Misplaced Pages

Motive Power

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A diesel locomotive is a type of railway locomotive in which the power source is a diesel engine . Several types of diesel locomotives have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels . The most common are diesel–electric locomotives and diesel–hydraulic.

#922077

103-676: Motive Power is a bi-monthly railway related magazine that focuses on diesel locomotives in Australia . The first issue was published on 23 August 1998. Its headquarters is in Sydney . The content includes photographs of locomotives & trains, news about newly delivered and repainted locomotives, technical articles, and fleet listings of the various Australian railway operators. Articles about railway photography itself are sometimes included, as well as articles and advertisements about railway modelling . This Australian rail-related article

206-471: A consist respond in the same way to throttle position. Binary encoding also helps to minimize the number of trainlines (electrical connections) that are required to pass signals from unit to unit. For example, only four trainlines are required to encode all possible throttle positions if there are up to 14 stages of throttling. North American locomotives, such as those built by EMD or General Electric , have eight throttle positions or "notches" as well as

309-429: A "reverser" to allow them to operate bi-directionally. Many UK-built locomotives have a ten-position throttle. The power positions are often referred to by locomotive crews depending upon the throttle setting, such as "run 3" or "notch 3". In older locomotives, the throttle mechanism was ratcheted so that it was not possible to advance more than one power position at a time. The engine driver could not, for example, pull

412-609: A Rational Heat Motor ). However, the large size and poor power-to-weight ratio of early diesel engines made them unsuitable for propelling land-based vehicles. Therefore, the engine's potential as a railroad prime mover was not initially recognized. This changed as research and development reduced the size and weight of the engine. In 1906, Rudolf Diesel, Adolf Klose and the steam and diesel engine manufacturer Gebrüder Sulzer founded Diesel-Sulzer-Klose GmbH to manufacture diesel-powered locomotives. Sulzer had been manufacturing diesel engines since 1898. The Prussian State Railways ordered

515-413: A design concept. Furthermore, he considers a completely closed cycle in the sixth chapter and using his invention as a refrigerator in the seventh chapter. His theories on how to use a rational heat motor are described in the eighth chapter. The ninth chapter includes additional comments. His additional work Nachträge zur Bröschüre is not included in the original essay, but in newer editions, it serves as

618-592: A diesel locomotive from the company in 1909, and after test runs between Winterthur and Romanshorn , Switzerland, the diesel–mechanical locomotive was delivered in Berlin in September 1912. The world's first diesel-powered locomotive was operated in the summer of 1912 on the same line from Winterthur but was not a commercial success. During test runs in 1913 several problems were found. The outbreak of World War I in 1914 prevented all further trials. The locomotive weight

721-504: A diesel-driven charging circuit. ALCO acquired the McIntosh & Seymour Engine Company in 1929 and entered series production of 300 hp (220 kW) and 600 hp (450 kW) single-cab switcher units in 1931. ALCO would be the pre-eminent builder of switch engines through the mid-1930s and would adapt the basic switcher design to produce versatile and highly successful, albeit relatively low powered, road locomotives. GM, seeing

824-437: A different combustion process from that one he described in his essay, because this would have rendered his heat motor patent obsolete. Theory and Construction of a Rational Heat Motor has nine chapters in total. The first chapter describes the theory of combustion, and is separated into five individual combustion processes, out of which the third is the constant pressure process used for the rational heat motor . Therefore, it

927-465: A flashover (also known as an arc fault ), which could result in immediate generator failure and, in some cases, start an engine room fire. Current North American practice is for four axles for high-speed passenger or "time" freight, or for six axles for lower-speed or "manifest" freight. The most modern units on "time" freight service tend to have six axles underneath the frame. Unlike those in "manifest" service, "time" freight units will have only four of

1030-406: A high amount of air has to be chosen. The high air-amount′s purpose is reducing the heat dissipation, thus requiring little to no water cooling. In fact, a high compression ratio increases efficiency, however, only to a certain point, because, like Diesel figured, too much heat energy would have to be dissipated and too much friction would occur, which could not be compensated by the engine's work. On

1133-400: A higher total efficiency, than an engine with a greater thermal efficiency but more friction losses: The actual efficiency has a maximum in between 30 and 40 atmospheres and 500 and 600°. Higher compression is useless, because the additional thermal efficiency is rendered useless by loss of mechanical efficiency and because the specific power output decreases with increasing compression due to

SECTION 10

#1732772481923

1236-432: A huge disappointment. Others praised Diesel and the theory: ... I wish you that you will succeed ... bringing a well-engineered product to market, carefully made in silence, and dislodging the steam engine from its throne at the end of the century it assumed it! Nobody who predicted the fall of the steam engine has ever been as radical as you are, hence, the victory shall be yours... Considering how inferior burning coal in

1339-475: A last stop-gap solution if higher compression is not possible. During his experiments in Augsburg, Diesel ended up finding out that the ideal compression for the engine is in between 30 and 35 atm (3–3.5 MPa), after he first considered slightly higher values of 30–40 atm (3–4.1 MPa) reasonable. When reducing the compression pressure, Diesel always tried keeping it above the self-ignition temperature of

