88-449: Lightning Bug may refer to: A firefly Photinus (beetle) Photuris (genus) Pyractomena Aircraft [ edit ] Reflex Lightning Bug , an American kit aircraft design of the 1990s Ryan Model 147 Lightning Bug , an unmanned aerial vehicle Popular culture [ edit ] Lightning Bug (comics) , a Marvel Comics character Lightning Bug (film) ,
176-502: A family of elateroid beetles with more than 2,000 described species, many of which are light-emitting . They are soft-bodied beetles commonly called fireflies , lightning bugs , or glowworms for their conspicuous production of light, mainly during twilight , to attract mates. Light production in the Lampyridae is thought to have originated as a warning signal that the larvae were distasteful. This ability to create light
264-415: A 2004 horror film by writer/director Robert Hall Lightning Bug (novel) , a 1987 novel by American author Donald Harington "Lightning Bug" (song) , 2020 song by Dean Brody Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Lightning Bug . If an internal link led you here, you may wish to change the link to point directly to
352-456: A black lining able to keep the light from any bioluminescent fish prey which they have swallowed from attracting larger predators. The sea-firefly is a small crustacean living in sediment. At rest it emits a dull glow but when disturbed it darts away leaving a cloud of shimmering blue light to confuse the predator. During World War II it was gathered and dried for use by the Japanese army as
440-651: A bright enough wake to be detected; a German submarine was sunk in the First World War , having been detected in this way. The Navy was interested in predicting when such detection would be possible, and hence guiding their own submarines to avoid detection. Among the anecdotes of navigation by bioluminescence is one recounted by the Apollo 13 astronaut Jim Lovell , who as a Navy pilot had found his way back to his aircraft carrier USS Shangri-La when his navigation systems failed. Turning off his cabin lights, he saw
528-401: A common ancestor. However, he found this hypothesis to be false, with different organisms having major differences in the composition of their light-producing proteins. He spent the next 30 years purifying and studying the components, but it fell to the young Japanese chemist Osamu Shimomura to be the first to obtain crystalline luciferin. He used the sea firefly Vargula hilgendorfii , but it
616-472: A female lays her fertilized eggs on or just below the surface of the ground. The eggs hatch three to four weeks later. In certain firefly species with aquatic larvae, such as Aquatica leii , the female oviposits on emergent portions of aquatic plants, and the larvae descend into the water after hatching. The larvae feed until the end of the summer. Most fireflies hibernate as larvae. Some do this by burrowing underground, while others find places on or under
704-576: A growing number of anecdotal reports, coupled with several published studies from Europe and Asia, suggest that fireflies are in trouble. Recent IUCN Red List assessments for North American fireflies have identified species with heightened extinction risk in the US, with 18 taxa categorized as threatened with extinction. Fireflies face threats including habitat loss and degradation, light pollution , pesticide use, poor water quality, invasive species, over-collection, and climate change . Firefly tourism,
792-527: A half weeks and emerge as adults. Adult diet varies among firefly species: some are predatory, while others feed on plant pollen or nectar . Some adults, like the European glow-worm, have no mouth, emerging only to mate and lay eggs before dying. In most species, adults live for a few weeks in summer. Fireflies vary widely in their general appearance, with differences in color, shape, size, and features such as antennae. Adults differ in size depending on
880-442: A likely cause of firefly decline. These chemicals can not only harm fireflies directly but also potentially reduce prey populations and degrade habitat. Light pollution is an especially concerning threat to fireflies. Since the majority of firefly species use bioluminescent courtship signals, they are also very sensitive to environmental levels of light and consequently to light pollution . A growing number of studies investigating
968-433: A long-lasting glow which the fish can control. The glowing esca is dangled or waved about to lure small animals to within striking distance of the fish. The cookiecutter shark uses bioluminescence to camouflage its underside by counter-illumination, but a small patch near its pectoral fins remains dark, appearing as a small fish to large predatory fish like tuna and mackerel swimming beneath it. When such fish approach
SECTION 10
#17327824444181056-405: A majority are found in symbiotic relationships that involve fish, squids, crustaceans etc. as hosts. Most luminous bacteria inhabit the sea, dominated by Photobacterium and Vibrio . In the symbiotic relationship, bacterium benefit from having a source of nourishment and a refuge to grow. Hosts obtain these bacterial symbionts either from the environment, spawning , or the luminous bacterium
