermal areas in Lassen Volcanic National Park . The potential exists for renewed vigorous volcanic activity that could threaten life and property in the area. The Lassen volcanic area lies at
21204-481: The more abundant elements in the source rock. The ions of these elements fit rather poorly in the structure of the minerals making up the source rock, and readily leave the solid minerals to become highly concentrated in melts produced by a low degree of partial melting. Incompatible elements commonly include potassium , barium , caesium , and rubidium , which are large and weakly charged (the large-ion lithophile elements, or LILEs), as well as elements whose ions carry
21375-415: The most abundant chemical elements in the Earth's crust, with smaller quantities of aluminium , calcium , magnesium , iron , sodium , and potassium , and minor amounts of many other elements. Petrologists routinely express the composition of a silicate magma in terms of the weight or molar mass fraction of the oxides of the major elements (other than oxygen) present in the magma. Because many of
21546-582: The next 10 million years, a series of new basaltic volcanic cones similar to the shield volcanoes now found in Hawaii were built. Between two and three million years ago, during the Pliocene , the Sierra Nevada was uplifted and tilted westward. A series of volcanic mudflows ( lahars ) from three major source areas contributed debris that covered almost 2,000 sq mi (5,200 km) to form
21717-663: The older Twin Lakes sequence (about 315,000 to 240,000 years ago, contemporaneous with the Bumpass Peak sequence) and younger Twin Lakes sequence (about 90,000 to present day, contemporaneous with the Eagle Peak sequence). No volcanism is known in the Lassen volcanic center during the period from 190,000 to 90,000 years ago. Four shield volcanoes (Raker and Prospect Peaks, Red Mountain and Mount Harkness) grew to elevations of between 7,000 to 8,400 ft (2,100 to 2,600 m) at
21888-524: The oldest distinctive geologic formation in the High Cascades. The resulting Tuscan Formation is not exposed anywhere in the national park but is just below the surface in many places within it. It consists mainly of tuffs but also contains conglomerates and lava sheets. The formation can reach thicknesses exceeding 1,000 ft (300 m) and is of late Pliocene age. An overlying rhyolitic lava flow gives an age of 1.5 million years. Lassen
22059-490: The past 30 million years, including these in the Lassen volcanic areas. Between 3 and 4 million years ago, volcanic-derived mud flows called lahars streamed down several major mountains that included nearby but now extinct Mount Yana and Mount Maidu to become the Tuscan Formation. Basaltic and later andesitic to dacitic flows of lava covered increasingly larger areas of this formation to eventually form
22230-694: The periods of submersion, sand , mud and limestone were deposited. Occasionally volcanic activity was associated with the mountain building. About 70 million years ago, the area where the Cascade Range is now situated was under the most recent encroachment by the Pacific Ocean. The rocks that make up the modern Sierra Nevada and the Klamath Mountains were already in existence but deeply buried. Some 70 million years before (140 million years before present),
22401-439: The presence of carbon dioxide, experiments document that the peridotite solidus temperature decreases by about 200 °C in a narrow pressure interval at pressures corresponding to a depth of about 70 km. At greater depths, carbon dioxide can have more effect: at depths to about 200 km, the temperatures of initial melting of a carbonated peridotite composition were determined to be 450 °C to 600 °C lower than for
22572-413: The primary record of the majority of the geological history of the Earth. There are three major types of rock: igneous , sedimentary , and metamorphic . The rock cycle illustrates the relationships among them (see diagram). When a rock solidifies or crystallizes from melt ( magma or lava ), it is an igneous rock . This rock can be weathered and eroded , then redeposited and lithified into
22743-569: The principles of succession developed independently of evolutionary thought. The principle becomes quite complex, however, given the uncertainties of fossilization, localization of fossil types due to lateral changes in habitat ( facies change in sedimentary strata), and that not all fossils formed globally at the same time. Geologists also use methods to determine the absolute age of rock samples and geological events. These dates are useful on their own and may also be used in conjunction with relative dating methods or to calibrate relative methods. At
22914-630: The properties of a magma (such as its viscosity and temperature) are observed to correlate with silica content, silicate magmas are divided into four chemical types based on silica content: felsic , intermediate , mafic , and ultramafic . Felsic or silicic magmas have a silica content greater than 63%. They include rhyolite and dacite magmas. With such a high silica content, these magmas are extremely viscous, ranging from 10 cP (10 Pa⋅s) for hot rhyolite magma at 1,200 °C (2,190 °F) to 10 cP (10 Pa⋅s) for cool rhyolite magma at 800 °C (1,470 °F). For comparison, water has
23085-411: The rate of flow is proportional to the shear stress . Instead, a typical magma is a Bingham fluid , which shows considerable resistance to flow until a stress threshold, called the yield stress, is crossed. This results in plug flow of partially crystalline magma. A familiar example of plug flow is toothpaste squeezed out of a toothpaste tube. The toothpaste comes out as a semisolid plug, because shear
