Misplaced Pages

M992 Field Artillery Ammunition Supply Vehicle

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The M992 Field Artillery Ammunition Supply Vehicle ( FAASV ) is built on the chassis of the M109 howitzer . It is also colloquially referred to as a "cat" (referring to its nomenclature, CAT: Carrier, Ammunition, Tracked). It replaced the M548 supply vehicle . Unlike the M548, it is armored.

#801198

51-480: This ammunition vehicle has no turret, but has a taller superstructure to store 90-95 rounds (depending on the model) with a corresponding number of powders and primers. For the M992 and M992A1 there is a maximum of 90 conventional rounds, 45 each in two racks, and three M712 Copperhead rounds. Until recently, much of the remaining internal crew space was taken up by a hydraulically-powered conveyor system designed to allow

102-496: A ⋅ x ) {\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})} where v = | v | etc. The above equations are valid for both Newtonian mechanics and special relativity . Where Newtonian mechanics and special relativity differ is in how different observers would describe the same situation. In particular, in Newtonian mechanics, all observers agree on

153-605: A ) ⋅ x = ( 2 a ) ⋅ ( u t + 1 2 a t 2 ) = 2 t ( a ⋅ u ) + a 2 t 2 = v 2 − u 2 {\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\tfrac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}} ∴ v 2 = u 2 + 2 (

204-447: A = d v d t . {\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{dt}}.} From there, velocity is expressed as the area under an a ( t ) acceleration vs. time graph. As above, this is done using the concept of the integral: v = ∫ a   d t . {\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ dt.} In

255-408: A ballistic phase and a glide phase. At a predetermined point along the trajectory, the guidance vanes extend and there is a transition from ballistic phase to glide phase. Glide phase targeting logic is designed to ensure the largest possible angle of fall permitted by the cloud cover and the visibility. The target is acquired when the projectile is close enough to detect the laser illumination or when

306-417: A constant 20 kilometres per hour in a circular path has a constant speed, but does not have a constant velocity because its direction changes. Hence, the car is considered to be undergoing an acceleration. Since the derivative of the position with respect to time gives the change in position (in metres ) divided by the change in time (in seconds ), velocity is measured in metres per second (m/s). Velocity

357-588: A two-dimensional system, where there is an x-axis and a y-axis, corresponding velocity components are defined as v x = d x / d t , {\displaystyle v_{x}=dx/dt,} v y = d y / d t . {\displaystyle v_{y}=dy/dt.} The two-dimensional velocity vector is then defined as v =< v x , v y > {\displaystyle {\textbf {v}}=<v_{x},v_{y}>} . The magnitude of this vector represents speed and

408-402: A velocity vector, denotes only how fast an object is moving, while velocity indicates both an object's speed and direction. To have a constant velocity , an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed. For example, a car moving at

459-512: A weapons mount similar to that on the M109 turret, usually mounting a Mk 19 grenade launcher for local defense against infantry and light armored vehicles. The latest models have a mounting point for two secure radios. The hydraulic conveyor system is usually removed by crews, as it is slower than moving the rounds by hand. Recently, the army has removed the conveyor system and changed the two horizontal opening doors to two vertical doors opening from

510-492: Is a fin-stabilized, terminally laser guided , explosive shell intended to engage hard point targets such as tanks , self-propelled howitzers or other high-value targets. It may be fired from different artillery pieces , such as the M114 , M109 , M198 , M777 and CAESAR howitzers. The projectile has a minimum range of 3 km (1.9 mi) and a maximum range of 16 km (9.9 mi). The concept for Copperhead

561-468: Is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. The drag force, F D {\displaystyle F_{D}} , is dependent on the square of velocity and is given as F D = 1 2 ρ v 2 C D A {\displaystyle F_{D}\,=\,{\tfrac {1}{2}}\,\rho \,v^{2}\,C_{D}\,A} where Escape velocity

SECTION 10

#1732793410802

612-417: Is always less than or equal to the average speed of an object. This can be seen by realizing that while distance is always strictly increasing, displacement can increase or decrease in magnitude as well as change direction. In terms of a displacement-time ( x vs. t ) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point , and

663-460: Is called speed , being a coherent derived unit whose quantity is measured in the SI ( metric system ) as metres per second (m/s or m⋅s ). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an acceleration . The average velocity of an object over a period of time

714-720: Is defined as v =< v x , v y , v z > {\displaystyle {\textbf {v}}=<v_{x},v_{y},v_{z}>} with its magnitude also representing speed and being determined by | v | = v x 2 + v y 2 + v z 2 . {\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}.} While some textbooks use subscript notation to define Cartesian components of velocity, others use u {\displaystyle u} , v {\displaystyle v} , and w {\displaystyle w} for

