A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction . Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion . When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron , it splits into lighter nuclei, releasing energy, gamma radiation , and free neutrons, which can induce further fission in a self-sustaining chain reaction . The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely, although inherent control by means of delayed neutrons also plays an important role in reactor output control. The efficiency of nuclear fuel is much higher than fossil fuels; the 5% enriched uranium used in the newest reactors has an energy density 120,000 times higher than coal.
157-443: Magnox is a type of nuclear power / production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors . The name comes from the magnesium - aluminium alloy (called mag nesium n on- ox idising), used to clad the fuel rods inside the reactor. Like most other generation I nuclear reactors ,
314-445: A chain reaction . To improve the fuel's sensitivity to neutrons, a neutron moderator is used, in this case highly purified graphite . The reactors consisted of a huge cube of this material (the "pile") made up of many smaller blocks and drilled through horizontally to make a large number of fuel channels . Uranium fuel was placed in aluminium canisters and pushed into the channels in the front, pushing previous fuel canisters through
471-479: A nuclear proliferation risk as they can be configured to produce plutonium , as well as tritium gas used in boosted fission weapons . Reactor spent fuel can be reprocessed to yield up to 25% more nuclear fuel, which can be used in reactors again. Reprocessing can also significantly reduce the volume of nuclear waste, and has been practiced in Europe, Russia, India and Japan. Due to concerns of proliferation risks,
628-437: A proton source for them. A crucial moment came when Cockcroft read a paper by George Gamow on quantum tunnelling . Cockcroft realised that as a result of this phenomenon, the desired effect could be achieved with much lower voltages than first thought. In fact, he calculated that protons with energy of just 300,000 electronvolts would be able to penetrate a boron nucleus. Cockcroft and Walton worked on their accelerator for
785-558: A " neutron howitzer ") produced a barium residue, which they reasoned was created by fission of the uranium nuclei. In their second publication on nuclear fission in February 1939, Hahn and Strassmann predicted the existence and liberation of additional neutrons during the fission process, opening the possibility of a nuclear chain reaction . Subsequent studies in early 1939 (one of them by Szilárd and Fermi), revealed that several neutrons were indeed released during fission, making available
942-501: A cooling pond after extraction from the reactor for extended periods. In contrast to the Windscale layout, the magnox design used vertical fuel channels. This required the fuel shells to lock together end-to-end, or to sit one on top the other to allow them to be pulled out of the channels from the top. Like the Windscale designs, the later magnox reactors allowed access to the fuel channels and could be refuelled while operating . This
1099-441: A crucial role in generating large amounts of electricity with low carbon emissions, contributing significantly to the global energy mix. Just as conventional thermal power stations generate electricity by harnessing the thermal energy released from burning fossil fuels , nuclear reactors convert the energy released by controlled nuclear fission into thermal energy for further conversion to mechanical or electrical forms. When
1256-686: A feat popularly known as splitting the atom . During the Second World War Cockcroft became Assistant Director of Scientific Research in the Ministry of Supply , working on radar . He was also a member of the committee formed to handle issues arising from the Frisch–Peierls memorandum , which calculated that an atomic bomb could be technically feasible, and of the MAUD Committee which succeeded it. In 1940, as part of
1413-445: A gas or a liquid metal (like liquid sodium or lead) or molten salt – is circulated past the reactor core to absorb the heat that it generates. The heat is carried away from the reactor and is then used to generate steam. Most reactor systems employ a cooling system that is physically separated from the water that will be boiled to produce pressurized steam for the turbines , like the pressurized water reactor . However, in some reactors
1570-442: A large fissile atomic nucleus such as uranium-235 , uranium-233 , or plutonium-239 absorbs a neutron, it may undergo nuclear fission. The heavy nucleus splits into two or more lighter nuclei, (the fission products ), releasing kinetic energy , gamma radiation , and free neutrons . A portion of these neutrons may be absorbed by other fissile atoms and trigger further fission events, which release more neutrons, and so on. This
1727-424: A less effective moderator. In other reactors, the coolant acts as a poison by absorbing neutrons in the same way that the control rods do. In these reactors, power output can be increased by heating the coolant, which makes it a less dense poison. Nuclear reactors generally have automatic and manual systems to scram the reactor in an emergency shut down. These systems insert large amounts of poison (often boron in
SECTION 10
#17327721058431884-431: A lithium target and noticed what he thought might be alpha particles. Cockcroft and then Rutherford were summoned, and confirmed that this was indeed the case. That evening, Cockcroft and Walton met at Rutherford's home and produced a letter for Nature in which they announced their results, the first artificial disintegration of an atomic nucleus, which can be described thus: This feat was popularly known as splitting
2041-455: A moderator allows the magnox to run using natural uranium fuel, in contrast with the more common commercial light-water reactor which requires slightly enriched uranium . Graphite oxidizes readily in air, so the core is cooled with CO 2 , which is then pumped into a heat exchanger to generate steam to drive conventional steam turbine equipment for power production. The core is open on one end, so fuel elements can be added or removed while
2198-445: A new beryllium -based cladding, but this proved too brittle. This was replaced by a stainless steel cladding, but this absorbed enough neutrons to affect criticality, and in turn required the design to operate on slightly enriched uranium rather than the magnox's natural uranium, driving up fuel costs. Ultimately the economics of the system proved little better than Magnox. Former Treasury Economic Advisor, David Henderson , described
2355-543: A new wing to house it. Cockcroft supervised the work. The cyclotron was in operation by October 1938, and the new wing was completed in 1940. Oliphant felt that the cyclotron was not big enough, and commenced construction of a larger 60-inch cyclotron at the University of Birmingham . Its construction was delayed by the outbreak of the Second World War in Europe in 1939, and it too would be obsolescent when it
2512-570: A number of ways: A kilogram of uranium-235 (U-235) converted via nuclear processes releases approximately three million times more energy than a kilogram of coal burned conventionally (7.2 × 10 joules per kilogram of uranium-235 versus 2.4 × 10 joules per kilogram of coal). The fission of one kilogram of uranium-235 releases about 19 billion kilocalories , so the energy released by 1 kg of uranium-235 corresponds to that released by burning 2.7 million kg of coal. A nuclear reactor coolant – usually water but sometimes
2669-465: A patent on reactors on 19 December 1944. Its issuance was delayed for 10 years because of wartime secrecy. "World's first nuclear power plant" is the claim made by signs at the site of the EBR-I , which is now a museum near Arco, Idaho . Originally called "Chicago Pile-4", it was carried out under the direction of Walter Zinn for Argonne National Laboratory . This experimental LMFBR operated by
2826-773: A pile (hence the name) of graphite blocks, embedded in which was natural uranium oxide 'pseudospheres' or 'briquettes'. Soon after the Chicago Pile, the Metallurgical Laboratory developed a number of nuclear reactors for the Manhattan Project starting in 1943. The primary purpose for the largest reactors (located at the Hanford Site in Washington ), was the mass production of plutonium for nuclear weapons. Fermi and Szilard applied for
2983-407: A planned typical lifetime of 30–40 years, though many of those have received renovations and life extensions of 15–20 years. Some believe nuclear power plants can operate for as long as 80 years or longer with proper maintenance and management. While most components of a nuclear power plant, such as steam generators, are replaced when they reach the end of their useful lifetime, the overall lifetime of
