The Nancy Rothwell Building is home to the School of Engineering at the University of Manchester . Previously known as the Manchester Engineering Campus Development (MECD) and the Engineering Building it took nine years to design and construct and was completed in 2021.
69-541: The building has over 76,000m² of floor space spread over seven floors making it the largest home for engineering and material science in the UK. It provides a workspace to over 8,000 students, academics and staff. As of 2024 it is one of the single largest construction projects undertaken by any tertiary education institution in the UK. The Initial budget for the building was £300 million project in 2015 rising to more than £420 million on completion. Design and construction of
138-698: A broad range of more specialized fields of engineering , each with a more specific emphasis on particular areas of applied mathematics , applied science , and types of application. See glossary of engineering . The term engineering is derived from the Latin ingenium , meaning "cleverness". The American Engineers' Council for Professional Development (ECPD, the predecessor of ABET ) has defined "engineering" as: The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate
207-407: A commercial scale, such as the manufacture of commodity chemicals , specialty chemicals , petroleum refining , microfabrication , fermentation , and biomolecule production . Civil engineering is the design and construction of public and private works, such as infrastructure (airports, roads, railways, water supply, and treatment etc.), bridges, tunnels, dams, and buildings. Civil engineering
276-533: A count of 2,000. There were fewer than 50 engineering graduates in the U.S. before 1865. In 1870 there were a dozen U.S. mechanical engineering graduates, with that number increasing to 43 per year in 1875. In 1890, there were 6,000 engineers in civil, mining , mechanical and electrical. There was no chair of applied mechanism and applied mechanics at Cambridge until 1875, and no chair of engineering at Oxford until 1907. Germany established technical universities earlier. The foundations of electrical engineering in
345-420: A demand for machinery with metal parts, which led to the development of several machine tools . Boring cast iron cylinders with precision was not possible until John Wilkinson invented his boring machine , which is considered the first machine tool . Other machine tools included the screw cutting lathe , milling machine , turret lathe and the metal planer . Precision machining techniques were developed in
414-408: A diesel engine or a dropped weight to acquire their momentum, such as Shuttle Loop installations between 1977 and 1978. The catapult system for roller coasters has been replaced by flywheels and later linear motors . Pumpkin chunking is another widely popularized use, in which people compete to see who can launch a pumpkin the farthest by mechanical means (although the world record is held by
483-400: A result, many engineers continue to learn new material throughout their careers. If multiple solutions exist, engineers weigh each design choice based on their merit and choose the solution that best matches the requirements. The task of the engineer is to identify, understand, and interpret the constraints on a design in order to yield a successful result. It is generally insufficient to build
552-539: A ship . The earliest catapults date to at least the 7th century BC, with King Uzziah of Judah recorded as equipping the walls of Jerusalem with machines that shot "great stones". Catapults are mentioned in Yajurveda under the name "Jyah" in chapter 30, verse 7. In the 5th century BC the mangonel appeared in ancient China , a type of traction trebuchet and catapult. Early uses were also attributed to Ajatashatru of Magadha in his 5th century BC war against
621-411: A technically successful product, rather, it must also meet further requirements. Constraints may include available resources, physical, imaginative or technical limitations, flexibility for future modifications and additions, and other factors, such as requirements for cost, safety , marketability, productivity, and serviceability . By understanding the constraints, engineers derive specifications for
690-643: A testament to the ingenuity and skill of ancient civil and military engineers. Other monuments, no longer standing, such as the Hanging Gardens of Babylon and the Pharos of Alexandria , were important engineering achievements of their time and were considered among the Seven Wonders of the Ancient World . The six classic simple machines were known in the ancient Near East . The wedge and
759-909: A useful purpose. Examples of bioengineering research include bacteria engineered to produce chemicals, new medical imaging technology, portable and rapid disease diagnostic devices, prosthetics, biopharmaceuticals, and tissue-engineered organs. Interdisciplinary engineering draws from more than one of the principle branches of the practice. Historically, naval engineering and mining engineering were major branches. Other engineering fields are manufacturing engineering , acoustical engineering , corrosion engineering , instrumentation and control , aerospace , automotive , computer , electronic , information engineering , petroleum , environmental , systems , audio , software , architectural , agricultural , biosystems , biomedical , geological , textile , industrial , materials , and nuclear engineering . These and other branches of engineering are represented in
SECTION 10