1442-566: A locomotive. Internal combustion engines only operate efficiently within a limited power band , and while low-power gasoline engines could be coupled to mechanical transmissions , the more powerful diesel engines required the development of new forms of transmission. This is because clutches would need to be very large at these power levels and would not fit in a standard 2.5 m (8 ft 2 in)-wide locomotive frame, or would wear too quickly to be useful. The first successful diesel engines used diesel–electric transmissions , and by 1925

1545-577: A major manufacturer of diesel engines for marine and stationary applications, in 1930. Supported by the General Motors Research Division, GM's Winton Engine Corporation sought to develop diesel engines suitable for high-speed mobile use. The first milestone in that effort was delivery in early 1934 of the Winton 201A, a two-stroke , mechanically aspirated , uniflow-scavenged , unit-injected diesel engine that could deliver

1648-595: A motor with the best thermal efficiency would automatically have compression ignition. In his 1913 book Die Entstehung des Dieselmotors , he denies that compression ignition is a key feature of his motor: Neither have I claimed compression ignition in any of my patents, nor have I stated it in my publications as a goal worth reaching On page 16 of Theory and Construction of a Rational Heat Motor , Diesel writes that ignition in his rational heat motor takes place either by means of artificial ignition or compression ignition: Now ignition takes place, either artificially, or, if

1751-500: A nearly imperceptible start. The positioning of the reverser and movement of the throttle together is conceptually like shifting an automobile's automatic transmission into gear while the engine is idling. Theory and Construction of a Rational Heat Motor Theory and Construction of a Rational Heat Motor ( German : Theorie und Konstruktion eines rationellen Wärmemotors zum Ersatz der Dampfmaschine und der heute bekannten Verbrennungsmotoren ; English: Theory and construction of

1854-421: A prototype diesel–electric locomotive for "special uses" (such as for runs where water for steam locomotives was scarce) using electrical equipment from Westinghouse Electric Company . Its twin-engine design was not successful, and the unit was scrapped after a short testing and demonstration period. Industry sources were beginning to suggest "the outstanding advantages of this new form of motive power". In 1929,

1957-495: A rational heat motor with the purpose of replacing the steam engine and the internal combustion engines known today ) is an essay written by German engineer Rudolf Diesel . It was composed in 1892, and first published by Springer in 1893. A translation into English followed in 1894. One thousand copies of the German first edition were printed. In this essay, Rudolf Diesel describes his idea of an internal combustion engine based on

2060-420: A real motor more reasonable than focussing on the best efficiency. This resulted in the original Diesel diagram. Diesel's theory had three major problems: The thermal efficiency and motor work do not depend on the amount of air, but on the compression ratio. The greater the compression ratio will be, the better the thermal efficiency will be; this efficiency does not at all depend on the highest temperature of

2163-486: A real prospect with existing diesel technology. Before diesel power could make inroads into mainline service, the limitations of diesel engines circa 1930 – low power-to-weight ratios and narrow output range – had to be overcome. A major effort to overcome those limitations was launched by General Motors after they moved into the diesel field with their acquisition of the Winton Engine Company ,

SECTION 20

#1732772481923

2266-774: A small number of diesel locomotives of 600 hp (450 kW) were in service in the United States. In 1930, Armstrong Whitworth of the United Kingdom delivered two 1,200 hp (890 kW) locomotives using Sulzer -designed engines to Buenos Aires Great Southern Railway of Argentina. In 1933, diesel–electric technology developed by Maybach was used to propel the DRG Class SVT 877 , a high-speed intercity two-car set, and went into series production with other streamlined car sets in Germany starting in 1935. In

2369-566: A tenth chapter. Diesel's idea of a rational heat motor was designing a cycle that would allow maximum heat utilisation, based on the Carnot cycle. To overcome the low efficiency of steam and combustion engines of the time, Diesel wanted to build an entirely new type of internal combustion engine. In the 1890s, regular gas engines were capable of transforming only 6% of the fuel energy into kinetic energy; good triple expansion steam engines were slightly better than that, they could convert 7.2% of

2472-426: Is a stub . You can help Misplaced Pages by expanding it . Diesel locomotive Early internal combustion locomotives and railcars used kerosene and gasoline as their fuel. Rudolf Diesel patented his first compression-ignition engine in 1898, and steady improvements to the design of diesel engines reduced their physical size and improved their power-to-weight ratios to a point where one could be mounted in

2575-533: Is better able to cope with overload conditions that often destroyed the older types of motors. A diesel–electric locomotive's power output is independent of road speed, as long as the unit's generator current and voltage limits are not exceeded. Therefore, the unit's ability to develop tractive effort (also referred to as drawbar pull or tractive force , which is what actually propels the train) will tend to inversely vary with speed within these limits. (See power curve below). Maintaining acceptable operating parameters

2678-469: Is described in more detail in this article. In the second chapter, Diesel describes how he intends to design and build an engine with an indicated power of 100 PS. With the third chapter, Diesel tries to address using a process with adiabatic compression only; the fourth chapter describes designing a real motor for this modified process. The fifth chapter addresses yet another modified process, with an incomplete expansion phase, but Diesel does not include