3140-429: A quarter of UK's generating needs. Although Sir John Cockcroft had advised the government that electricity generated by nuclear power would be more expensive than that from coal, the government decided that nuclear power stations as alternatives to coal-fired power stations would be useful to reduce the bargaining power of the coal miners' unions, and so decided to go ahead. In 1960 a government white paper scaled back
3297-471: A reactor. One such process is delayed neutron emission by a number of neutron-rich fission isotopes. These delayed neutrons account for about 0.65% of the total neutrons produced in fission, with the remainder (termed " prompt neutrons ") released immediately upon fission. The fission products which produce delayed neutrons have half-lives for their decay by neutron emission that range from milliseconds to as long as several minutes, and so considerable time
SECTION 20
#17327721058433454-484: A research student at the Cavendish Laboratory on the recommendation of Miles Walker and the director of research at Metropolitan Vickers. Cockcroft enrolled as a PhD student in 1924, with a Foundation Scholarship of St John's College, and a State Scholarship. Under Rutherford's supervision, he wrote his doctoral thesis "On phenomena occurring in the condensation of molecular streams on surfaces", which
3611-474: A robotic core dismantling technique. The current approximately 100-year decommissioning plan is called Safestore. A 130-year Deferred Safestore Strategy was also considered, with an estimated cost saving of £1.4 billion, but not selected. In addition the Sellafield site which, amongst other activities, reprocessed spent magnox fuel, has an estimated decommissioning cost of £31.5 billion. Magnox fuel
3768-406: A scholarship to St. John's College, Cambridge , Walker's alma mater. Cockcroft was successful, winning a £30 scholarship and a £20 bursary awarded to undergraduates of limited means. Metropolitan Vickers gave him £50 subject to his returning after completing his degree. Walker and an aunt made up the balance of the £316 fee. As a graduate of another university, he was allowed to skip the first year of
3925-529: A set of theoretical nuclear reactor designs. These are generally not expected to be available for commercial use before 2040–2050, although the World Nuclear Association suggested that some might enter commercial operation before 2030. Current reactors in operation around the world are generally considered second- or third-generation systems, with the first-generation systems having been retired some time ago. Research into these reactor types
4082-687: A site at Chalk River , Ontario, on the south bank of the Ottawa River some 110 miles (180 km) north west of Ottawa. The Chalk River Laboratories opened in 1944, and the Montreal Laboratory was closed in July 1946. ZEEP went critical on 5 September 1945, becoming the first operating nuclear reactor outside the United States. The larger NRX followed on 21 July 1947. With five times the neutron flux of any other reactor, it
4239-436: A turbine to generate electricity, or as process heat in the nearby Windscale works, was seen as a kind of free by-product of an essential process. The Calder Hall reactors had low efficiency by today's standards, only 18.8%. The British government decided in 1957 that electricity generation by nuclear power would be promoted, and that there would be a building programme to achieve 5,000 to 6,000 MWe capacity by 1965,
4396-868: Is considering whether to preserve Calder Hall reactor 1 as a museum site. All the UK's magnox reactor sites (apart from Calder Hall) are operated by Magnox Ltd , a subsidiary of the NDA. Reactor Sites Management Company (RSMC), a NDA Site Licence Company (SLC), originally held the contract to manage Magnox Ltd on behalf of the NDA. In 2007, RSMC was acquired by American nuclear fuel cycle service provider EnergySolutions from British Nuclear Fuels . On 1 October 2008, Magnox Electric Ltd separated into two nuclear licensed companies, Magnox North Ltd and Magnox South Ltd. Magnox North sites Magnox South sites In January 2011 Magnox North Ltd and Magnox South Ltd recombined as Magnox Ltd . Following procurement and management issues with
4553-413: Is inserted deeper into the reactor, it absorbs more neutrons than the material it displaces – often the moderator. This action results in fewer neutrons available to cause fission and reduces the reactor's power output. Conversely, extracting the control rod will result in an increase in the rate of fission events and an increase in power. The physics of radioactive decay also affects neutron populations in
4710-428: Is known as a nuclear chain reaction . To control such a nuclear chain reaction, control rods containing neutron poisons and neutron moderators are able to change the portion of neutrons that will go on to cause more fission. Nuclear reactors generally have automatic and manual systems to shut the fission reaction down if monitoring or instrumentation detects unsafe conditions. The reactor core generates heat in
4867-405: Is mined, processed, enriched, used, possibly reprocessed and disposed of is known as the nuclear fuel cycle . Under 1% of the uranium found in nature is the easily fissionable U-235 isotope and as a result most reactor designs require enriched fuel. Enrichment involves increasing the percentage of U-235 and is usually done by means of gaseous diffusion or gas centrifuge . The enriched result
Magnox - Misplaced Pages Continue
5024-443: Is no longer structurally sound, which led to the development of the magnox alloy fuel cladding. Unfortunately, magnox is increasingly reactive with increasing temperature, and the use of this material limited the operational gas temperatures to 360 °C (680 °F), much lower than desirable for efficient steam generation. This limit also meant that the reactors had to be very large in order to generate any given power level, which
5181-401: Is produced. Fission also produces iodine-135 , which in turn decays (with a half-life of 6.57 hours) to new xenon-135. When the reactor is shut down, iodine-135 continues to decay to xenon-135, making restarting the reactor more difficult for a day or two, as the xenon-135 decays into cesium-135, which is not nearly as poisonous as xenon-135, with a half-life of 9.2 hours. This temporary state is
5338-448: Is reaching or crossing their design lifetimes of 30 or 40 years. In 2014, Greenpeace warned that the lifetime extension of ageing nuclear power plants amounts to entering a new era of risk. It estimated the current European nuclear liability coverage in average to be too low by a factor of between 100 and 1,000 to cover the likely costs, while at the same time, the likelihood of a serious accident happening in Europe continues to increase as
5495-416: Is required to determine exactly when a reactor reaches the critical point. Keeping the reactor in the zone of chain reactivity where delayed neutrons are necessary to achieve a critical mass state allows mechanical devices or human operators to control a chain reaction in "real time"; otherwise the time between achievement of criticality and nuclear meltdown as a result of an exponential power surge from
5652-512: Is then converted into uranium dioxide powder, which is pressed and fired into pellet form. These pellets are stacked into tubes which are then sealed and called fuel rods . Many of these fuel rods are used in each nuclear reactor. John Cockcroft#Cockcroft's Folly Sir John Douglas Cockcroft (27 May 1897 – 18 September 1967) was an English physicist who shared the 1951 Nobel Prize in Physics with Ernest Walton for splitting
5809-692: The Atomic Energy Act of 1946 (McMahon Act) in August 1946, made it clear that the UK would no longer be allowed access to the United States' atomic research. This partly resulted from the arrest for espionage of Alan Nunn May in February 1946. Cockcroft helped negotiate a new, more informal and unsigned agreement with the Americans that was announced on 7 January 1948, known as the Modus Vivendi . The renewed cooperation that he hoped for under
5966-689: The Isle of Sheppey in October 1943 conclusively demonstrated that SCR-584 was superior. This made Cockcroft very unpopular at the Ministry of Supply, but he had intelligence that the Germans were planning to deploy the V-1 flying bomb . On 1 January 1944, Lieutenant-General Sir Ronald Weeks sent Washington an urgent request for 134 SCR-584 sets. The proximity fuze had been pioneered by Alan Butement . The idea
6123-590: The MAUD Committee , of which Cockcroft was also a member, in June 1940. This committee directed the ground-breaking early research in Britain. In August 1940, Cockcroft travelled to the United States as part of the Tizard Mission . Because Britain had developed many new technologies but lacked the industrial capacity to fully exploit them, it was decided to share them with the United States, although that nation