23256-724: The rocks that now make up the Klamaths broke away from the rocks that now make up the Sierras and moved 60 mi (97 km) west, leaving the flooded 'Lassen Strait.' This broad depression was a seaway that connected the marine basin in California with that in east central Oregon. The entire western portion of North America was being deformed from the Laramide orogeny starting around 70 million years ago. Gradually during millions of years, crustal rocks were folded and fractured and
23427-428: The rocks. This metamorphism causes changes in the mineral composition of the rocks; creates a foliation , or planar surface, that is related to mineral growth under stress. This can remove signs of the original textures of the rocks, such as bedding in sedimentary rocks, flow features of lavas , and crystal patterns in crystalline rocks . Extension causes the rock units as a whole to become longer and thinner. This
23598-405: The roof of a magma chamber and fractional crystallization near its base can even take place simultaneously. Magmas of different compositions can mix with one another. In rare cases, melts can separate into two immiscible melts of contrasting compositions. When rock melts, the liquid is a primary magma . Primary magmas have not undergone any differentiation and represent the starting composition of
23769-405: The same composition with no carbon dioxide. Magmas of rock types such as nephelinite , carbonatite , and kimberlite are among those that may be generated following an influx of carbon dioxide into mantle at depths greater than about 70 km. Increase in temperature is the most typical mechanism for formation of magma within continental crust. Such temperature increases can occur because of
23940-442: The same lavas ranges over seven orders of magnitude, from 10 cP (10 Pa⋅s) for mafic lava to 10 cP (10 Pa⋅s) for felsic magmas. The viscosity is mostly determined by composition but is also dependent on temperature. The tendency of felsic lava to be cooler than mafic lava increases the viscosity difference. The silicon ion is small and highly charged, and so it has a strong tendency to coordinate with four oxygen ions, which form
24111-548: The seas driven away. This same bending and breaking of rocks relieved pressure on the hot material beneath the Earth's crust and permitted magma to rise toward the surface. Volcanoes burst into activity starting 30 million years ago from Washington southward along the Cascades and in the area now occupied by the Sierra Nevada. This activity continued until approximately 11 or 12 million years ago. Lava and ash reached
24282-637: The second source, had acquired half its growth. Mount Maidu, which eventually surpassed Mount Yana in size, was centered over what is now the town of Mineral, California , but has been extinct for hundreds of thousands of years (the grassy plain around the town is Maidu's caldera ). A third source situated north of Latour Butte made a lesser contribution to the formation. Minor sources included an area near Hatchet Mountain Pass (northwest of Burney Mountain ), dikes south and southwest of Inskip Hill and possibly Campbell Mound (north of Chico, California ). Also during
24453-433: The simplified layered model with a much more dynamic model. Mineralogists have been able to use the pressure and temperature data from the seismic and modeling studies alongside knowledge of the elemental composition of the Earth to reproduce these conditions in experimental settings and measure changes within the crystal structure. These studies explain the chemical changes associated with the major seismic discontinuities in
24624-404: The source rock. Some calk-alkaline granitoids may be produced by a high degree of partial melting, as much as 15% to 30%. High-magnesium magmas, such as komatiite and picrite , may also be the products of a high degree of partial melting of mantle rock. Certain chemical elements, called incompatible elements , have a combination of ionic radius and ionic charge that is unlike that of
24795-594: The southern extremity of the Cascade Range , which extends northward some 500 mi (800 km) from Lassen Peak within the park through Oregon and Washington and into British Columbia. Lassen Peak is one of the Cascade Volcanoes that form a segment of a ring of volcanoes that circle the Pacific Ocean known collectively as the ' Pacific Ring of Fire '. All four types of volcanoes found in
24966-532: The southwestern United States, sedimentary, volcanic, and intrusive rocks have been metamorphosed, faulted, foliated, and folded. Even older rocks, such as the Acasta gneiss of the Slave craton in northwestern Canada , the oldest known rock in the world have been metamorphosed to the point where their origin is indiscernible without laboratory analysis. In addition, these processes can occur in stages. In many places,
25137-614: The streams of lava pouring from the cone's east flank formed the Painted Dunes. A flow of quartz-studded basalt lava (the Fantastic Lava Beds) poured from the Cinder Cone and dammed the streams that run towards Butte Lake to the north and Snag Lake to the south. Explosions took place on Lassen Peak in 1914. Later, on May 19, 1915, a mass of lava rose in the summit crater and spilled 1,000 ft (300 m) down