1144-541: A pheromone plume. Males can find females without the use of visual cues, so sexual communication in P. hemipterus appears to be mediated entirely by pheromones. The oldest known fossils of the Lampyridae family are Protoluciola and Flammarionella from the Late Cretaceous ( Cenomanian ~ 99 million years ago) Burmese amber of Myanmar, which belong to the subfamily Luciolinae . The light producing organs are clearly present. The ancestral glow colour for
1232-564: A population, sexual selection encourages divergence of signaling patterns. Synchronization of flashing occurs in several species; it is explained as phase synchronization and spontaneous order. Tropical fireflies routinely synchronise their flashes among large groups, particularly in Southeast Asia. At night along river banks in the Malaysian jungles, fireflies synchronize their light emissions precisely. Current hypotheses about
1320-473: A quickly growing sector of the travel and tourism industry, has also been identified as a potential threat to fireflies and their habitats when not managed appropriately. Like many other organisms, fireflies are directly affected by land-use change (e.g., loss of habitat area and connectivity), which is identified as the main driver of biodiversity changes in terrestrial ecosystems. Pesticides, including insecticides and herbicides , have also been indicated as
1408-485: A role in the regulation of luminescence in many species of bacteria. Small extracellularly secreted molecules stimulate the bacteria to turn on genes for light production when cell density, measured by concentration of the secreted molecules, is high. Pyrosomes are colonial tunicates and each zooid has a pair of luminescent organs on either side of the inlet siphon. When stimulated by light, these turn on and off, causing rhythmic flashing. No neural pathway runs between
1496-426: A source of light during clandestine operations. The larvae of railroad worms ( Phrixothrix ) have paired photic organs on each body segment, able to glow with green light; these are thought to have a defensive purpose. They also have organs on the head which produce red light; they are the only terrestrial organisms to emit light of this color. Aposematism is a widely used function of bioluminescence, providing
1584-542: A warning that the creature concerned is unpalatable. It is suggested that many firefly larvae glow to repel predators; some millipedes glow for the same purpose. Some marine organisms are believed to emit light for a similar reason. These include scale worms , jellyfish and brittle stars but further research is needed to fully establish the function of the luminescence. Such a mechanism would be of particular advantage to soft-bodied cnidarians if they were able to deter predation in this way. The limpet Latia neritoides
1672-467: A weak source of light. This experimental form of illumination avoided the necessity of using candles which risked sparking explosions of firedamp . In 1920, the American zoologist E. Newton Harvey published a monograph, The Nature of Animal Light , summarizing early work on bioluminescence. Harvey notes that Aristotle mentions light produced by dead fish and flesh, and that both Aristotle and Pliny
1760-412: Is another host to this phenomenon. Female "femme fatale" Photuris fireflies mimic the photic signaling patterns of the smaller Photinus , attracting males to what appears to be a suitable mate, then eating them. This provides the females with a supply of the toxic defensive lucibufagin chemicals. Many fireflies do not produce light. Usually these species are diurnal, or day-flying, such as those in
1848-416: Is evolving with their host. Coevolutionary interactions are suggested as host organisms' anatomical adaptations have become specific to only certain luminous bacteria, to suffice ecological dependence of bioluminescence. Bioluminescence is widely studied amongst species located in the mesopelagic zone, but the benthic zone at mesopelagic depths has remained widely unknown. Benthic habitats at depths beyond
SECTION 20
#17327824444181936-419: Is expelled, distracting or repelling a potential predator, while the animal escapes to safety. The deep sea squid Octopoteuthis deletron may autotomize portions of its arms which are luminous and continue to twitch and flash, thus distracting a predator while the animal flees. Dinoflagellates may use bioluminescence for defense against predators . They shine when they detect a predator, possibly making
2024-546: Is in the blue and green light spectrum . However, some loose-jawed fish emit red and infrared light, and the genus Tomopteris emits yellow light. The most frequently encountered bioluminescent organisms may be the dinoflagellates in the surface layers of the sea, which are responsible for the sparkling luminescence sometimes seen at night in disturbed water. At least 18 genera of these phytoplankton exhibit luminosity. Luminescent dinoflagellate ecosystems are present in warm water lagoons and bays with narrow openings to
2112-425: Is no conclusive evidence that the cockroaches are bioluminescent. While most marine bioluminescence is green to blue, some deep sea barbeled dragonfishes in the genera Aristostomias , Pachystomias and Malacosteus emit a red glow. This adaptation allows the fish to see red-pigmented prey, which are normally invisible to other organisms in the deep ocean environment where red light has been filtered out by