2781-502: Is generally limited to low-powered, low-speed shunting (switching) locomotives, lightweight multiple units and self-propelled railcars . The mechanical transmissions used for railroad propulsion are generally more complex and much more robust than standard-road versions. There is usually a fluid coupling interposed between the engine and gearbox, and the gearbox is often of the epicyclic (planetary) type to permit shifting while under load. Various systems have been devised to minimise

2884-423: Is no waste heat . For the means of compression, Diesel intended using a notional compression cylinder . This process requires work and consists of four phases: For the distinct combustion process, Diesel intended using a notional expansion cylinder . Again it consists of four phases: Adding these phases will result in a diagram similar to a Carnot diagram as shown on the right. Because fuel will be added to

2987-414: Is the same as placing an automobile's transmission into neutral while the engine is running. To set the locomotive in motion, the reverser control handle is placed into the correct position (forward or reverse), the brake is released and the throttle is moved to the run 1 position (the first power notch). An experienced engine driver can accomplish these steps in a coordinated fashion that will result in

3090-432: Is why Diesel figured that there ″ cannot be any doubts that the deviating process has to be chosen for the actual motor ″. The lowest pressure Diesel considered reasonable is 44 atm (4.5 MPa), resulting in a thermal efficiency of 60%. According to Diesel, at the time materials were already capable of withstanding such high pressure. He also admitted that a pressure of approximately 30 atm (3 MPa) may be used as

3193-656: The Burlington Route and Union Pacific used custom-built diesel " streamliners " to haul passengers, starting in late 1934. Burlington's Zephyr trainsets evolved from articulated three-car sets with 600 hp power cars in 1934 and early 1935, to the Denver Zephyr semi-articulated ten car trainsets pulled by cab-booster power sets introduced in late 1936. Union Pacific started diesel streamliner service between Chicago and Portland Oregon in June 1935, and in

Motive Power - Misplaced Pages Continue

3296-723: The Busch-Sulzer company in 1911. Only limited success was achieved in the early twentieth century with internal combustion engined railcars, due, in part, to difficulties with mechanical drive systems. General Electric (GE) entered the railcar market in the early twentieth century, as Thomas Edison possessed a patent on the electric locomotive, his design actually being a type of electrically propelled railcar. GE built its first electric locomotive prototype in 1895. However, high electrification costs caused GE to turn its attention to internal combustion power to provide electricity for electric railcars. Problems related to co-ordinating

3399-611: The Canadian National Railways became the first North American railway to use diesels in mainline service with two units, 9000 and 9001, from Westinghouse. However, these early diesels proved expensive and unreliable, with their high cost of acquisition relative to steam unable to be realized in operating cost savings as they were frequently out of service. It would be another five years before diesel–electric propulsion would be successfully used in mainline service, and nearly ten years before fully replacing steam became

3502-479: The Carnot cycle , transforming heat energy into kinetic energy using high pressure, with a thermal efficiency of up to 73%, outperforming any steam engine of the time. Diesel sent copies of his essay to famous German engineers and university professors for spreading and promoting his idea. He received plenty of negative feedback; many considered letting Diesel's heat engine become reality unfeasible, because of

3605-494: The DFH1 , began in 1964 following the construction of a prototype in 1959. In Japan, starting in the 1920s, some petrol–electric railcars were produced. The first diesel–electric traction and the first air-streamed vehicles on Japanese rails were the two DMU3s of class Kiha 43000 (キハ43000系). Japan's first series of diesel locomotives was class DD50 (国鉄DD50形), twin locomotives, developed since 1950 and in service since 1953. In 1914,

3708-488: The Società per le Strade Ferrate del Mediterrano in southern Italy in 1926, following trials in 1924–25. The six-cylinder two-stroke motor produced 440 horsepower (330 kW) at 500   rpm, driving four DC motors, one for each axle. These 44 tonnes (43 long tons; 49 short tons) locomotives with 45 km/h (28 mph) top speed proved quite successful. In 1924, two diesel–electric locomotives were taken in service by

3811-895: The Soviet railways , almost at the same time: In 1935, Krauss-Maffei , MAN and Voith built the first diesel–hydraulic locomotive, called V 140 , in Germany. Diesel–hydraulics became the mainstream in diesel locomotives in Germany since the German railways (DRG) were pleased with the performance of that engine. Serial production of diesel locomotives in Germany began after World War II. In many railway stations and industrial compounds, steam shunters had to be kept hot during many breaks between scattered short tasks. Therefore, diesel traction became economical for shunting before it became economical for hauling trains. The construction of diesel shunters began in 1920 in France, in 1925 in Denmark, in 1926 in

3914-411: The cycle , which is supposed to result in useful work . The Diesel process uses a special compression stroke based on the idea that a gas can be compressed in a combined isothermal-adiabatic way. Isothermal means that the temperature during compression does not change, thus requiring heat dissipation; adiabatic means that the gas changes its volume, but without heat dissipation . This means that there