25308-550: The subsurface. Sub-specialities of geology may distinguish endogenous and exogenous geology. Geological field work varies depending on the task at hand. Typical fieldwork could consist of: In addition to identifying rocks in the field ( lithology ), petrologists identify rock samples in the laboratory. Two of the primary methods for identifying rocks in the laboratory are through optical microscopy and by using an electron microprobe . In an optical mineralogy analysis, petrologists analyze thin sections of rock samples using
25479-591: The summer of 1994, a rockfall of 13,000 cu yd (9,900 m) occurred on the northeastern flank of Lassen Peak. During periods of extreme rainfall or snow melt, mudflows are sometimes generated by mobilization of loose volcanic debris and soil on the slopes of volcanoes. The only current visible activity in the Lassen volcanic area is from the various geothermal areas in Lassen Volcanic National Park ; boiling hot springs , bubbling mud pots and fuming fumaroles . Most of these features lie in or are closely adjacent to Mount Tehama 's caldera. In each thermal area,
25650-468: The surface and the overburden pressure drops, dissolved gases bubble out of the liquid, so that magma near the surface consists of materials in solid, liquid, and gas phases . Most magma is rich in silica . Rare nonsilicate magma can form by local melting of nonsilicate mineral deposits or by separation of a magma into separate immiscible silicate and nonsilicate liquid phases. Silicate magmas are molten mixtures dominated by oxygen and silicon ,
25821-401: The surface in the first place. The temperature within the interior of the earth is described by the geothermal gradient , which is the rate of temperature change with depth. The geothermal gradient is established by the balance between heating through radioactive decay in the Earth's interior and heat loss from the surface of the earth. The geothermal gradient averages about 25 °C/km in
25992-407: The surface of the Earth and the convecting mantle is called plate tectonics . The development of plate tectonics has provided a physical basis for many observations of the solid Earth . Long linear regions of geological features are explained as plate boundaries: Plate tectonics has provided a mechanism for Alfred Wegener 's theory of continental drift , in which the continents move across
26163-488: The surface of the Earth over geological time. They also provided a driving force for crustal deformation, and a new setting for the observations of structural geology. The power of the theory of plate tectonics lies in its ability to combine all of these observations into a single theory of how the lithosphere moves over the convecting mantle. Advances in seismology , computer modeling , and mineralogy and crystallography at high temperatures and pressures give insights into
26334-479: The surface, and igneous intrusions enter from below. Dikes , long, planar igneous intrusions, enter along cracks, and therefore often form in large numbers in areas that are being actively deformed. This can result in the emplacement of dike swarms , such as those that are observable across the Canadian shield, or rings of dikes around the lava tube of a volcano. All of these processes do not necessarily occur in
26505-742: The surface. Igneous intrusions such as batholiths , laccoliths , dikes , and sills , push upwards into the overlying rock, and crystallize as they intrude. After the initial sequence of rocks has been deposited, the rock units can be deformed and/or metamorphosed . Deformation typically occurs as a result of horizontal shortening, horizontal extension , or side-to-side ( strike-slip ) motion. These structural regimes broadly relate to convergent boundaries , divergent boundaries , and transform boundaries, respectively, between tectonic plates. When rock units are placed under horizontal compression , they shorten and become thicker. Because rock units, other than muds, do not significantly change in volume , this
26676-399: The surrounding plateau in as little as a few years. The growth of the pile of lava shattered the rocks previously there, forming enormous banks of talus . When Lassen Peak formed, it looked much like the nearby Chaos Crags domes do today, with steep sides covered by angular rock talus. Lassen Peak's shape was significantly altered by glacial erosion from 25,000 to 18,000 years ago during
26847-407: The third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) Epochs: Methods for relative dating were developed when geology first emerged as a natural science . Geologists still use the following principles today as
27018-655: The trapped gases and vapors can erupt explosively to produce ash clouds and pyroclastic flows that consist of superheated gas, ash and volcanic fragments . Dacite magma that is extruded nonexplosively as lava forms domes because it is too viscous (sticky) to flow far away from its source. Low-silica ( basaltic ) magma is more fluid and usually erupts as lava in less explosive eruptions than dacite because gas and water vapor escape easily from it. Eruptions of basalt magma typically produce elongate lava flows, as well as build cinder cones (piles of small frothy lava fragments or 'cinders') around volcanic vents. Basaltic volcanism in
27189-624: The upward intrusion of magma from the mantle. Temperatures can also exceed the solidus of a crustal rock in continental crust thickened by compression at a plate boundary . The plate boundary between the Indian and Asian continental masses provides a well-studied example, as the Tibetan Plateau just north of the boundary has crust about 80 kilometers thick, roughly twice the thickness of normal continental crust. Studies of electrical resistivity deduced from magnetotelluric data have detected