2200-406: Is prevalent in the pelagic zone such as counter-illumination may not be functional or relevant in the benthic realm. Bioluminescence in bathyal benthic species still remains poorly studied due to difficulties of the collection of species at these depths. Bioluminescence has several functions in different taxa. Steven Haddock et al. (2010) list as more or less definite functions in marine organisms
2288-582: Is regenerated from the oxidized (oxyluciferin) form, allowing it to recombine with aequorin, in preparation for a subsequent flash. Photoproteins are thus enzymes , but with unusual reaction kinetics. Furthermore, some of the blue light released by aequorin in contact with calcium ions is absorbed by a green fluorescent protein , which in turn releases green light in a process called resonant energy transfer . Overall, bioluminescence has arisen over 40 times in evolutionary history. In evolution , luciferins tend to vary little: one in particular, coelenterazine ,
2376-574: Is so named for a legend that one night its flaws were repaired by fireflies. In Italy, the firefly ( Italian : lucciola ) appears in Canto XXVI of Dante's Inferno , written in the 14th century: Quante ’l villan ch’al poggio si riposa, nel tempo che colui che ’l mondo schiara la faccia sua a noi tien meno ascosa, come la mosca cede a la zanzara, vede lucciole giù per la vallea, forse colà dov’ e’ vendemmia e ara: di tante fiamme tutta risplendea l’ottava bolgia, ... As many as
2464-518: Is that bioluminescence has evolved independently at least 40 times. Bioluminescence in fish began at least by the Cretaceous period. About 1,500 fish species are known to be bioluminescent; the capability evolved independently at least 27 times. Of these, 17 involved the taking up of bioluminous bacteria from the surrounding water while in the others, the intrinsic light evolved through chemical synthesis. These fish have become surprisingly diverse in
2552-544: Is the light emitting pigment for nine phyla (groups of very different organisms), including polycystine radiolaria , Cercozoa ( Phaeodaria ), protozoa , comb jellies , cnidaria including jellyfish and corals , crustaceans , molluscs , arrow worms and vertebrates ( ray-finned fish ). Not all these organisms synthesise coelenterazine: some of them obtain it through their diet. Conversely, luciferase enzymes vary widely and tend to be different in each species. Bioluminescence occurs widely among animals, especially in
2640-534: Is the only known bioluminescent terrestrial mollusk. Pulses of light are emitted from a gland near the front of the foot and may have a communicative function, although the adaptive significance is not fully understood. Bioluminescence is used by a variety of animals to mimic other species. Many species of deep sea fish such as the anglerfish and dragonfish make use of aggressive mimicry to attract prey . They have an appendage on their heads called an esca that contains bioluminescent bacteria able to produce
2728-401: Is the only known freshwater gastropod that emits light. It produces greenish luminescent mucus which may have an anti-predator function. The marine snail Hinea brasiliana uses flashes of light, probably to deter predators. The blue-green light is emitted through the translucent shell, which functions as an efficient diffuser of light. Communication in the form of quorum sensing plays
Lightning Bug - Misplaced Pages Continue
2816-406: Is the production and emission of light by living organisms . It is a form of chemiluminescence . Bioluminescence occurs widely in marine vertebrates and invertebrates , as well as in some fungi , microorganisms including some bioluminescent bacteria , and terrestrial arthropods such as fireflies . In some animals, the light is bacteriogenic, produced by symbiotic bacteria such as those from
2904-420: Is used for camouflage by counterillumination , in which the animal matches the overhead environmental light as seen from below. In these animals, photoreceptors control the illumination to match the brightness of the background. These light organs are usually separate from the tissue containing the bioluminescent bacteria. However, in one species, Euprymna scolopes , the bacteria are an integral component of
2992-404: The firefly luciferase . Generically, this reaction can be described as: Instead of a luciferase, the jellyfish Aequorea victoria makes use of another type of protein called a photoprotein , in this case specifically aequorin . When calcium ions are added, rapid catalysis creates a brief flash quite unlike the prolonged glow produced by luciferase. In a second, much slower step, luciferin
3080-493: The Elder (in his Natural History ) mention light from damp wood. He records that Robert Boyle experimented on these light sources, and showed that both they and the glowworm require air for light to be produced. Harvey notes that in 1753, J. Baker identified the flagellate Noctiluca "as a luminous animal" "just visible to the naked eye", and in 1854 Johann Florian Heller (1813–1871) identified strands ( hyphae ) of fungi as