765-501: Is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the average velocity of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v ( t ) , over some time period Δ t . Average velocity can be calculated as: The average velocity

816-435: Is defined as the rate of change of position, it is often common to start with an expression for an object's acceleration . As seen by the three green tangent lines in the figure, an object's instantaneous acceleration at a point in time is the slope of the line tangent to the curve of a v ( t ) graph at that point. In other words, instantaneous acceleration is defined as the derivative of velocity with respect to time:

867-519: Is designed to ensure (1) that the optical system will always be able to detect the target, and (2) that once the target has been detected there will be sufficient time and velocity to maneuver to hit the target. Copperhead must be below any cloud cover at critical parts of the trajectory, and there must be sufficient visibility to ensure that when the target is acquired the projectile will have sufficient time to maneuver. Copperhead has two modes of operation: ballistic mode and glide mode. Ballistic mode

918-483: Is found by the distance formula as | v | = v x 2 + v y 2 . {\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}}}.} In three-dimensional systems where there is an additional z-axis, the corresponding velocity component is defined as v z = d z / d t . {\displaystyle v_{z}=dz/dt.} The three-dimensional velocity vector

969-635: Is given by the harmonic mean of the speeds v ¯ = n ( 1 v 1 + 1 v 2 + 1 v 3 + ⋯ + 1 v n ) − 1 = n ( ∑ i = 1 n 1 v i ) − 1 . {\displaystyle {\bar {v}}=n\left({1 \over v_{1}}+{1 \over v_{2}}+{1 \over v_{3}}+\dots +{1 \over v_{n}}\right)^{-1}=n\left(\sum _{i=1}^{n}{\frac {1}{v_{i}}}\right)^{-1}.} Although velocity

1020-443: Is its change in position , Δ s {\displaystyle \Delta s} , divided by the duration of the period, Δ t {\displaystyle \Delta t} , given mathematically as v ¯ = Δ s Δ t . {\displaystyle {\bar {v}}={\frac {\Delta s}{\Delta t}}.} The instantaneous velocity of an object

1071-435: Is longer and heavier than traditional 155mm ammunition. The warhead assembly consists of a shaped charge loaded with 6.69 kilograms (14.75 lb) of Composition B . For Copperhead to function, the target must be illuminated with a laser designator . Once the laser signal is detected, the on-board guidance system will operate the steering vanes to maneuver the projectile to the target. The Copperhead targeting logic

SECTION 20

#1732793410802

1122-474: Is position and r ^ {\displaystyle {\hat {\boldsymbol {r}}}} is the radial direction. The transverse speed (or magnitude of the transverse velocity) is the magnitude of the cross product of the unit vector in the radial direction and the velocity vector. It is also the dot product of velocity and transverse direction, or the product of the angular speed ω {\displaystyle \omega } and

1173-409: Is the gravitational constant and g is the gravitational acceleration . The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object. This makes "escape velocity" somewhat of a misnomer, as the more correct term would be "escape speed": any object attaining a velocity of that magnitude, irrespective of atmosphere, will leave the vicinity of

1224-769: Is the component of velocity along a circle centered at the origin. v = v T + v R {\displaystyle {\boldsymbol {v}}={\boldsymbol {v}}_{T}+{\boldsymbol {v}}_{R}} where The radial speed (or magnitude of the radial velocity) is the dot product of the velocity vector and the unit vector in the radial direction. v R = v ⋅ r | r | = v ⋅ r ^ {\displaystyle v_{R}={\frac {{\boldsymbol {v}}\cdot {\boldsymbol {r}}}{\left|{\boldsymbol {r}}\right|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {r}}}} where r {\displaystyle {\boldsymbol {r}}}

1275-546: Is the limit average velocity as the time interval approaches zero. At any particular time t , it can be calculated as the derivative of the position with respect to time: v = lim Δ t → 0 Δ s Δ t = d s d t . {\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {s}}}{\Delta t}}={\frac {d{\boldsymbol {s}}}{dt}}.} From this derivative equation, in

1326-418: Is the mass of the object. The kinetic energy of a moving object is dependent on its velocity and is given by the equation E k = 1 2 m v 2 {\displaystyle E_{\text{k}}={\tfrac {1}{2}}mv^{2}} where E k is the kinetic energy. Kinetic energy is a scalar quantity as it depends on the square of the velocity. In fluid dynamics , drag

1377-461: Is the mass times the distance to the origin times the transverse velocity, or equivalently, the mass times the distance squared times the angular speed. The sign convention for angular momentum is the same as that for angular velocity. L = m r v T = m r 2 ω {\displaystyle L=mrv_{T}=mr^{2}\omega } where The expression m r 2 {\displaystyle mr^{2}}