6280-432: The Manhattan Project . Eventually, the first artificial nuclear reactor, Chicago Pile-1 , was constructed at the University of Chicago , by a team led by Italian physicist Enrico Fermi, in late 1942. By this time, the program had been pressured for a year by U.S. entry into the war. The Chicago Pile achieved criticality on 2 December 1942 at 3:25 PM. The reactor support structure was made of wood, which supported
6437-570: The Officers' Training Corps there, but did not wish to become an officer . During the summer break he worked at a YMCA canteen at Kinmel Camp in Wales. He enlisted in the British Army on 24 November 1915. On 29 March 1916, he joined the 59th Training Brigade, Royal Field Artillery , where he was trained as a signaller . He was then posted to B Battery, 92nd Field Artillery Brigade, one of
Magnox - Misplaced Pages Continue
6594-517: The PWR , BWR and PHWR designs above, and some are more radical departures. The former include the advanced boiling water reactor (ABWR), two of which are now operating with others under construction, and the planned passively safe Economic Simplified Boiling Water Reactor (ESBWR) and AP1000 units (see Nuclear Power 2010 Program ). Rolls-Royce aims to sell nuclear reactors for the production of synfuel for aircraft. Generation IV reactors are
6751-651: The Tizard Mission , he shared British technology with his counterparts in the United States. Later in the war, the fruits of the Tizard Mission came back to Britain in the form of the SCR-584 radar set and the proximity fuze , which were used to help defeat the V-1 flying bomb . In May 1944, he became director of the Montreal Laboratory , and oversaw the development of the ZEEP and NRX reactors, and
6908-524: The U.S. Atomic Energy Commission produced 0.8 kW in a test on 20 December 1951 and 100 kW (electrical) the following day, having a design output of 200 kW (electrical). Besides the military uses of nuclear reactors, there were political reasons to pursue civilian use of atomic energy. U.S. President Dwight Eisenhower made his famous Atoms for Peace speech to the UN General Assembly on 8 December 1953. This diplomacy led to
7065-699: The University of Brighton ; and the Cockcroft building of the University of Salford . The oldest building at the Research School of Physical Sciences and Engineering , Australian National University, the Cockcroft building, is named after him. Cockcroft's papers are held at the Churchill Archives Centre in Cambridge, and are accessible to the public. They include his lab books, correspondence, photographs (with dozens depicting
7222-453: The advanced gas-cooled reactor (AGR) with the explicit intention of making the system more economical. Primary among the changes was the decision to run the reactor at much higher temperatures, about 650 °C (1,200 °F), which would greatly improve the efficiency when running the power-extracting steam turbines . This was too hot for the magnox alloy, and the AGR originally intended to use
7379-507: The advanced gas-cooled reactor , which is similarly cooled but includes changes to improve its economic performance. The UK's first full-scale nuclear reactor was the Windscale Pile in Sellafield . The pile was designed for the production of plutonium-239 which was bred in multi-week reactions taking place in natural uranium fuel. Under normal conditions, natural uranium is not sensitive enough to its own neutrons to maintain
7536-648: The atomic nucleus , which was instrumental in the development of nuclear power . After service on the Western Front with the Royal Field Artillery during the Great War , Cockcroft studied electrical engineering at Manchester Municipal College of Technology whilst he was an apprentice at Metropolitan Vickers Trafford Park and was also a member of their research staff. He then won a scholarship to St. John's College, Cambridge , where he sat
7693-887: The chivalric orders , but he was created a Knight Commander of the Order of the Bath in May 1953. Perhaps because this was rare, scientists normally regarded becoming a member of the Order of Merit as a greater honour; Cockcroft became an Order of Merit member in December 1956. He also received the Royal Medal in 1954, the Faraday Medal in 1955, the American Medal of Freedom in 1947 and Atoms for Peace Award in 1961, He
7850-477: The coolant also acts as a neutron moderator . A moderator increases the power of the reactor by causing the fast neutrons that are released from fission to lose energy and become thermal neutrons. Thermal neutrons are more likely than fast neutrons to cause fission. If the coolant is a moderator, then temperature changes can affect the density of the coolant/moderator and therefore change power output. A higher temperature coolant would be less dense, and therefore
8007-421: The tripos exam in June 1924, becoming a wrangler . Ernest Rutherford accepted Cockcroft as a research student at the Cavendish Laboratory , and Cockcroft completed his doctorate under Rutherford's supervision in 1928. With Walton and Mark Oliphant , he built what became known as a Cockcroft–Walton generator . Cockcroft and Walton used this to perform the first artificial disintegration of an atomic nucleus ,
SECTION 50
#17327721058438164-670: The tripos . He sat the tripos exam in June 1924, achieved a B* as a wrangler , and was awarded his BA degree. Cockcroft married Elizabeth Crabtree on 26 August 1925, in a ceremony at the Bridge Street United Methodist Church in Todmorden. They had six children. The first, a boy known as Timothy, died in infancy. They subsequently had four daughters, Joan Dorothea (Thea), Jocelyn, Elisabeth Fielden and Catherine Helena; and another son, Christopher Hugh John. Ernest Rutherford accepted Cockcroft as
8321-402: The "iodine pit." If the reactor has sufficient extra reactivity capacity, it can be restarted. As the extra xenon-135 is transmuted to xenon-136, which is much less a neutron poison, within a few hours the reactor experiences a "xenon burnoff (power) transient". Control rods must be further inserted to replace the neutron absorption of the lost xenon-135. Failure to properly follow such a procedure
8478-461: The 1960s. Despite improvements to the design in later decades as electricity generation became the primary operational aim, magnox reactors were never capable of competing with the higher efficiency and higher fuel burnup of pressurised water reactors . In total, only a few dozen reactors of this type were constructed, most of them in the UK from the 1950s to the 1970s, with very few exported to other countries. The first magnox reactor to come online
8635-580: The 1986 Chernobyl disaster and 2011 Fukushima disaster . As of 2022 , the International Atomic Energy Agency reported there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world. The US Department of Energy classes reactors into generations, with the majority of the global fleet being Generation II reactors constructed from the 1960s to 1990s, and Generation IV reactors currently in development. Reactors can also be grouped by
8792-430: The AGR programme as one of the two most costly British government-sponsored project errors, alongside Concorde . Source: The first magnox reactors at Calder Hall were designed principally to produce plutonium for nuclear weapons . The production of plutonium from uranium by irradiation in a pile generates large quantities of heat which must be disposed of, and so generating steam from this heat, which could be used in
8949-522: The Americans would assist with the construction of a heavy water - moderated nuclear reactor in Canada, and would provide technical assistance with matters such as corrosion and the effects of radiation on materials. They would not provide details about plutonium chemistry or metallurgy, although irradiated uranium slugs were made available for the British to work it out for themselves. A sticking point
9106-650: The Chalk River Laboratories, was a Soviet spy. In August 1947, Cockcroft was one of the scientists who signed a petition urging that Nunn May's ten-year prison sentence be reduced, an act he later regretted. In April 1945, Cockcroft and Oliphant scouted a site for a similar establishment in Britain, settling on RAF Harwell . Cockcroft was offered the directorship of the Atomic Energy Research Establishment (AERE) at Harwell on 9 November 1945. The official announcement
9263-713: The Council of CERN as well as Chairman of the Nuclear Physics Sub-Committee of the Department of Scientific and Industrial Research . In addition to winning, along with Walton, the Hughes Medal and 1951 Nobel Prize in Physics, Cockcroft received numerous awards and accolades over the years. He became a knight bachelor in January 1948. This was normal: scientists were seldom inducted into