4017-406: The electrification of the line in 1944. Afterwards, the company kept them in service as boosters until 1965. Fiat claims to have built the first Italian diesel–electric locomotive in 1922, but little detail is available. Several Fiat- TIBB Bo'Bo' diesel–locomotives were built for service on the 950 mm ( 3 ft  1 + 3 ⁄ 8  in ) narrow gauge Ferrovie Calabro Lucane and

4120-432: The 1,500 kW (2,000 hp) British Rail 10100 locomotive), though only few have proven successful (such as the 1,342 kW (1,800 hp) DSB Class MF ). In a diesel–electric locomotive , the diesel engine drives either an electrical DC generator (generally, less than 3,000 hp (2,200 kW) net for traction), or an electrical AC alternator-rectifier (generally 3,000   hp net or more for traction),

4223-459: The 1960s, the DC generator was replaced by an alternator using a diode bridge to convert its output to DC. This advance greatly improved locomotive reliability and decreased generator maintenance costs by elimination of the commutator and brushes in the generator. Elimination of the brushes and commutator, in turn, eliminated the possibility of a particularly destructive type of event referred to as

Motive Power - Misplaced Pages Continue

4326-523: The 1990s, starting with the Electro-Motive SD70MAC in 1993 and followed by General Electric's AC4400CW in 1994 and AC6000CW in 1995. The Trans-Australian Railway built 1912 to 1917 by Commonwealth Railways (CR) passes through 2,000 km of waterless (or salt watered) desert terrain unsuitable for steam locomotives. The original engineer Henry Deane envisaged diesel operation to overcome such problems. Some have suggested that

4429-600: The CR worked with the South Australian Railways to trial diesel traction. However, the technology was not developed enough to be reliable. As in Europe, the usage of internal combustion engines advanced more readily in self-propelled railcars than in locomotives: A diesel–mechanical locomotive uses a mechanical transmission in a fashion similar to that employed in most road vehicles. This type of transmission

4532-895: The Netherlands, and in 1927 in Germany. After a few years of testing, hundreds of units were produced within a decade. Diesel-powered or "oil-engined" railcars, generally diesel–mechanical, were developed by various European manufacturers in the 1930s, e.g. by William Beardmore and Company for the Canadian National Railways (the Beardmore Tornado engine was subsequently used in the R101 airship). Some of those series for regional traffic were begun with gasoline motors and then continued with diesel motors, such as Hungarian BC (The class code doesn't tell anything but "railmotor with 2nd and 3rd class seats".), 128 cars built 1926–1937, or German Wismar railbuses (57 cars 1932–1941). In France,

4635-633: The United States, diesel–electric propulsion was brought to high-speed mainline passenger service in late 1934, largely through the research and development efforts of General Motors dating back to the late 1920s and advances in lightweight car body design by the Budd Company . The economic recovery from World War II hastened the widespread adoption of diesel locomotives in many countries. They offered greater flexibility and performance than steam locomotives , as well as substantially lower operating and maintenance costs. The earliest recorded example of

4738-499: The War Production Board put a halt to building new passenger equipment and gave naval uses priority for diesel engine production. During the petroleum crisis of 1942–43 , coal-fired steam had the advantage of not using fuel that was in critically short supply. EMD was later allowed to increase the production of its FT locomotives and ALCO-GE was allowed to produce a limited number of DL-109 road locomotives, but most in

4841-433: The axles connected to traction motors, with the other two as idler axles for weight distribution. In the late 1980s, the development of high-power variable-voltage/variable-frequency (VVVF) drives, or "traction inverters", allowed the use of polyphase AC traction motors, thereby also eliminating the motor commutator and brushes. The result is a more efficient and reliable drive that requires relatively little maintenance and

4944-722: The benefits of an electric locomotive without the railroad having to bear the sizeable expense of electrification. The unit successfully demonstrated, in switching and local freight and passenger service, on ten railroads and three industrial lines. Westinghouse Electric and Baldwin collaborated to build switching locomotives starting in 1929. However, the Great Depression curtailed demand for Westinghouse's electrical equipment, and they stopped building locomotives internally, opting to supply electrical parts instead. In June 1925, Baldwin Locomotive Works outshopped

5047-420: The break in transmission during gear changing, such as the S.S.S. (synchro-self-shifting) gearbox used by Hudswell Clarke . Diesel–mechanical propulsion is limited by the difficulty of building a reasonably sized transmission capable of coping with the power and torque required to move a heavy train. A number of attempts to use diesel–mechanical propulsion in high power applications have been made (for example,

5150-452: The conclusion that Diesel's motor could require so much compression work that it could possibly not perform any useful work. In his 1887 work Theorie der Gasmotoren , Otto Köhler had already addressed that an ideal cycle is not suitable for a real motor, coming to the same conclusion as the former. He had foreseen the problem of friction loss rendering the motor work useless and, in a letter addressed to Diesel's friend Venator, he considered