3168-632: The Elder mentioned that damp wood sometimes gives off a glow. Many centuries later Robert Boyle showed that oxygen was involved in the process, in both wood and glowworms. It was not until the late nineteenth century that bioluminescence was properly investigated. The phenomenon is widely distributed among animal groups, especially in marine environments. On land it occurs in fungi, bacteria and some groups of invertebrates , including insects . The uses of bioluminescence by animals include counterillumination camouflage, mimicry of other animals, for example to lure prey, and signaling to other individuals of
3256-506: The Oplophoridae family, uses its photophores to emit light, and can secrete a bioluminescent substance when in the presence of a predator. This secretory mechanism is common among prey fish. Many cephalopods , including at least 70 genera of squid , are bioluminescent. Some squid and small crustaceans use bioluminescent chemical mixtures or bacterial slurries in the same way as many squid use ink . A cloud of luminescent material
3344-472: The abdomen when flying and a green light from the thorax when they are disturbed or moving about on the ground. The former is probably a sexual attractant but the latter may be defensive. Larvae of the click beetle Pyrophorus nyctophanus live in the surface layers of termite mounds in Brazil. They light up the mounds by emitting a bright greenish glow which attracts the flying insects on which they feed. In
3432-480: The animal's light organ. Bioluminescence is used in a variety of ways and for different purposes. The cirrate octopod Stauroteuthis syrtensis uses emits bioluminescence from its sucker like structures. These structures are believed to have evolved from what are more commonly known as octopus suckers. They do not have the same function as the normal suckers because they no longer have any handling or grappling ability due its evolution of photophores . The placement of
3520-534: The atmosphere" was probably responsible. Daniel Pauly comments that Darwin "was lucky with most of his guesses, but not here", noting that biochemistry was too little known, and that the complex evolution of the marine animals involved "would have been too much for comfort". Bioluminescence attracted the attention of the United States Navy in the Cold War , since submarines in some waters can create
3608-474: The bark of trees. They emerge in the spring. At least one species, Ellychnia corrusca , overwinters as an adult. The larvae of most species are specialized predators and feed on other larvae, terrestrial snails , and slugs . Some are so specialized that they have grooved mandibles that deliver digestive fluids directly to their prey. The larval stage lasts from several weeks up to, in certain species, two or more years. The larvae pupate for one to two and
Lightning Bug - Misplaced Pages Continue
3696-668: The causes of this behavior involve diet, social interaction, and altitude. In the Philippines, thousands of fireflies can be seen all year-round in the town of Donsol . In the United States, one of the most famous sightings of fireflies blinking in unison occurs annually near Elkmont, Tennessee , in the Great Smoky Mountains during the first weeks of June. Congaree National Park in South Carolina
3784-444: The chemical mechanisms or to prove what function the light serves. In some cases the function is unknown, as with species in three families of earthworm ( Oligochaeta ), such as Diplocardia longa , where the coelomic fluid produces light when the animal moves. The following functions are reasonably well established in the named organisms. In many animals of the deep sea, including several squid species, bacterial bioluminescence
3872-472: The dead insect thus assisting in the dispersal of both bacteria and nematodes. A similar reason may account for the many species of fungi that emit light. Species in the genera Armillaria , Mycena , Omphalotus , Panellus , Pleurotus and others do this, emitting usually greenish light from the mycelium , cap and gills . This may attract night-flying insects and aid in spore dispersal, but other functions may also be involved. Quantula striata
3960-757: The deep ocean and control their light with the help of their nervous system, using it not just to lure prey or hide from predators, but also for communication. All bioluminescent organisms have in common that the reaction of a "luciferin" and oxygen is catalyzed by a luciferase to produce light. McElroy and Seliger proposed in 1962 that the bioluminescent reaction evolved to detoxify oxygen, in parallel with photosynthesis. Thuesen, Davis et al. showed in 2016 that bioluminescence has evolved independently 27 times within 14 fish clades across ray-finned fishes. The oldest of these appears to be Stomiiformes and Myctophidae. In sharks, bioluminescence has evolved only once. Genomic analysis of octocorals indicates that their ancestor