9420-568: The Ministry of Defence in the 1960s, noted that "the word folly did not seem appropriate after the accident". On 24 January 1959, Churchill College, Cambridge , was formally recognised by the University. Two days later, the Trustees announced that Cockcroft would be its first Master. Although it would also teach the humanities and social sciences, 70 per cent of the student body would study science and technology related subjects. He nominated
9577-712: The Mond Laboratory after Kapitza, who had returned to the Soviet Union . He supervised the installation of new cryogenic equipment, and supervised low temperature research. He was elected a Fellow of the Royal Society in 1936, and in 1939 was elected the Jacksonian Professor of Natural Philosophy , effective 1 October 1939. Cockcroft and Walton were well aware of the limits of their accelerator. A much better design had been developed in
SECTION 60
#17327721058439734-476: The Nimonic springs used contained cobalt, which became irradiated giving high gamma level when removed from the reactor. Additionally, thermocouples were attached to some elements and needed to be removed on fuel discharge from the reactor. The dual-use nature of the magnox design leads to design compromises that limit its economic performance. As the magnox design was being rolled out, work was already underway on
9891-504: The Theoretical Physics; Robert Spence, Cockcroft's deputy at Montreal Laboratory, became head of Chemistry; H.W.B. Skinner, of General Physics; Otto Frisch, of Nuclear Physics; and John Dunworth, of Reactor Physics. Fuchs was later arrested as a Soviet spy on 3 February 1950. The low-powered, graphite-moderated GLEEP , which stood for Graphite Low Energy Experimental Pile, was designed by the Montreal Laboratory, and became
10048-595: The Tizard Mission, but work continued in Britain, where a team was established at Christchurch under Charles Drummond Ellis in February 1942. Work proceeded fitfully, and by 1943, production was still two years away. On a visit to the United States in November 1943, Cockcroft discussed adapting the American proximity fuze for British use with Merle Tuve . As a result, 150,000 fuzes for QF 3.7-inch AA guns were ordered on 16 January 1944. The fuzes arrived in time to engage
10205-678: The U.S. military sought other uses for nuclear reactor technology. Research by the Army led to the power stations for Camp Century, Greenland and McMurdo Station, Antarctica Army Nuclear Power Program . The Air Force Nuclear Bomber project resulted in the Molten-Salt Reactor Experiment . The U.S. Navy succeeded when they steamed the USS Nautilus (SSN-571) on nuclear power 17 January 1955. The first commercial nuclear power station, Calder Hall in Sellafield , England
10362-562: The UK Government announced that all production of plutonium for weapons purposes had ceased. The later and larger units were owned by the CEGB and operated on commercial fuel cycles. However Hinkley Point A and two other stations were modified so that weapons-grade plutonium could be extracted for military purposes should the need arise. In early operation it was found that there was significant oxidation of mild steel components by
10519-688: The United Kingdom where the design originated. In addition, one was exported to Tōkai in Japan and another to Latina in Italy. North Korea also developed their own magnox reactors, based on the UK design which was made public at an Atoms for Peace conference. The first magnox power station, Calder Hall , was the world's first nuclear power station to generate electrical power on an industrial scale (a power station in Obninsk, Russia started supplying
10676-510: The United States by Ernest Lawrence , which he called the cyclotron . The Cavendish Laboratory was able to keep ahead of the Americans despite having an inferior accelerator with clever physics, but Cockcroft pressed Rutherford to obtain a cyclotron for the Cavendish laboratory. Rutherford baulked at the price tag, but a £250,000 gift from Lord Austin enabled a 36-inch (910 mm) cyclotron, based on Lawrence's design, to be built, along with
10833-472: The United States does not engage in or encourage reprocessing. Reactors are also used in nuclear propulsion of vehicles. Nuclear marine propulsion of ships and submarines is largely restricted to naval use. Reactors have also been tested for nuclear aircraft propulsion and spacecraft propulsion . Reactor safety is maintained through various systems that control the rate of fission. The insertion of control rods, which absorb neutrons, can rapidly decrease
10990-817: The V-1 flying bombs in August 1944, shooting down 97 per cent of them. For his services, he was made a Commander of the Order of the British Empire in June 1944. In August 1943, the Quebec Agreement subsumed the British Tube Alloys project into the Manhattan Project , and established the Combined Policy Committee to control the Manhattan Project. A final agreement was spelt out on 20 May 1944. Under it,
11147-510: The agreement proved illusory. The development of the independent British nuclear deterrent led to the Atomic Energy Act being amended in 1958, and to a resumption of the nuclear Special Relationship between America and Britain under the 1958 US–UK Mutual Defence Agreement . Under Cockcroft's direction, AERE took part in frontier fusion research in the post-war years, including the ZETA program. Sir George Paget Thomson began research in nuclear fusion at Imperial College London in 1946. This
11304-569: The area was contaminated, like Fukushima, Three Mile Island, Sellafield, and Chernobyl. The British branch of the French concern EDF Energy , for example, extended the operating lives of its Advanced Gas-cooled Reactors (AGR) with only between 3 and 10 years. All seven AGR plants were expected to be shut down in 2022 and in decommissioning by 2028. Hinkley Point B was extended from 40 to 46 years, and closed. The same happened with Hunterston B , also after 46 years. An increasing number of reactors
11461-649: The atom . For this accomplishment, Cockcroft and Walton were awarded the Hughes Medal in 1938, and the Nobel Prize in Physics in 1951. They went on to disintegrate carbon , nitrogen and oxygen using protons, deuterons and alpha particles. They demonstrated that they had produced radioactive isotopes , including carbon-11 and nitrogen-13 . In 1929, Cockcroft was appointed a Supervisor in Mechanical Sciences at St John's College. He
11618-740: The beginning of his quest to produce the Einstein-Szilárd letter to alert the U.S. government. Shortly after, Nazi Germany invaded Poland in 1939, starting World War II in Europe. The U.S. was not yet officially at war, but in October, when the Einstein-Szilárd letter was delivered to him, Roosevelt commented that the purpose of doing the research was to make sure "the Nazis don't blow us up." The U.S. nuclear project followed, although with some delay as there remained skepticism (some of it from Enrico Fermi ) and also little action from
11775-481: The building programme to 3,000 MWe, acknowledging that coal generation was 25% cheaper. A government statement to the House of Commons in 1963 stated that nuclear generation was more than twice as expensive as coal. The plutonium credit which assigned a value to the plutonium produced was used to improve the economic case, although the operators of the power stations were never paid this credit. Once removed from
11932-410: The channel and out the back of the reactor where they fell into a pool of water. The system was designed to work at low temperatures and power levels and was air-cooled with the help of large fans. Graphite is flammable and presents a serious safety risk. This was demonstrated on 10 October 1957 when Unit 1 of the now two-unit site caught fire. The reactor burned for three days, and massive contamination
12089-611: The chimney stacks of the Windscale plutonium production reactors be fitted, at great expense, with high-performance filters. That was in response to a report that uranium oxide had been found in the vicinity of the X-10 Graphite Reactor in Oak Ridge , Tennessee. Because it was decided to fit them after the stacks had been designed, the filters became pronounced lumps at the top of the chimneys. The reactors had been designed to remain clean and uncorroded during use, so it
12246-458: The choices of coolant and moderator. Almost 90% of global nuclear energy comes from pressurized water reactors and boiling water reactors , which use water as a coolant and moderator. Other designs include heavy water reactors , gas-cooled reactors , and fast breeder reactors , variously optimizing efficiency, safety, and fuel type , enrichment , and burnup . Small modular reactors are also an area of current development. These reactors play