1428-547: Is the minimum speed a ballistic object needs to escape from a massive body such as Earth. It represents the kinetic energy that, when added to the object's gravitational potential energy (which is always negative), is equal to zero. The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is v e = 2 G M r = 2 g r , {\displaystyle v_{\text{e}}={\sqrt {\frac {2GM}{r}}}={\sqrt {2gr}},} where G

1479-463: Is the rate of rotation about the origin (with positive quantities representing counter-clockwise rotation and negative quantities representing clockwise rotation, in a right-handed coordinate system). The radial and traverse velocities can be derived from the Cartesian velocity and displacement vectors by decomposing the velocity vector into radial and transverse components. The transverse velocity

1530-453: Is the speed of light. Relative velocity is a measurement of velocity between two objects as determined in a single coordinate system. Relative velocity is fundamental in both classical and modern physics, since many systems in physics deal with the relative motion of two or more particles. Consider an object A moving with velocity vector v and an object B with velocity vector w ; these absolute velocities are typically expressed in

1581-449: Is used where the cloud ceiling is high and visibility is good. When the projectile is 3,000 m (9,800 ft) from the target, the guidance vanes extend, the target is acquired, and then the on-board guidance system adjusts the guidance vanes to maneuver onto the target. Glide mode is used when the cloud ceiling and/or the visibility is too low to permit the use of the ballistic mode. A glide mode trajectory consists of two phases:

M992 Field Artillery Ammunition Supply Vehicle - Misplaced Pages Continue

1632-436: The x {\displaystyle x} -, y {\displaystyle y} -, and z {\displaystyle z} -axes respectively. In polar coordinates , a two-dimensional velocity is described by a radial velocity , defined as the component of velocity away from or toward the origin, and a transverse velocity , perpendicular to the radial one. Both arise from angular velocity , which

1683-716: The MQM-105 Aquila pilotless drone. Copperhead was used in Operation Desert Storm , with 90 rounds fired against hardened Iraqi fortifications and radar stations. One of these strikes caused an Iraqi unit to surrender. Lebanese Armed Forces fired several hundred Copperhead shells at ISIL targets in east Lebanon during the Qalamoun offensive (July–August 2017) . At least five technicals , five occupied buildings, and several troop formations were struck with precision. The US replenished 827 shells after

1734-457: The M992s used by United States Forces Korea , including the increase of engine horsepower from 400 to 440. Related development Vehicle of comparable role and configuration [REDACTED] Media related to M992 Field Artillery Ammunition Support Vehicle at Wikimedia Commons M712 Copperhead The M712 Copperhead is a 155 mm caliber cannon-launched guided projectile . It

1785-1574: The average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity. If t 1 = t 2 = t 3 = ... = t , then average speed is given by the arithmetic mean of the speeds v ¯ = v 1 + v 2 + v 3 + ⋯ + v n n = 1 n ∑ i = 1 n v i {\displaystyle {\bar {v}}={v_{1}+v_{2}+v_{3}+\dots +v_{n} \over n}={\frac {1}{n}}\sum _{i=1}^{n}{v_{i}}} v ¯ = s 1 + s 2 + s 3 + ⋯ + s n t 1 + t 2 + t 3 + ⋯ + t n = s 1 + s 2 + s 3 + ⋯ + s n s 1 v 1 + s 2 v 2 + s 3 v 3 + ⋯ + s n v n {\displaystyle {\bar {v}}={s_{1}+s_{2}+s_{3}+\dots +s_{n} \over t_{1}+t_{2}+t_{3}+\dots +t_{n}}={{s_{1}+s_{2}+s_{3}+\dots +s_{n}} \over {{s_{1} \over v_{1}}+{s_{2} \over v_{2}}+{s_{3} \over v_{3}}+\dots +{s_{n} \over v_{n}}}}} If s 1 = s 2 = s 3 = ... = s , then average speed

1836-456: The base body as long as it does not intersect with something in its path. In special relativity , the dimensionless Lorentz factor appears frequently, and is given by γ = 1 1 − v 2 c 2 {\displaystyle \gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}} where γ is the Lorentz factor and c

1887-552: The center to provide protection to the crew during transfers. The vehicle also contains a two-stroke diesel -powered auxiliary power unit that can power all non-automotive energy requirements on the Field Artillery Ammunition Supply Vehicle and on the howitzer when a slave cable is used to connect the two. This reduces fuel consumption when mobility is not required. Between December 1995 to December 1996, Samsung Aerospace Industries upgraded

1938-402: The concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment. While the terms speed and velocity are often colloquially used interchangeably to connote how fast an object is moving, in scientific terms they are different. Speed, the scalar magnitude of