4048-695: The development of increased eye sensitivity and enhanced visual signals. If selection were to favor a mutation in the oxygenase enzyme required for the breakdown of pigment molecules (molecules often associated with spots used to attract a mate or distract a predator) it could have eventually resulted in external luminescence in tissues. Rees et al. use evidence gathered from the marine luciferin coelenterazine to suggest that selection acting on luciferins may have arisen from pressures to protect oceanic organisms from potentially deleterious reactive oxygen species (e.g. H 2 O 2 and O 2 ). The functional shift from antioxidation to bioluminescence probably occurred when
4136-648: The dimly glowing " blue ghost " of the Eastern US may seem to emit blueish-white light from a distance and in low light conditions, but their glow is bright green when observed up close. Their perceived blue tint may be due to the Purkinje effect . During a study on the genome of Aquatica leii , scientists discovered two key genes are responsible for the formation, activation, and positioning of this firefly's light organ: Alabd-B and AlUnc-4. Adults emit light primarily for mate selection. Early larval bioluminescence
4224-573: The effects of artificial light at night on fireflies has shown that light pollution can disrupt fireflies' courtship signals and even interfere with larval dispersal. Researchers agree that protecting and enhancing firefly habitat is necessary to conserve their populations. Recommendations include reducing or limiting artificial light at night, restoring habitats where threatened species occur, and eliminating unnecessary pesticide use, among many others. Sundarbans Firefly Sanctuary in Bangladesh
4312-583: The enzyme catalyzes the oxidation of the luciferin. In some species, the luciferase requires other cofactors , such as calcium or magnesium ions, and sometimes also the energy-carrying molecule adenosine triphosphate (ATP). In evolution , luciferins vary little: one in particular, coelenterazine , is found in 11 different animal phyla , though in some of these, the animals obtain it through their diet. Conversely, luciferases vary widely between different species. Bioluminescence has arisen over 40 times in evolutionary history . Both Aristotle and Pliny
4400-820: The evolution of flash signaling in the lineage, and is retained today in diurnally-active species. Some species, especially lightning bugs of the genera Photinus , Photuris , and Pyractomena , are distinguished by the unique courtship flash patterns emitted by flying males in search of females. In general, females of the genus Photinus do not fly, but do give a flash response to males of their own species. Signals, whether photic or chemical, allow fireflies to identify mates of their own species. Flash signaling characteristics include differences in duration, timing, color, number and rate of repetitions, height of flight, and direction of flight (e.g. climbing or diving) and vary interspecifically and geographically. When flash signals are not sufficiently distinguished between species in
4488-417: The female lights up to attract males. The defense mechanisms for bioluminescent organisms can come in multiple forms; startling prey, counter-illumination, smoke screen or misdirection, distractive body parts, burglar alarm, sacrificial tag or warning coloration. The shrimp family Oplophoridae Dana use their bioluminescence as a way of startling the predator that is after them. Acanthephyra purpurea , within
SECTION 50
#17327824444184576-414: The fireflies which the peasant sees in the [ Tuscan ] valley below, when he is resting on the hill—in the season [midsummer] when the sun hides least from us, and at the time of day [dusk] when the fly gives place to the mosquito—perhaps in the fields where he tills the ground and gathers in the grapes; with that many flames the eighth ditch [of Hell] was shining, ... Bioluminescence Bioluminescence
4664-434: The following: defensive functions of startle, counterillumination (camouflage), misdirection (smoke screen), distractive body parts, burglar alarm (making predators easier for higher predators to see), and warning to deter settlers; offensive functions of lure, stun or confuse prey, illuminate prey, and mate attraction/recognition. It is much easier for researchers to detect that a species is able to produce light than to analyze
4752-679: The genus Ellychnia . A few diurnal fireflies that inhabit primarily shadowy places, such as beneath tall plants or trees, are luminescent. One such genus is Lucidota . Non-bioluminescent fireflies use pheromones to signal mates. Some basal groups do not show bioluminescence and use chemical signaling, instead. Phosphaenus hemipterus has photic organs, yet is a diurnal firefly and displays large antennae and small eyes. These traits strongly suggest pheromones are used for sexual selection, while photic organs are used for warning signals. In controlled experiments, males coming from downwind arrived at females first, indicating that males travel upwind along
4840-435: The genus Vibrio ; in others, it is autogenic, produced by the animals themselves. In a general sense, the principal chemical reaction in bioluminescence involves a light-emitting molecule and an enzyme , generally called luciferin and luciferase , respectively. Because these are generic names, luciferins and luciferases are often distinguished by the species or group, e.g. firefly luciferin . In all characterized cases,