12403-467: The complexities of handling actinides , but significant scientific and technical obstacles remain. Despite research having started in the 1950s, no commercial fusion reactor is expected before 2050. The ITER project is currently leading the effort to harness fusion power. Thermal reactors generally depend on refined and enriched uranium . Some nuclear reactors can operate with a mixture of plutonium and uranium (see MOX ). The process by which uranium ore
12560-651: The contract, Magnox Ltd will become a subsidiary of the NDA in September 2019. Nuclear reactor Nuclear reactors have their origins in the World War II Allied Manhattan Project . The world's first artificial nuclear reactor, Chicago Pile-1, achieved criticality on 2 December 1942. Early reactor designs sought to produce weapons-grade plutonium for fission bombs , later incorporating grid electricity production in addition. In 1957, Shippingport Atomic Power Station became
12717-484: The costs of the magnox programme. Later reviews criticised the continuing development project by project instead of standardisation on the most economical design, and for persisting with the development of a reactor which achieved only two export orders. A retrospective evaluation of costs, using a low 5% discount rate on capital, estimated magnox electricity costs were nearly 50% higher than coal power stations would have provided. The magnox reactors were considered at
12874-559: The creation of the Chalk River Laboratories . After the war Cockcroft became the director of the Atomic Energy Research Establishment (AERE) at Harwell , where the low-powered, graphite-moderated GLEEP became the first nuclear reactor to operate in western Europe when it was started on 15 August 1947. This was followed by the British Experimental Pile 0 (BEPO) in 1948. Harwell was involved in
13031-470: The decision was taken to build a small reactor in order to test the Montreal Laboratory's calculations relating to such matters as lattice dimensions, sheathing materials, and control rods , before proceeding with the full-scale NRX reactor. This was named ZEEP , for Zero Energy Experimental Pile. Building reactors in downtown Montreal was out of the question; the Canadians selected, and Groves approved,
13188-441: The decommissioning of the UK magnox power plants, at an estimated cost of £12.6 billion. There has been debate about whether a 25 or 100-year decommissioning strategy should be adopted. After 80 years short-lifetime radioactive material in the defuelled core would have decayed to the point that human access to the reactor structure would be possible, easing dismantling work. A shorter decommissioning strategy would require
13345-474: The design for the proximity fuze , details of Frank Whittle 's jet engine and the Frisch–Peierls memorandum describing the feasibility of an atomic bomb. Though these may be considered the most significant, many other items were also transported, including designs for rockets, superchargers, gunsights and submarine detection devices. He returned to Britain in December 1940. Soon after his return, Cockcroft
13502-530: The design of the reactors and the chemical separation plant at Windscale . Under his direction it took part in frontier fusion research, including the ZETA program. His insistence that the chimney stacks of the Windscale reactors be fitted with filters was mocked as Cockcroft's Folly until the core of one of the reactors ignited and released radionuclides during the Windscale fire of 1957. From 1959 to 1967, he
13659-539: The design) would not cause large-scale fuel failure as the Magnox cladding would retain the bulk of the radioactive material, assuming the reactor was rapidly shutdown (a SCRAM ), because the decay heat could be removed by natural circulation of air. As the coolant is already a gas, explosive pressure buildup from boiling is not a risk, as happened in the catastrophic steam explosion at the Chernobyl accident . Failure of
13816-473: The differences between the stations; for example, nearly every power station used a different design of magnox fuel element. Most of the magnox builds suffered time overruns and cost escalation. For the initial start up of the reactor neutron sources were located within the core to provide sufficient neutrons to initiate the nuclear reaction. Other aspects of the design included the use of flux shaping or flattening bars or controls rods to even out (to some extent)
13973-628: The dissemination of reactor technology to U.S. institutions and worldwide. The first nuclear power plant built for civil purposes was the AM-1 Obninsk Nuclear Power Plant , launched on 27 June 1954 in the Soviet Union . It produced around 5 MW (electrical). It was built after the F-1 (nuclear reactor) which was the first reactor to go critical in Europe, and was also built by the Soviet Union. After World War II,
14130-494: The energy of the neutrons that sustain the fission chain reaction : In principle, fusion power could be produced by nuclear fusion of elements such as the deuterium isotope of hydrogen . While an ongoing rich research topic since at least the 1940s, no self-sustaining fusion reactor for any purpose has ever been built. Used by thermal reactors: In 2003, the French Commissariat à l'Énergie Atomique (CEA)
14287-433: The first fellows, and he oversaw the initial construction. Controversy arose over the chapel. A 1961 plan to build it at the entrance to the college, as was traditional at Cambridge, led to the immediate resignation of Francis Crick , a staunch atheist, as a fellow. The first undergraduates arrived in 1961, and the college, still incomplete, was formally opened by Prince Philip, Duke of Edinburgh , on 5 June 1964. Cockcroft
14444-473: The first nuclear reactor to operate in Western Europe when it was started on 15 August 1947. This was followed by BEPO, a 6 MW research reactor designed by AERE, on 3 July 1948. Because heavy water was unavailable in Britain, BEPO was designed and built as a graphite-moderated reactor. Harwell was involved in the design of reactors at Windscale , and the chemical separation plant there. The passage of
14601-642: The first reactor dedicated to peaceful use; in Russia, in 1954, the first small nuclear power reactor APS-1 OBNINSK reached criticality. Other countries followed suit. Heat from nuclear fission is passed to a working fluid coolant (water or gas), which in turn runs through turbines . In commercial reactors, turbines drive electrical generator shafts. The heat can also be used for district heating , and industrial applications including desalination and hydrogen production . Some reactors are used to produce isotopes for medical and industrial use. Reactors pose
14758-563: The first year of the course. He received his BSc in June 1920. Miles Walker, the professor of electrical engineering there, persuaded him to take up an apprenticeship with Metropolitan Vickers . He obtained a 1851 Exhibition Scholarship from the Royal Commission for the Exhibition of 1851 , and submitted his MSc thesis on the "Harmonic Analysis for Alternating Currents" in June 1922. Walker then suggested Cockcroft sit for
14915-407: The fission process generates heat, some of which can be converted into usable energy. A common method of harnessing this thermal energy is to use it to boil water to produce pressurized steam which will then drive a steam turbine that turns an alternator and generates electricity. Modern nuclear power plants are typically designed for a lifetime of 60 years, while older reactors were built with
15072-529: The form of boric acid ) into the reactor to shut the fission reaction down if unsafe conditions are detected or anticipated. Most types of reactors are sensitive to a process variously known as xenon poisoning, or the iodine pit . The common fission product Xenon-135 produced in the fission process acts as a neutron poison that absorbs neutrons and therefore tends to shut the reactor down. Xenon-135 accumulation can be controlled by keeping power levels high enough to destroy it by neutron absorption as fast as it
15229-424: The fuel rods. This allows the reactor to be constructed with an excess of fissionable material, which is nevertheless made relatively safe early in the reactor's fuel burn cycle by the presence of the neutron-absorbing material which is later replaced by normally produced long-lived neutron poisons (far longer-lived than xenon-135) which gradually accumulate over the fuel load's operating life. The energy released in
15386-505: The gas flow through the individual channels whilst at power, but gas flow was adjusted by using flow gags attached to the support strut which located into the diagrid . These gags were used to increase flow in the centre of the core and to reduce it at the periphery. Principal control over the reaction rate was provided by a number (48 at Chapelcross and Calder Hall) of boron -steel control rods which could be raised and lowered as required in vertical channels. At higher temperatures, aluminium