1989-540: The inertial frame chosen is that in which the latter of the two mentioned objects is in rest. In Newtonian mechanics, the relative velocity is independent of the chosen inertial reference frame. This is not the case anymore with special relativity in which velocities depend on the choice of reference frame. In the one-dimensional case, the velocities are scalars and the equation is either: v rel = v − ( − w ) , {\displaystyle v_{\text{rel}}=v-(-w),} if

2040-477: The one-dimensional case it can be seen that the area under a velocity vs. time ( v vs. t graph) is the displacement, s . In calculus terms, the integral of the velocity function v ( t ) is the displacement function s ( t ) . In the figure, this corresponds to the yellow area under the curve. s = ∫ v   d t . {\displaystyle {\boldsymbol {s}}=\int {\boldsymbol {v}}\ dt.} Although

2091-404: The projectile emerges from the cloud cover, whichever event occurs later in the trajectory. When a trajectory solution has been obtained, time-to-target and terminal velocity are checked to ensure that there will be enough time to maneuver and that the projectile is aerodynamically stable—that it will not stall while maneuvering. Initially the laser designation was intended to be performed by

M992 Field Artillery Ammunition Supply Vehicle - Misplaced Pages Continue

2142-483: The quick uploading of rounds or their transfer to the M109-series howitzer. Most early models had an additional mechanism called an X-Y Conveyor to lift the rounds into the honeycomb-like storage racks in the front of the superstructure. A ceiling plate above the two racks can be unbolted and opened to allow the racks to be winched out of the vehicle. This vehicle is fitted with a Halon fire suppression system and

2193-754: The radius (the magnitude of the position). v T = | r × v | | r | = v ⋅ t ^ = ω | r | {\displaystyle v_{T}={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {t}}}=\omega |{\boldsymbol {r}}|} such that ω = | r × v | | r | 2 . {\displaystyle \omega ={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|^{2}}}.} Angular momentum in scalar form

2244-710: The same inertial reference frame . Then, the velocity of object A relative to object B is defined as the difference of the two velocity vectors: v A  relative to  B = v − w {\displaystyle {\boldsymbol {v}}_{A{\text{ relative to }}B}={\boldsymbol {v}}-{\boldsymbol {w}}} Similarly, the relative velocity of object B moving with velocity w , relative to object A moving with velocity v is: v B  relative to  A = w − v {\displaystyle {\boldsymbol {v}}_{B{\text{ relative to }}A}={\boldsymbol {w}}-{\boldsymbol {v}}} Usually,

2295-432: The special case of constant acceleration, velocity can be studied using the suvat equations . By considering a as being equal to some arbitrary constant vector, this shows v = u + a t {\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t} with v as the velocity at time t and u as the velocity at time t = 0 . By combining this equation with

2346-436: The successful completion of the offensive. Velocity Velocity is the speed in combination with the direction of motion of an object . Velocity is a fundamental concept in kinematics , the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity : both magnitude and direction are needed to define it. The scalar absolute value ( magnitude ) of velocity

2397-415: The suvat equation x = u t + a t /2 , it is possible to relate the displacement and the average velocity by x = ( u + v ) 2 t = v ¯ t . {\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}t={\boldsymbol {\bar {v}}}t.} It is also possible to derive an expression for

2448-401: The two objects are moving in opposite directions, or: v rel = v − ( + w ) , {\displaystyle v_{\text{rel}}=v-(+w),} if the two objects are moving in the same direction. In multi-dimensional Cartesian coordinate systems , velocity is broken up into components that correspond with each dimensional axis of the coordinate system. In

2499-555: The value of t and the transformation rules for position create a situation in which all non-accelerating observers would describe the acceleration of an object with the same values. Neither is true for special relativity. In other words, only relative velocity can be calculated. In classical mechanics, Newton's second law defines momentum , p, as a vector that is the product of an object's mass and velocity, given mathematically as p = m v {\displaystyle {\boldsymbol {p}}=m{\boldsymbol {v}}} where m

2550-654: The velocity independent of time, known as the Torricelli equation , as follows: v 2 = v ⋅ v = ( u + a t ) ⋅ ( u + a t ) = u 2 + 2 t ( a ⋅ u ) + a 2 t 2 {\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}} ( 2

2601-529: Was originally made in 1970 by engineers at the US Army's Rodman Laboratories, with feasibility studies conducted in 1971. In 1972 development contracts were awarded to Martin Marietta and Texas Instruments . After testing Martin Marietta was chosen for continued development through the 1970s. Inventories of March 1, 1995: At 62.4 kilograms (137.6 lb) and 140 centimetres (54 in) long, Copperhead

SECTION 50

#1732793410802
#801198