4928-402: The glowing wake of the ship, and was able to fly to it and land safely. The French pharmacologist Raphaël Dubois carried out work on bioluminescence in the late nineteenth century. He studied click beetles ( Pyrophorus ) and the marine bivalve mollusc Pholas dactylus . He refuted the old idea that bioluminescence came from phosphorus, and demonstrated that the process was related to
5016-907: The intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Lightning_Bug&oldid=1029792153 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Animal common name disambiguation pages Firefly Amydetinae Cheguevariinae Chespiritoinae Cyphonocerinae Lamprohizinae Lampyrinae Luciolinae Ototretinae Photurinae Psilocladinae Pterotinae Genera incertae sedis : Anadrilus Kirsch, 1875 Araucariocladus Silveira and Mermudes, 2017 Crassitarsus Martin, 2019 Lamprigera Motschulsky, 1853 Oculogryphus Jeng, Engel, and Yang, 2007 Photoctus McDermott, 1961 Pollaclasis Newman, 1838 The Lampyridae are
5104-501: The last common ancestor of all living fireflies has been inferred to be green, based on genomic analysis . The fireflies (including the lightning bugs) are a family, Lampyridae, of some 2,000 species within the Coleoptera. The family forms a single clade , a natural phylogenetic group. The term glowworm is used for both adults and larvae of firefly species such as Lampyris noctiluca , the common European glowworm, in which only
5192-579: The location of the light organ varies among species and between sexes of the same species. Fireflies have attracted human attention since classical antiquity ; their presence has been taken to signify a wide variety of conditions in different cultures and is especially appreciated aesthetically in Japan, where parks are set aside for this specific purpose. Fireflies are beetles and in many aspects resemble other beetles at all stages of their life cycle , undergoing complete metamorphosis . A few days after mating,
5280-553: The lure, they are bitten by the shark. Female Photuris fireflies sometimes mimic the light pattern of another firefly, Photinus , to attract its males as prey. In this way they obtain both food and the defensive chemicals named lucibufagins , which Photuris cannot synthesize. South American giant cockroaches of the genus Lucihormetica were believed to be the first known example of defensive mimicry, emitting light in imitation of bioluminescent, poisonous click beetles. However, doubt has been cast on this assertion, and there
5368-463: The marine environment, use of luminescence for mate attraction is chiefly known among ostracods , small shrimp-like crustaceans , especially in the family Cyprididae . Pheromones may be used for long-distance communication, with bioluminescence used at close range to enable mates to "home in". A polychaete worm, the Bermuda fireworm creates a brief display, a few nights after the full moon, when
SECTION 60
#17327824444185456-403: The mesopelagic are also poorly understood due to the same constraints. Unlike the pelagic zone where the emission of light is undisturbed in the open sea, the occurrence of bioluminescence in the benthic zone is less common. It has been attributed to the blockage of emitted light by a number of sources such as the sea floor, and inorganic and organic structures. Visual signals and communication that
5544-1014: The nonflying adult females glow brightly; the flying males glow weakly and intermittently. In the Americas , "glow worms" are the closely related Coleopteran family Phengodidae , while in New Zealand and Australia, a "glow worm" is a luminescent larva of the fungus gnat Arachnocampa , within the true flies, Diptera . The phylogeny of the Lampyridae family, based on both phylogenetic and morphological evidence by Martin et al. 2019, is: [REDACTED] Elateridae [REDACTED] Rhagophthalmidae Phengodidae [REDACTED] Luciolinae [REDACTED] Pterotinae [REDACTED] Ototretinae [REDACTED] Lamprohizinae [REDACTED] Psilocladinae Amydetinae Photurinae [REDACTED] Lampyrinae [REDACTED] Firefly populations are thought to be declining worldwide. While monitoring data for many regions are scarce,
5632-402: The ocean. A different effect is the thousands of square miles of the ocean which shine with the light produced by bioluminescent bacteria, known as mareel or the milky seas effect . Bioluminescence is abundant in the pelagic zone, with the most concentration at depths devoid of light and surface waters at night. These organisms participate in diurnal vertical migration from the dark depths to
5720-441: The only unifying mechanism is the role of molecular oxygen ; often there is a concurrent release of carbon dioxide (CO 2 ). For example, the firefly luciferin/luciferase reaction requires magnesium and ATP and produces CO 2 , adenosine monophosphate (AMP) and pyrophosphate (PP) as waste products. Other cofactors may be required, such as calcium (Ca ) for the photoprotein aequorin , or magnesium (Mg ) ions and ATP for