15543-684: The grid in very small non-commercial quantities on 1 December 1954). The first connection to the grid was on 27 August 1956, and the plant was officially opened by Queen Elizabeth II on 17 October 1956. When the station closed on 31 March 2003, the first reactor had been in use for nearly 47 years. The first two stations (Calder Hall and Chapelcross ) were originally owned by the UKAEA and primarily used in their early life to produce weapons-grade plutonium , with two fuel loads per year. From 1964 they were mainly used on commercial fuel cycles and in April 1995
15700-452: The high temperature carbon dioxide coolant, requiring a reduction in operating temperature and power output. For example, the Latina reactor was derated in 1969 by 24%, from 210 MWe to 160 MWe, by the reduction of operating temperature from 390 to 360 °C (734 to 680 °F). The Nuclear Decommissioning Authority (NDA) announced on 30 December 2015 that Wylfa Unit 1 –
15857-447: The idea of nuclear fission as a neutron source, since that process was not yet discovered. Szilárd's ideas for nuclear reactors using neutron-mediated nuclear chain reactions in light elements proved unworkable. Inspiration for a new type of reactor using uranium came from the discovery by Otto Hahn , Lise Meitner , and Fritz Strassmann in 1938 that bombardment of uranium with neutrons (provided by an alpha-on-beryllium fusion reaction,
16014-672: The magnox design, at Yongbyon in North Korea , continues to operate as of 2016. Magnox is also the name of an alloy —mainly of magnesium with small amounts of aluminium and other metals—used in cladding unenriched uranium metal fuel with a non-oxidising covering to contain fission products. Magnox is short for mag nesium n on- ox idising. This material has the advantage of a low neutron capture cross-section, but has two major disadvantages: Magnox fuel incorporated cooling fins to provide maximum heat transfer despite low operating temperatures, making it expensive to produce. While
16171-479: The magnox was designed with the dual purpose of producing electrical power and plutonium-239 for the nascent nuclear weapons programme in Britain . The name refers specifically to the United Kingdom design but is sometimes used generically to refer to any similar reactor. As with other plutonium-producing reactors, conserving neutrons is a key element of the design. In magnox, the neutrons are moderated in large blocks of graphite . The efficiency of graphite as
16328-459: The neutron flux density across the core. If not used, the flux in the centre would be very high relative to the outer areas leading to excessive central temperatures and lower power output limited by the temperature of the central areas. Each fuel channel would have several elements stacked one upon another to form a stringer . This required the presence of a latching mechanism to allow the stack to be withdrawn and handled. This caused some problems as
16485-716: The next two years. Rutherford obtained a £1,000 grant from the University of Cambridge for them to buy a transformer and other equipment they needed. Cockcroft was elected a Fellow of St. John's College on 5 November 1928. He and Walton began operating their accelerator in March 1932, bombarding lithium and beryllium with high-energy protons. They expected to see gamma rays , which French scientists had reported, but none were found. In February 1932, James Chadwick demonstrated that what had been observed were actually neutrons . Cockcroft and Walton then switched to looking for alpha particles instead. On 14 April 1932, Walton bombarded
16642-449: The normal nuclear chain reaction, would be too short to allow for intervention. This last stage, where delayed neutrons are no longer required to maintain criticality, is known as the prompt critical point. There is a scale for describing criticality in numerical form, in which bare criticality is known as zero dollars and the prompt critical point is one dollar , and other points in the process interpolated in cents. In some reactors,
16799-581: The opportunity for the nuclear chain reaction that Szilárd had envisioned six years previously. On 2 August 1939, Albert Einstein signed a letter to President Franklin D. Roosevelt (written by Szilárd) suggesting that the discovery of uranium's fission could lead to the development of "extremely powerful bombs of a new type", giving impetus to the study of reactors and fission. Szilárd and Einstein knew each other well and had worked together years previously, but Einstein had never thought about this possibility for nuclear energy until Szilard reported it to him, at
16956-406: The physics of radioactive decay and are simply accounted for during the reactor's operation, while others are mechanisms engineered into the reactor design for a distinct purpose. The fastest method for adjusting levels of fission-inducing neutrons in a reactor is via movement of the control rods . Control rods are made of so-called neutron poisons and therefore absorb neutrons. When a control rod
17113-404: The plant would have to run at much higher power levels, and in order to efficiently convert that power to electricity, it would have to run at higher temperatures. At these power levels, the fire risk is amplified and air cooling is no longer appropriate. In the case of the magnox design, this led to the use of carbon dioxide (CO 2 ) as the coolant. There is no facility in the reactor to adjust
17270-463: The power plant is limited by the life of components that cannot be replaced when aged by wear and neutron embrittlement , such as the reactor pressure vessel. At the end of their planned life span, plants may get an extension of the operating license for some 20 years and in the US even a "subsequent license renewal" (SLR) for an additional 20 years. Even when a license is extended, it does not guarantee
17427-572: The reactor fleet grows older. The neutron was discovered in 1932 by British physicist James Chadwick . The concept of a nuclear chain reaction brought about by nuclear reactions mediated by neutrons was first realized shortly thereafter, by Hungarian scientist Leó Szilárd , in 1933. He filed a patent for his idea of a simple reactor the following year while working at the Admiralty in London, England. However, Szilárd's idea did not incorporate
17584-502: The reactor is still running. The dual-use capability of the magnox design led to the UK building up a large stockpile of fuel-grade (reactor-grade) plutonium, with the aid of the B205 reprocessing facility . The low-to-interim burnup feature of the reactor design would become responsible for changes to US regulatory classifications after the US–UK reactor-grade plutonium detonation test of
17741-422: The reactor shutdown system to rapidly shut down the reactor, or failure of natural circulation, was not considered in the design. In 1967 Chapelcross experienced a fuel melt due to restricted gas flow in an individual channel and, although this was dealt with by the station crew without major incident, this event had not been designed or planned for, and the radioactivity released was greater than anticipated during
17898-416: The reactor will continue to operate, particularly in the face of safety concerns or incident. Many reactors are closed long before their license or design life expired and are decommissioned . The costs for replacements or improvements required for continued safe operation may be so high that they are not cost-effective. Or they may be shut down due to technical failure. Other ones have been shut down because
18055-437: The reactor's output, while other systems automatically shut down the reactor in the event of unsafe conditions. The buildup of neutron-absorbing fission products like xenon-135 can influence reactor behavior, requiring careful management to prevent issues such as the iodine pit , which can complicate reactor restarts. There have been two reactor accidents classed as an International Nuclear Event Scale Level 7 "major accident":
18212-454: The reactor, the used fuel elements are stored in cooling ponds (with the exception of Wylfa which has dry stores in a carbon dioxide atmosphere) where the decay heat is transferred to the pond water, and then removed by the pond water circulation, cooling and filtration system. The fact that fuel elements can only be stored for a limited period in water before the magnox cladding deteriorates, and must therefore inevitably be reprocessed , added to
18369-631: The reactors. For example, the most exposed members of the public living near Dungeness magnox reactor in 2002 received 0.56 mSv , over half the International Commission on Radiological Protection recommended maximum radiation dose limit for the public, from direct shine alone. The doses from the Oldbury and Wylfa reactors, which have concrete pressure vessels which encapsulate the complete gas circuit, are much lower. In all, 11 power stations totalling 26 units were built in