5253-443: The engine governor and electrical or electronic components, including switchgear , rectifiers and other components, which control or modify the electrical supply to the traction motors. In the most elementary case, the generator may be directly connected to the motors with only very simple switchgear. Originally, the traction motors and generator were DC machines. Following the development of high-capacity silicon rectifiers in

SECTION 50

#1732772481923

5356-419: The engine and traction motor with a single lever; subsequent improvements were also patented by Lemp. Lemp's design solved the problem of overloading and damaging the traction motors with excessive electrical power at low speeds, and was the prototype for all internal combustion–electric drive control systems. In 1917–1918, GE produced three experimental diesel–electric locomotives using Lemp's control design,

5459-423: The engine driver operates the controls. When the throttle is in the idle position, the prime mover receives minimal fuel, causing it to idle at low RPM. In addition, the traction motors are not connected to the main generator and the generator's field windings are not excited (energized) – the generator does not produce electricity without excitation. Therefore, the locomotive will be in "neutral". Conceptually, this

5562-419: The engine would not perform any useful work. In a letter addressed to Moritz Schröter, dated 13 February 1893, Diesel describes the thermal efficiency of his rational heat motor, assuming maximum losses. He comes to the conclusion that the absolute minimum thermal efficiency is not less than 30.4–31.6 %, which is still more than 2½ times the thermal efficiency of a triple expansion steam engine and 4–5 times

5665-595: The enormous friction. Other critics rather feared that the material would not withstand the enormous strain, but otherwise did not criticise the mistake of Diesel's theory: I hope you will not resent me, but having a lot of practical experience, I have serious doubts regarding the creation of an actual engine based on these theories. Nobody has ever gathered experience building a motor capable of 300 RPM, sustaining over 200 atmospheres of pressure, and consuming and combusting solid fuel in very little time, and I believe that I am not wrong, if I suppose that this experience will be

5768-416: The essay would require so much compression work that it could not perform any useful work . Yet, some scientists of the time praised Diesel's idea, which would lead into Maschinenfabrik Augsburg and Krupp Essen forming a consortium for building Diesel's engine. Diesel, who was then ordered to build his own engine, realised his mistake and considered using a modified combustion process . Key changes are

5871-420: The feedback: Publishing my essay caused fierce reviews ... on average, they were unfavourable, rather devastating ... There were only three positive reviews, but they were quite important. I list the names: Linde , Schröter , Zeuner ... [In terms of negative reviews], I consider only Professor Riedler′s and [Züblin′s] review relevant. Wilhelm Züblin , engineer of Sulzer, and Professor Alois Riedler came to

5974-456: The first diesel railcar was Renault VH , 115 units produced 1933/34. In Italy, after six Gasoline cars since 1931, Fiat and Breda built a lot of diesel railmotors, more than 110 from 1933 to 1938 and 390 from 1940 to 1953, Class 772 known as Littorina , and Class ALn 900. In the 1930s, streamlined highspeed diesel railcars were developed in several countries: In 1945, a batch of 30 Baldwin diesel–electric locomotives, Baldwin 0-6-6-0 1000 ,

6077-480: The first known to be built in the United States. Following this development, the 1923 Kaufman Act banned steam locomotives from New York City, because of severe pollution problems. The response to this law was to electrify high-traffic rail lines. However, electrification was uneconomical to apply to lower-traffic areas. The first regular use of diesel–electric locomotives was in switching (shunter) applications, which were more forgiving than mainline applications of

6180-509: The following year would add Los Angeles, CA , Oakland, CA , and Denver, CO to the destinations of diesel streamliners out of Chicago. The Burlington and Union Pacific streamliners were built by the Budd Company and the Pullman-Standard Company , respectively, using the new Winton engines and power train systems designed by GM's Electro-Motive Corporation . EMC's experimental 1800 hp B-B locomotives of 1935 demonstrated

6283-406: The freight market including their own F series locomotives. GE subsequently dissolved its partnership with ALCO and would emerge as EMD's main competitor in the early 1960s, eventually taking the top position in the locomotive market from EMD. Early diesel–electric locomotives in the United States used direct current (DC) traction motors but alternating current (AC) motors came into widespread use in

SECTION 60

#1732772481923

6386-549: The fuel energy into kinetic energy. Diesel said that his rational heat motor has a thermal efficiency of 73%, thus being capable of converting approximately ″ 6 to 7-times as much ″ chemical energy into kinetic energy, meaning that it has an efficiency of approximately 50%. Diesel even claimed that future versions of his motor would have an even higher efficiency. Despite relying on compression ignition, Diesel says that he never purposely designed his motor with this specific characteristic. In his patent DRP 67 207, Diesel describes that

6489-550: The fuel very efficiently, will obviously have an impact on the machine building and transport industry. The high scientific, technical and economical importance of Diesel′s rational heat motor will sure boost its development... Your machine yet again attacks the mighty steam engine by outperforming it in its efficiency. The technology once has to come to the point where it gets rid of the long known flaws of its old steam engine. As Diesel considered Riedler's and Züblin's reactions to his essay relevant, he tried addressing their point that