27360-467: The upward movement of solid mantle is critical in the evolution of the Earth. Decompression melting creates the ocean crust at mid-ocean ridges , making it by far the most important source of magma on Earth. It also causes volcanism in intraplate regions, such as Europe, Africa and the Pacific sea floor. Intraplate volcanism is attributed to the rise of mantle plumes or to intraplate extension, with
27531-467: The viscosity. Higher-temperature melts are less viscous, since more thermal energy is available to break bonds between oxygen and network formers. Most magmas contain solid crystals of various minerals, fragments of exotic rocks known as xenoliths and fragments of previously solidified magma. The crystal content of most magmas gives them thixotropic and shear thinning properties. In other words, most magmas do not behave like Newtonian fluids, in which
27702-418: The volcano, posing a hazard to flying aircraft , particularly those with jet engines . The areas of highest hazard are those that could be affected by pyroclastic flows and lahars. These areas, including Hat Creek Valley , are those in the immediate vicinity and downhill from likely eruption sites. Fallout of ash will affect areas downwind at the time of an eruption. Within the hazard zones , relative hazard
27873-489: The volcano. The last major eruptions of Lassen Peak occurred in April through June 1917, when a new crater was created at the summit of the mountain. Less explosive activity continued through 1921. The Smithsonian considers the eruption of Mount Lassen to have ended on June 29, 1917. Since then, the volcano has been dormant, although some steam still rises from small vents in its summit and on its flanks. Pumice ejected during
28044-715: The west lies the Sacramento Valley . Just south of the park begins the Sierra Nevada mountain range, and to the east lie the Modoc Plateau and then the Great Basin . All rock now exposed in the area of the park is volcanic , and unconformably overlies much older sedimentary , metamorphic and igneous rock , which was formed during the hundreds of millions of years when the Lassen region underwent repeated uplifting to form mountains , only to have them worn down and submerged under encroaching seas. During
28215-428: The western side of the volcano. Extensive lahars (mudflows) were created on the northeastern side as snowbanks were melted. The resulting debris swept down the slope. Divided by Raker Peak, part of this mudflow raced down Lost Creek; the remaining flow passed over the rise 100 ft (30 m) east of the park road and rushed down Hat Creek. A wide barren swath was torn through the forest. A great explosion blasted out
28386-640: The world— shield , composite , cinder cone , and plug dome —are represented in Lassen Volcanic National Park . The Cascade Volcanoes are fed by heat generated as the Gorda and Juan de Fuca tectonic plates are being subducted below the much larger but lighter North American Plate . Lying some 300 mi (480 km) offshore, the spreading center of the Gorda Plate pushes out about 1 in (2.54 cm) of new crust toward
28557-399: Was 11 to 15 miles (18 to 24 km) wide at its base, and contained 80 km (19 cu mi) of material. Its principal vent lay in the neighborhood of what is now Sulphur Works , but a second vent from which no lavas issued lay on the eastern flank of Little Hot Springs Valley . Contrary to popular belief, Bumpass Hell is not one of Tehama's main vents since it is located outside of
28728-615: Was datable material, converting the old relative ages into new absolute ages. For many geological applications, isotope ratios of radioactive elements are measured in minerals that give the amount of time that has passed since a rock passed through its particular closure temperature , the point at which different radiometric isotopes stop diffusing into and out of the crystal lattice . These are used in geochronologic and thermochronologic studies. Common methods include uranium–lead dating , potassium–argon dating , argon–argon dating and uranium–thorium dating . These methods are used for
28899-562: Was severely drained. This caused the overlying rock that was once supported by the magma to collapse downward. Forming a massive depression known as a caldera. Over 326.7 km of tephra was erupted during this event. This could very well make the Rockland tephra the most voluminous eruption to have occurred in the Cascade Volcanic Arc , nearly twice the size of the Mazama ash . From 600,000 to 400,000 years ago, eruptions built
29070-426: Was significantly altered by glacial erosion from 25,000 to 18,000 years ago during the Wisconsin glaciation . Since then, smaller dacite domes such as the 1,100-year-old Chaos Crags have formed around Lassen. Phreatic (steam explosion) eruptions, dacite and andesite lava flows along with cinder cone formation have persisted into modern times. Most notable of these is the eruption and formation of Cinder Cone in
29241-421: Was the source of lava domes and lava flows of dacitic composition. Around 610,000 years ago over 130 km of rhyolite magma violently erupted onto the surface, producing massive pyroclastic flows and an ash plume several tens of kilometers high. This plume distributed ash almost entirely over the state of Nevada and sending traces as far as southeastern Idaho . As the eruption progressed the underlying magma chamber
#774225