18526-599: The same grave as his son Timothy. A memorial service was held at Westminster Abbey on 17 October 1967. Several buildings in the United Kingdom are named after him: the Cockcroft building at the New Museums Site of the University of Cambridge , comprising a lecture theatre and several hardware laboratories; the Cockcroft Institute at Daresbury Laboratory in Cheshire; the Cockcroft building of
18683-421: The site in all directions would be less than six times the 10-degree limits. Planning permission constraints would be used to prevent any large growth of population within five miles. In the older steel pressure vessel design, boilers and gas ducting are outside the concrete biological shield. Consequently, this design emits a significant amount of direct gamma and neutron radiation , termed direct shine , from
18840-736: The size of the confinement building down, the early magnox designs placed the heat exchanger for the CO 2 gas outside the dome, connected through piping. Although there were strengths with this approach in that maintenance and access was generally more straightforward, the major weakness was the radiation 'shine' emitted particularly from the unshielded top duct. The magnox design was an evolution and never truly finalised, and later units differ considerably from earlier ones. As neutron fluxes increased in order to improve power densities problems with neutron embrittlement were encountered, particularly at low temperatures. Later units at Oldbury and Wylfa replaced
18997-480: The small number of officials in the government who were initially charged with moving the project forward. The following year, the U.S. Government received the Frisch–Peierls memorandum from the UK, which stated that the amount of uranium needed for a chain reaction was far lower than had previously been thought. The memorandum was a product of the MAUD Committee , which was working on the UK atomic bomb project, known as Tube Alloys , later to be subsumed within
19154-550: The smaller Sceptre by Allibone's AEI group. James L. Tuck 's group at the Los Alamos Laboratory was also researching fusion, and Cockcroft struck an agreement with the Americans that they would release their results together, which was done in 1958. Despite Cockcroft's perennial optimism that a breakthrough was imminent, fusion power remained an elusive goal. As director of the AERE, Cockcroft famously insisted that
19311-408: The station design. Despite the belief in their inherently safe design, it was decided that the magnox stations would not be built in heavily populated areas. The positioning constraint decided upon was that any 10-degree sector would have a population less than 500 within 1.5 miles (2.4 km), 10,000 within 5 miles (8.0 km) and 100,000 within 10 miles (16 km). In addition population around
19468-410: The steel pressure vessels with prestressed concrete versions which also contained the heat exchangers and steam plant. Working pressure varies from 6.9 to 19.35 bar for the steel vessels, and 24.8 and 27 bar for the two concrete designs. No British construction company at the time was large enough to build all the power stations, so various competing consortiums were involved, adding to
19625-477: The structure of atomic nuclei. To explore it further, he needed an artificial means of creating particles with a velocity high enough to overcome the charge of the nucleus. This opened a new line of research at the Cavendish Laboratory. He assigned Cockcroft, Thomas Allibone and Ernest Walton to the problem. They built what became known as a Cockcroft–Walton accelerator . Mark Oliphant designed
19782-590: The system fully operational. In 1940, he became part of the Advisory Council for Scientific Research and Technical Development. In April 1940, along he became a member of the Committee for the Scientific Study of Air Warfare formed to handle issues arising from the Frisch–Peierls memorandum , which calculated that an atomic bomb could be technically feasible. This committee was succeeded by
19939-487: The time to have a considerable degree of inherent safety because of their simple design, low power density, and gas coolant. Because of this they were not provided with secondary containment features. A safety design principle at the time was that of the "maximum credible accident", and the assumption was made that if the plant were designed to withstand that, then all other lesser but similar events would be encompassed. Loss of coolant accidents (at least those considered in
20096-804: The units of the 20th (Light) Division , on the Western Front . Cockcroft participated in the Advance to the Hindenburg Line and the Third Battle of Ypres . He applied for a commission, and was accepted. He was sent to Brighton in February 1918 to learn about gunnery, and in April 1918, to the Officer Candidate School in Weedon Bec in Northamptonshire , where he was trained as a field artillery officer. He
20253-414: The use of uranium metal rather than oxide made reprocessing more straightforward and therefore cheaper, the need to reprocess fuel a short time after removal from the reactor meant that the fission product hazard was severe. Expensive remote handling facilities were required to address this danger. The term magnox may also loosely refer to: The Nuclear Decommissioning Authority (NDA) is responsible for
20410-424: The water for the steam turbines is boiled directly by the reactor core ; for example the boiling water reactor . The rate of fission reactions within a reactor core can be adjusted by controlling the quantity of neutrons that are able to induce further fission events. Nuclear reactors typically employ several methods of neutron control to adjust the reactor's power output. Some of these methods arise naturally from
20567-455: The world's last operating Magnox reactor – was closed. The unit had generated electricity for five years longer than originally planned. Two units at Wylfa were both scheduled to shut down at the end of 2012, but the NDA decided to shut down Unit 2 in April 2012 so that Unit 1 could continue operating in order to fully utilize existing stocks of fuel, which was no longer being manufactured. The small 5 MWe experimental reactor, based on
20724-553: Was Calder Hall (at the Sellafield site) in 1956, frequently regarded as the world's first commercial nuclear power station, while the last in Britain to shut down was Reactor 1 in Wylfa (on Anglesey ) in 2015. As of 2016, North Korea remains the only operator to continue using magnox style reactors, at the Yongbyon Nuclear Scientific Research Center . The magnox design was superseded by
20881-439: Was a key criterion for the design because its use of natural uranium leads to low burnup ratios and the requirement for frequent refuelling. For power use, the fuel canisters were left in the reactor as long as possible, while for plutonium production they were removed earlier. The complicated refuelling equipment proved to be less reliable than the reactor systems, and perhaps not advantageous overall. The entire reactor assembly
21038-425: Was a key step in the Chernobyl disaster . Reactors used in nuclear marine propulsion (especially nuclear submarines ) often cannot be run at continuous power around the clock in the same way that land-based power reactors are normally run, and in addition often need to have a very long core life without refueling . For this reason many designs use highly enriched uranium but incorporate burnable neutron poison in
21195-635: Was appointed Chief Superintendent of the Air Defence Research Development Establishment (ADRDE) at Christchurch , Hampshire. His focus was on the use of radar for shooting down enemy aircraft. The GL Mk. III radar was developed as a target tracking and predicting radar, but by 1942 the SCR-584 radar developed for the same purpose in the United States became available, and Cockcroft recommended that it be acquired under Lend-Lease . On his own initiative, he acquired SCR-584 sets for testing, and trials conducted on
21352-408: Was appointed a Supervisor in Physics in 1931, and in 1933 became the junior bursar , making him responsible for the upkeep of the buildings, many of which were suffering from neglect. The college gatehouse had to be partly taken down in order to repair damage done by deathwatch beetles , and Cockcroft supervised rewiring of the electrics. In 1935, Rutherford appointed him the director of research at
21509-739: Was at the Church of England school in Walsden from 1901 to 1908, at Todmorden Elementary School from 1908 to 1909, and at Todmorden Secondary School from 1909 to 1914, where he played football and cricket . Among the girls at the school was his future wife, Eunice Elizabeth Crabtree. In 1914, he won a County Major Scholarship, West Riding of Yorkshire , to the Victoria University of Manchester , where he studied mathematics . The Great War broke out in August 1914. Cockcroft completed his first year at Manchester in June 1915. He joined