5808-556: The open sea, including fish , jellyfish , comb jellies , crustaceans , and cephalopod molluscs; in some fungi and bacteria ; and in various terrestrial invertebrates, nearly all of which are beetles . In marine coastal habitats, about 2.5% of organisms are estimated to be bioluminescent, whereas in pelagic habitats in the eastern Pacific, about 76% of the main taxa of deep-sea animals have been found to be capable of producing light. More than 700 animal genera have been recorded with light-producing species. Most marine light-emission
5896-578: The oxidation of a specific compound, which he named luciferin , by an enzyme . He sent Harvey siphons from the mollusc preserved in sugar. Harvey had become interested in bioluminescence as a result of visiting the South Pacific and Japan and observing phosphorescent organisms there. He studied the phenomenon for many years. His research aimed to demonstrate that luciferin, and the enzymes that act on it to produce light, were interchangeable between species, showing that all bioluminescent organisms had
5984-466: The phenomenon. Today, the two prevailing hypotheses (both concerning marine bioluminescence) are those put forth by Howard Seliger in 1993 and Rees et al. in 1998. Seliger's theory identifies luciferase enzymes as the catalyst for the evolution of bioluminescent systems. It suggests that the original purpose of luciferases was as mixed-function oxygenases. As the early ancestors of many species moved into deeper and darker waters natural selection favored
6072-434: The photophores are within the animals oral reach, which leads researchers to suggest that it uses it bioluminescence to capture and lure prey. Fireflies use light to attract mates . Two systems are involved according to species; in one, females emit light from their abdomens to attract males; in the other, flying males emit signals to which the sometimes sedentary females respond. Click beetles emit an orange light from
6160-440: The predator itself more vulnerable by attracting the attention of predators from higher trophic levels. Grazing copepods release any phytoplankton cells that flash, unharmed; if they were eaten they would make the copepods glow, attracting predators, so the phytoplankton's bioluminescence is defensive. The problem of shining stomach contents is solved (and the explanation corroborated) in predatory deep-sea fishes: their stomachs have
6248-558: The presence of magnesium ions, ATP , and oxygen to produce light. Oxygen is supplied via an abdominal trachea or breathing tube. Gene coding for these substances has been inserted into many different organisms . Firefly luciferase is used in forensics , and the enzyme has medical uses – in particular, for detecting the presence of ATP or magnesium. Fireflies produce a "cold light", with no infrared or ultraviolet frequencies. The light may be yellow, green, or pale red, with wavelengths from 510 to 670 nanometers. Some species such as
6336-400: The retainment of functional eyes for organisms to detect bioluminescence. Organisms often produce bioluminescence themselves, rarely do they generate it from outside phenomena. However, there are occasions where bioluminescence is produced by bacterial symbionts that have a symbiotic relationship with the host organism. Although many luminous bacteria in the marine environment are free-living,
6424-485: The same species, such as to attract mates. In the laboratory, luciferase-based systems are used in genetic engineering and biomedical research. Researchers are also investigating the possibility of using bioluminescent systems for street and decorative lighting, and a bioluminescent plant has been created. Before the development of the safety lamp for use in coal mines, dried fish skins were used in Britain and Europe as
6512-451: The size of a large pin's head". Charles Darwin noticed bioluminescence in the sea, describing it in his Journal : While sailing in these latitudes on one very dark night, the sea presented a wonderful and most beautiful spectacle. There was a fresh breeze, and every part of the surface, which during the day is seen as foam, now glowed with a pale light. The vessel drove before her bows two billows of liquid phosphorus, and in her wake she
6600-532: The source of light in dead wood. Tuckey , in his posthumous 1818 Narrative of the Expedition to the Zaire , described catching the animals responsible for luminescence. He mentions pellucids, crustaceans (to which he ascribes the milky whiteness of the water), and cancers (shrimps and crabs). Under the microscope he described the "luminous property" to be in the brain, resembling "a most brilliant amethyst about
6688-616: The species, with the largest up to 25 mm (1 in) long. Many species have non-flying larviform females . These can often be distinguished from the larvae only because the adult females have compound eyes , unlike the simple eyes of larvae, though the females have much smaller (and often highly regressed) eyes than those of their males. The most commonly known fireflies are nocturnal , although numerous species are diurnal and usually not luminescent; however, some species that remain in shadowy areas may produce light. Most fireflies are distasteful to vertebrate predators, as they contain