6592-416: The fuel, which is why he eventually decided to choose 30 atm. In the eighth chapter, Diesel gives five suggestions how his motor can be used as: Hellmut Droscha evaluates in the 1991 book Leistung und Weg: Zur Geschichte des MAN-Nutzfahrzeugbaus that Diesel's main intention was designing a motor for small-scale industry. With a Diesel engine , according to Droscha, Diesel thought he could improve

6695-402: The gas, the start position 1 will not be identical with the end position 1, meaning that there is always slightly more work required. However, Diesel considered using a very lean air-fuel mixture, thus resulting in the amount of extra work required being insignificant. In theory, the combustion process ends at position 4 of the diagram. But this is not the end of the work formation taking place in

6798-451: The high compression pressure figure. Therefore, Diesel addressed several different deviations from the ideal process in chapters 3 and 5 of his essay. By gradually reducing compression temperature, he depicted a gradual reduction in compression pressure. He writes that a pressure reduction from 250 atm (25.3 MPa) to 90 atm (9.1 MPa) would only result in 5% thermal efficiency loss, but an increase in overall efficiency, which

6901-556: The high friction losses. Publicly, Diesel never admitted his mistakes, despite knowing them and how to overcome them. He did so to save his patent: Publicly admitting that the rational heat motor cannot work would have rendered his patent DRP 67 207 obsolete and therefore destroyed his personal work, because it would have allowed building the Diesel engine without acquiring a licence for his patent. Diesel feared that possible licencees could get an ″unfavourable impression″ when seeing

7004-431: The high pressures of 200–300  atm (20.3–30.4 MPa) occurring, which they thought machines of the time could not withstand. Only few found the actual mistake in Diesel's theory: Isothermal - adiabatic compression, which the theory is based on, is impossible. Even with almost isothermal-adiabatic compression, an engine could not operate because of the lean air-fuel mixture. In other words, an engine as described in

7107-411: The isothermal process would result in a bigger diagram″ (=actual engine work). Thus, Diesel eventually abandoned his idea of isothermic-adiabatic compression, he later made a note in his journal: ″We must not compress the air in a combined isothermal-adiabatic way, instead, we must only compress it adiabatically″ . To achieve this, Diesel now wanted to raise point 3 in his diagram instead of increasing

7210-438: The length of the admission period 2–3 by reducing injection time. Diesel, who had obtained a patent (DRP 67 207) for a combustion process without significant changes in either pressure or temperature, thought that this patent would also cover constant pressure combustion curves, but to ensure that the changes in his combustion process would also be covered by a patent, he applied for a new additional patent on 29 November 1893, which

7313-570: The limitations of contemporary diesel technology and where the idling economy of diesel relative to steam would be most beneficial. GE entered a collaboration with the American Locomotive Company (ALCO) and Ingersoll-Rand (the "AGEIR" consortium) in 1924 to produce a prototype 300 hp (220 kW) "boxcab" locomotive delivered in July 1925. This locomotive demonstrated that the diesel–electric power unit could provide many of

7416-431: The locomotive business were restricted to making switch engines and steam locomotives. In the early postwar era, EMD dominated the market for mainline locomotives with their E and F series locomotives. ALCO-GE in the late 1940s produced switchers and road-switchers that were successful in the short-haul market. However, EMD launched their GP series road-switcher locomotives in 1949, which displaced all other locomotives in

7519-581: The mid-1950s. Generally, diesel traction in Italy was of less importance than in other countries, as it was amongst the most advanced countries in the electrification of the main lines and as Italian geography makes freight transport by sea cheaper than rail transportation even on many domestic connections. Adolphus Busch purchased the American manufacturing rights for the diesel engine in 1898 but never applied this new form of power to transportation. He founded

7622-546: The multiple-unit control systems used for the cab/booster sets and the twin-engine format used with the later Zephyr power units. Both of those features would be used in EMC's later production model locomotives. The lightweight diesel streamliners of the mid-1930s demonstrated the advantages of diesel for passenger service with breakthrough schedule times, but diesel locomotive power would not fully come of age until regular series production of mainline diesel locomotives commenced and it

7725-546: The operating principle that definitely has to be chosen for a practical engine); it took until September the same year. By 16 June 1893, before he started the experiments with his engine at the Maschinenfabrik Augsburg, he had realised that the Carnot cycle is practically not possible and that he, therefore, has to change the way his motor works: ″Despite my older contrary statement, the question has to be answered, whether or not combustion processes other than

7828-423: The other hand, a compression ratio chosen too low results in insufficient heat utilisation. When designing his theory, Diesel already considered reducing compression to 90 atm (9.1 MPa), which he thought would result in only 5% thermal efficiency loss, but in a significant increase in actual efficiency, yet he recommends increasing pressure as much as possible. His solution for the heat dissipation problem

7931-402: The output of which provides power to the traction motors that drive the locomotive. There is no mechanical connection between the diesel engine and the wheels. The important components of diesel–electric propulsion are the diesel engine (also known as the prime mover ), the main generator/alternator-rectifier, traction motors (usually with four or six axles), and a control system consisting of