21666-552: Was commissioned as a lieutenant in the Royal Field Artillery on 17 October 1918. After the war ended, Cockcroft was released from the Army in January 1919. He elected not to return to the Victoria University of Manchester, but to study electrical engineering at Manchester Municipal College of Technology . Because he had completed a year at Victoria University of Manchester, he was allowed to skip
21823-598: Was completed after the war. At the outbreak of the Second World War, Cockcroft took up the post of Assistant Director of Scientific Research in the Ministry of Supply , working on radar . In 1938, Sir Henry Tizard showed Cockcroft Chain Home , the ring of coastal early warning radar stations built by the Royal Air Force (RAF) to detect and track aircraft. Now, he helped deploy scientists to help get
21980-427: Was further amplified by the use of gas for cooling, as the low thermal capacity of the fluid required very high flow rates. The magnox fuel elements consisted of refined uranium enclosed in a loose-fitting magnox shell and then pressurized with helium . The outside of the shell was typically finned in order to improve heat exchange with the CO 2 . Magnox alloy is reactive with water, which means it cannot be left in
22137-724: Was made a Chevalier de la Légion d'Honneur by France in 1952, and was awarded the Knight Commander of the Military Order of Christ by Portugal in 1955, and the Grand Cross of the Order of Alfonso X by Spain in 1958. Cockcroft died from a heart attack at his home at Churchill College, Cambridge, on 18 September 1967. He is buried at the Parish of the Ascension Burial Ground in Cambridge, in
22294-508: Was made on 29 January 1946, but the news leaked two months before the announcement, and before the Canadian government was informed, creating a diplomatic incident. It was agreed that Cockcroft would not depart until a successor was found, and he did not depart Chalk River for Harwell until 30 September 1946. In the meantime he recruited staff for the new laboratory. Klaus Fuchs from the Manhattan Project's Los Alamos Laboratory became head of
22451-412: Was not yet at war. The information provided by the Tizard Mission contained some of the greatest scientific advances made during the war. The shared technology included radar technologies, in particular the greatly improved cavity magnetron designed by Oliphant's group at Birmingham, which the American historian James Phinney Baxter III described as "the most valuable cargo ever brought to our shores",
22608-788: Was officially started by the Generation ;IV International Forum (GIF) based on eight technology goals. The primary goals being to improve nuclear safety, improve proliferation resistance, minimize waste and natural resource utilization, and to decrease the cost to build and run such plants. Generation V reactors are designs which are theoretically possible, but which are not being actively considered or researched at present. Though some generation V reactors could potentially be built with current or near term technology, they trigger little interest for reasons of economics, practicality, or safety. Controlled nuclear fusion could in principle be used in fusion power plants to produce power without
22765-425: Was only avoided due to the addition of filtering systems that had previously been derided as unnecessary " follies ". As the UK nuclear establishment began to turn its attention to nuclear power , the need for more plutonium for weapons development remained acute. This led to an effort to adapt the basic Windscale design to a power-producing version that would also produce plutonium. In order to be economically useful
22922-463: Was opened in 1956 with an initial capacity of 50 MW (later 200 MW). The first portable nuclear reactor "Alco PM-2A" was used to generate electrical power (2 MW) for Camp Century from 1960 to 1963. All commercial power reactors are based on nuclear fission . They generally use uranium and its product plutonium as nuclear fuel , though a thorium fuel cycle is also possible. Fission reactors can be divided roughly into two classes, depending on
23079-427: Was placed in a large pressure vessel. Due to the size of the pile, only the reactor core itself was placed within the steel pressure assembly, which was then surrounded by a concrete confinement building (or biological shield ). As there was no water in the core, and thus no possibility of a steam explosion, the building was able to tightly wrap the pressure vessel, which helped reduce construction costs. In order to keep
23236-810: Was president of the Institute of Physics from 1954 to 1956, and of the British Association for the Advancement of Science . He served as chancellor of the Australian National University in Canberra from 1961 to 1965, a largely symbolic post that involved a visit once a year for degree conferring ceremonies. He delivered the Rutherford Memorial Lecture in 1944. He was the British delegate on
23393-409: Was produced at Springfields near Preston ; estimated decommissioning cost is £371 million. The total cost of decommissioning magnox activities is likely to exceed £20 billion, averaging about £2 billion per productive reactor site. Calder Hall was opened in 1956 as the world's first commercial nuclear power station, and is a significant part of the UK's industrial heritage. The NDA
23550-630: Was published in the Proceedings of the Royal Society . He was awarded his doctorate on 6 September 1925. During this time he was an assistant to the Russian physicist Peter Kapitza , who was working on the physics of magnetic fields in extremely low temperatures. Cockcroft helped with the design and construction of helium liquefiers. In 1919, Rutherford had succeeded in disintegrating nitrogen atoms with alpha particles emitted from decaying radium atoms. This and subsequent experiments hinted at
23707-612: Was subsequently transferred to the Associated Electrical Industries Laboratory at Aldermaston , under Allibone's direction. Research independently began at Oxford University under Peter Thonemann. In 1951, Cockcroft arranged for the Oxford group to be transferred to Harwell. Cockcroft approved the construction of ZETA (Zero Energy Thermonuclear Assembly) by the Thonemann's Harwell group, and
23864-415: Was that if a shell could explode when it was near an enemy aircraft, a near miss would be nearly as effective as a direct hit. The technical problem was to miniaturise a radar set, and make it sturdy enough to be fired from a gun barrel. The second problem had been solved by the Germans; a dud German bomb was salvaged that had valves that could withstand the acceleration. Plans were given to the Americans by
24021-445: Was the director of the Montreal Laboratory , Hans von Halban , who was a poor administrator, did not work well with the Canadians, and was regarded as a security risk by the Americans. In April 1944 a Combined Policy Committee meeting at Washington agreed that Montreal Laboratory scientists who were not British subjects would leave, and Cockcroft would become the new director of the Montreal Laboratory in May 1944. On 24 August 1944,
24178-520: Was the first Master of Churchill College, Cambridge . He was also chancellor of the Australian National University in Canberra from 1961 to 1965. John Douglas Cockcroft, also known as "Johnny W.", was born in Todmorden , West Riding of Yorkshire , England, on 27 May 1897, the eldest son of a mill owner, John Arthur Cockcroft, and his wife Annie Maude née Fielden. He had four younger brothers; Eric, Philip, Keith and Lionel. His early education
24335-649: Was the first to refer to "Gen II" types in Nucleonics Week . The first mention of "Gen III" was in 2000, in conjunction with the launch of the Generation IV International Forum (GIF) plans. "Gen IV" was named in 2000, by the United States Department of Energy (DOE), for developing new plant types. More than a dozen advanced reactor designs are in various stages of development. Some are evolutionary from
24492-419: Was the most powerful research reactor in the world. Originally designed in July 1944 with an output of 8 MW, the power was raised to 10 MW through design changes such as replacing uranium rods clad in stainless steel and cooled by heavy water with aluminium-clad rods cooled by light water. Cockcroft was shocked when he was informed on 10 September 1945 that the British physicist Alan Nunn May , who worked at
24649-427: Was thought there would be no particulate for the filters to catch. As well, the uranium oxide at Oak Ridge turned out to be from the chemical plant and not the reactor. The filters therefore became known as "Cockcroft's Folly". However, when the core of one of the two reactors ignited the Windscale fire of 1957, the filters prevented a far worse release of radioactive material. Terence Price, future scientific advisor at
#842157