6776-457: The steroid pyrones lucibufagins , similar to the cardiotonic bufadienolides found in some poisonous toads. All fireflies glow as larvae, where bioluminescence is an honest aposematic warning signal to predators . Light production in fireflies is due to the chemical process of bioluminescence . This occurs in specialized light-emitting organs , usually on a female firefly's lower abdomen . The enzyme luciferase acts on luciferin , in
6864-399: The strength of selection for antioxidation defense decreased as early species moved further down the water column. At greater depths exposure to ROS is significantly lower, as is the endogenous production of ROS through metabolism. While popular at first, Seliger's theory has been challenged, particularly on the biochemical and genetic evidence that Rees examines. What remains clear, however,
6952-411: The surface at night, dispersing the population of bioluminescent organisms across the pelagic water column. The dispersal of bioluminescence across different depths in the pelagic zone has been attributed to the selection pressures imposed by predation and the lack of places to hide in the open sea. In depths where sunlight never penetrates, often below 200m, the significance of bioluminescent is evident in
7040-407: The twentieth and early twenty-first century was published recently. In 1932 E. N. Harvey was among the first to propose how bioluminescence could have evolved. In this early paper, he suggested that proto-bioluminescence could have arisen from respiratory chain proteins that hold fluorescent groups. This hypothesis has since been disproven, but it did lead to considerable interest in the origins of
7128-487: The water column. These fish are able to utilize the longer wavelength to act as a spotlight for its prey that only they can see. The fish may also use this light to communicate with each other to find potential mates. The ability of the fish to see this light is explained by the presence of specialized rhodopsin pigment. The mechanism of light creation is through a suborbital photophore that utilizes gland cells which produce exergonic chemical reactions that produce light with
7216-449: The zooids, but each responds to the light produced by other individuals, and even to light from other nearby colonies. Communication by light emission between the zooids enables coordination of colony effort, for example in swimming where each zooid provides part of the propulsive force. Some bioluminous bacteria infect nematodes that parasitize Lepidoptera larvae. When these caterpillars die, their luminosity may attract predators to
7304-438: Was adopted in the phylogeny of adult fireflies, and was repeatedly gained and lost before becoming fixed and retained as a mechanism of sexual communication in many species. Adult lampyrids have a variety of ways to communicate with mates in courtships: steady glows, flashing, and the use of chemical signals unrelated to photic systems. Chemical signals, or pheromones, are the ancestral form of sexual communication; this pre-dates
7392-575: Was another ten years before he discovered the chemical's structure and published his 1957 paper Crystalline Cypridina Luciferin . Shimomura, Martin Chalfie , and Roger Y. Tsien won the 2008 Nobel Prize in Chemistry for their 1961 discovery and development of green fluorescent protein as a tool for biological research. Harvey wrote a detailed historical account on all forms of luminescence in 1957. An updated book on bioluminescence covering also
7480-423: Was bioluminescent as long as 540 million years ago. Bioluminescence is a form of chemiluminescence where light energy is released by a chemical reaction. This reaction involves a light-emitting pigment, the luciferin , and a luciferase , the enzyme component. Because of the diversity of luciferin/luciferase combinations, there are very few commonalities in the chemical mechanism. From currently studied systems,
7568-401: Was established in 2019. Fireflies have featured in human culture around the world for centuries. In Japan, the emergence of fireflies ( Japanese : hotaru ) signifies the anticipated changing of the seasons; firefly viewing is a special aesthetic pleasure of midsummer, celebrated in parks that exist for that one purpose. The Japanese sword called Hotarumaru , made in the 14th century,
7656-574: Was followed by a milky train. As far as the eye reached, the crest of every wave was bright, and the sky above the horizon, from the reflected glare of these livid flames, was not so utterly obscure, as over the rest of the heavens. Darwin also observed a luminous "jelly-fish of the genus Dianaea", noting that: "When the waves scintillate with bright green sparks, I believe it is generally owing to minute crustacea. But there can be no doubt that very many other pelagic animals, when alive, are phosphorescent." He guessed that "a disturbed electrical condition of
7744-519: Was then co-opted as a mating signal and, in a further development, adult female fireflies of the genus Photuris mimic the flash pattern of the Photinus beetle in order to trap their males as prey. Fireflies are found in temperate and tropical climates. Many live in marshes or in wet, wooded areas where their larvae have abundant sources of food. While all known fireflies glow as larvae, only some species produce light in their adult stage, and
#417582