8034-584: The performance and reliability of the new 567 model engine in passenger locomotives, EMC was eager to demonstrate diesel's viability in freight service. Following the successful 1939 tour of EMC's FT demonstrator freight locomotive set, the stage was set for dieselization of American railroads. In 1941, ALCO-GE introduced the RS-1 road-switcher that occupied its own market niche while EMD's F series locomotives were sought for mainline freight service. The US entry into World War II slowed conversion to diesel;

8137-424: The perspective of the plain theory, I am on your side and I appreciate your proposal of a new heat motor; I have not read anything in a long while regarding our discipline that I have been this interested in. Your basic theories are both new and correct. Despite not judging the technical value of Diesel′s motor yet, as it has not yet been built, it has to be admitted that it shall give internal combustion engine design

8240-411: The pressure required too high: Furthermore, I consider creating a heat motor, using the Carnot cycle and air, unfeasible. The enormous piston pressure, which requires a very huge transmission, cannot be avoided. And at this point, I am not mentioning the problems the process itself would cause in the first place. (...) In my opinion, the entire indicated work of Diesel′s motor will be required to overcome

8343-484: The prime mover and electric motor were immediately encountered, primarily due to limitations of the Ward Leonard current control system that had been chosen. GE Rail was formed in 1907 and 112 years later, in 2019, was purchased by and merged with Wabtec . A significant breakthrough occurred in 1914, when Hermann Lemp , a GE electrical engineer, developed and patented a reliable control system that controlled

8446-424: The process; therefore, having a high combustion temperature is not of interest, quite the opposite of a high temperature is needed; if the temperature is high, heat energy must be dissipated to prevent the motor parts from breaking, keeping lubrication up, etc.; high combustion temperatures increase this heat energy; therefore, we must reduce combustion temperature. The equation shows immediately that, for this purpose,

8549-450: The required performance for a fast, lightweight passenger train. The second milestone, and the one that got American railroads moving towards diesel, was the 1938 delivery of GM's Model 567 engine that was designed specifically for locomotive use, bringing a fivefold increase in life of some mechanical parts and showing its potential for meeting the rigors of freight service. Diesel–electric railroad locomotion entered mainline service when

8652-407: The right direction towards heat engine perfection. Furthermore, the engineer will have a satisfying task purposely designing the new motor for industrial applications, both small and huge in their dimensions, as well as for locomotives and ships. Not depending on steam, compressed air, electricity and gas pipes, not requiring any boiler, chimney and fueling coal, and not causing smoky exhaust, but using

8755-547: The same quantity of fuel for our engine running at maximum load and 150×60=9000 injections per hour.″ This is how Diesel found out that he has to use an air-fuel ratio of ~14:1 rather than ~100:1 for a working engine. Furthermore, Diesel finally decided to abandon his concept of a high compression pressure in favour of a lower pressure of 30 atm (3 MPa) more suitable for 1890s machines. Correctly, he assumed that lower compression, despite causing less thermal efficiency, would result in less friction, which would allow an engine having

8858-534: The steam engine and burning gas in the gas engine are, how hard it was to reach the modern level of engine efficiency, and how little chance there is left that on the current way anything significant can still be reached, leaving this way is something that has to be done and a new path has to be struck. The path that we may hope will lead us closer than ever before towards the ideal Carnot cycle has been predetermined with both serenity and thoughtfulness as well as daringness and authenticity in its accomplishment. Seen from

8961-405: The success of the custom streamliners, sought to expand the market for diesel power by producing standardized locomotives under their Electro-Motive Corporation . In 1936, EMC's new factory started production of switch engines. In 1937, the factory started producing their new E series streamlined passenger locomotives, which would be upgraded with more reliable purpose-built engines in 1938. Seeing

9064-425: The temperature is high enough, by means of compression ignition The Diesel process is a hypothetical constant-pressure model, with four distinct processes, a so-called cycle , meaning that these four distinct processes can be repeated over and over again. These distinct processes are the same processes that can be found in a four-stroke engine : intake, compression, combustion, exhaust. All four strokes combined form

9167-426: The thermal efficiency of a medium size compound steam engine . At this time, Diesel had not yet realised that his rational heat motor would not work: Still trying to figure how to further increase efficiency, he considered increasing the admission period's length by increasing the supposed isotherm length on his motor's ideal diagram, which Diesel believed would result in better efficiency. What he did not understand at

9270-432: The throttle from notch 2 to notch 4 without stopping at notch 3. This feature was intended to prevent rough train handling due to abrupt power increases caused by rapid throttle motion ("throttle stripping", an operating rules violation on many railroads). Modern locomotives no longer have this restriction, as their control systems are able to smoothly modulate power and avoid sudden changes in train loading regardless of how

9373-479: The throttle setting, as determined by the engine driver and the speed at which the prime mover is running (see Control theory ). Locomotive power output, and therefore speed, is typically controlled by the engine driver using a stepped or "notched" throttle that produces binary -like electrical signals corresponding to throttle position. This basic design lends itself well to multiple unit (MU) operation by producing discrete conditions that assure that all units in

9476-538: The time was that his diagram did not show an isotherm . With an actual isotherm, the amount of input work would have been almost greater than the output work, resulting in a narrow p-V diagram, indicating that the rational heat motor would not perform any work. It took Diesel several months to figure the problem. He started designing a new combustion process in May 1893 titled „Schlußfolgerungen über die definitiv f. d. Praxis zu wählende Arbeitsmethode des Motors“ (conclusion of

9579-454: The two phases combustion (3–4) and expansion (4–1), as explained. Diesel considered an isothermal expansion phase unfeasible, because it would cause a gigantic expansion cylinder, resulting in a very large and unpractical engine. This is why gas expansion is adiabatic and only taking place until atmospheric pressure is reached. He considered the additional work required, resulting in overall work loss, ″unimportant″, because he considered making

9682-451: The use of an internal combustion engine in a railway locomotive is the prototype designed by William Dent Priestman , which was examined by William Thomson, 1st Baron Kelvin in 1888 who described it as a " Priestman oil engine mounted upon a truck which is worked on a temporary line of rails to show the adaptation of a petroleum engine for locomotive purposes." In 1894, a 20 hp (15 kW) two-axle machine built by Priestman Brothers

9785-485: The way of compression, which is only adiabatic in the modified combustion process, the pressure, which Diesel reduced significantly, and the fuel injection, where Diesel increased the fuel quantity. In 1897, after four years of work, Diesel had successfully finished his rational heat motor using his modified combustion process. This engine became known as the Diesel engine . Publicly, Diesel never admitted that he had to use

9888-672: The world's first functional diesel–electric railcars were produced for the Königlich-Sächsische Staatseisenbahnen ( Royal Saxon State Railways ) by Waggonfabrik Rastatt with electric equipment from Brown, Boveri & Cie and diesel engines from Swiss Sulzer AG . They were classified as DET 1 and DET 2 ( de.wiki ). Because of a shortage of petrol products during World War I, they remained unused for regular service in Germany. In 1922, they were sold to Swiss Compagnie du Chemin de fer Régional du Val-de-Travers , where they were used in regular service up to

9991-473: Was 95 tonnes and the power was 883 kW (1,184 hp) with a maximum speed of 100 km/h (62 mph). Small numbers of prototype diesel locomotives were produced in a number of countries through the mid-1920s. One of the first domestically developed Diesel vehicles of China was the Dongfeng DMU (东风), produced in 1958 by CSR Sifang . Series production of China's first Diesel locomotive class,

10094-688: Was delivered from the United States to the railways of the Soviet Union. In 1947, the London, Midland and Scottish Railway (LMS) introduced the first of a pair of 1,600 hp (1,200 kW) Co-Co diesel–electric locomotives (later British Rail Class D16/1 ) for regular use in the United Kingdom, although British manufacturers such as Armstrong Whitworth had been exporting diesel locomotives since 1930. Fleet deliveries to British Railways, of other designs such as Class 20 and Class 31, began in 1957. Series production of diesel locomotives in Italy began in

10197-478: Was later awarded to him (DRP 82 168). Yet again, Diesel made a mistake: Instead of injecting the fuel faster, injecting more fuel would have been the correct solution in this case. When making calculations for a modification of his test engine in September 1893, he compared his test engine with a regular paraffin engine: ″Average paraffin engines have a fuel consumption of approximately 600 g/PSh = 750 cm /PSh paraffin, thus 7,500 cm for 10 PSh. We would have to assume

10300-400: Was one of the principal design considerations that had to be solved in early diesel–electric locomotive development and, ultimately, led to the complex control systems in place on modern units. The prime mover's power output is primarily determined by its rotational speed ( RPM ) and fuel rate, which are regulated by a governor or similar mechanism. The governor is designed to react to both

10403-494: Was shown suitable for full-size passenger and freight service. Following their 1925 prototype, the AGEIR consortium produced 25 more units of 300 hp (220 kW) "60 ton" AGEIR boxcab switching locomotives between 1925 and 1928 for several New York City railroads, making them the first series-produced diesel locomotives. The consortium also produced seven twin-engine "100 ton" boxcabs and one hybrid trolley/battery unit with

10506-486: Was still wrong: He decided to use more air, resulting in an air-fuel mixture which is too lean. Such an air-fuel mixture cannot provide any work, because it cannot combust, not even with artificial ignition. As mentioned, Diesel was mostly criticised for his idea of a heat motor, but also received positive feedback. However, most critics did not criticise the theory's flaw, but that Diesel's heat engine used very high amounts of pressure to operate. Diesel himself acknowledged

10609-737: Was used on the Hull Docks . In 1896, an oil-engined railway locomotive was built for the Royal Arsenal in Woolwich , England, using an engine designed by Herbert Akroyd Stuart . It was not a diesel, because it used a hot-bulb engine (also known as a semi-diesel), but it was the precursor of the diesel. Rudolf Diesel considered using his engine for powering locomotives in his 1893 book Theorie und Konstruktion eines rationellen Wärmemotors zum Ersatz der Dampfmaschine und der heute bekannten Verbrennungsmotoren ( Theory and Construction of

#922077