#1732786652708828-644: A way to distinguish between those specializing in the construction of such non-military projects and those involved in the discipline of military engineering . The pyramids in ancient Egypt , ziggurats of Mesopotamia , the Acropolis and Parthenon in Greece, the Roman aqueducts , Via Appia and Colosseum, Teotihuacán , and the Brihadeeswarar Temple of Thanjavur , among many others, stand as
897-513: Is a broad discipline that is often broken down into several sub-disciplines. Although an engineer will usually be trained in a specific discipline, he or she may become multi-disciplined through experience. Engineering is often characterized as having four main branches: chemical engineering, civil engineering, electrical engineering, and mechanical engineering. Chemical engineering is the application of physics, chemistry, biology, and engineering principles in order to carry out chemical processes on
966-734: Is associated with anything constructed on or within the Earth. This discipline applies geological sciences and engineering principles to direct or support the work of other disciplines such as civil engineering , environmental engineering , and mining engineering . Geological engineers are involved with impact studies for facilities and operations that affect surface and subsurface environments, such as rock excavations (e.g. tunnels ), building foundation consolidation, slope and fill stabilization, landslide risk assessment, groundwater monitoring, groundwater remediation , mining excavations, and natural resource exploration. One who practices engineering
1035-497: Is called an engineer , and those licensed to do so may have more formal designations such as Professional Engineer , Chartered Engineer , Incorporated Engineer , Ingenieur , European Engineer , or Designated Engineering Representative . In the engineering design process, engineers apply mathematics and sciences such as physics to find novel solutions to problems or to improve existing solutions. Engineers need proficient knowledge of relevant sciences for their design projects. As
1104-813: Is displayed on the first floor outside the main lecture theatre . Previously the building had been known as the Engineering Building and the Manchester Engineering Campus Development (MECD). Engineering Engineering is the practice of using natural science , mathematics , and the engineering design process to solve technical problems, increase efficiency and productivity, and improve systems. Modern engineering comprises many subfields which include designing and improving infrastructure , machinery , vehicles , electronics , materials , and energy systems. The discipline of engineering encompasses
1173-437: Is particularly noteworthy as it constitutes the first clear evidence for the switch to torsion catapults, which are more powerful than the more-flexible crossbows and which came to dominate Greek and Roman artillery design thereafter. This move to torsion springs was likely spurred by the engineers of Philip II of Macedonia. Another Athenian inventory from 330 to 329 BC includes catapult bolts with heads and flights. As
1242-428: Is the design and manufacture of physical or mechanical systems, such as power and energy systems, aerospace / aircraft products, weapon systems , transportation products, engines , compressors , powertrains , kinematic chains , vacuum technology, vibration isolation equipment, manufacturing , robotics, turbines, audio equipments, and mechatronics . Bioengineering is the engineering of biological systems for
1311-664: Is traditionally broken into a number of sub-disciplines, including structural engineering , environmental engineering , and surveying . It is traditionally considered to be separate from military engineering . Electrical engineering is the design, study, and manufacture of various electrical and electronic systems, such as broadcast engineering , electrical circuits , generators , motors , electromagnetic / electromechanical devices, electronic devices , electronic circuits , optical fibers , optoelectronic devices , computer systems, telecommunications , instrumentation , control systems , and electronics . Mechanical engineering
1380-602: The Licchavis . Greek catapults were invented in the early 4th century BC, being attested by Diodorus Siculus as part of the equipment of a Greek army in 399 BC, and subsequently used at the siege of Motya in 397 BC. The word 'catapult' comes from the Latin 'catapulta', which in turn comes from the Greek Ancient Greek : καταπέλτης ( katapeltēs ), itself from κατά ( kata ), "downwards" and πάλλω ( pallō ), "to toss, to hurl". Catapults were invented by
1449-864: The Neo-Assyrian period (911–609) BC. The Egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the Great Pyramid of Giza . The earliest civil engineer known by name is Imhotep . As one of the officials of the Pharaoh , Djosèr , he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid ) at Saqqara in Egypt around 2630–2611 BC. The earliest practical water-powered machines,
SECTION 20
#17327866527081518-547: The Newcomen steam engine . Smeaton designed the third Eddystone Lighthouse (1755–59) where he pioneered the use of ' hydraulic lime ' (a form of mortar which will set under water) and developed a technique involving dovetailed blocks of granite in the building of the lighthouse. He is important in the history, rediscovery of, and development of modern cement , because he identified the compositional requirements needed to obtain "hydraulicity" in lime; work which led ultimately to
1587-455: The U.S. Army Corps of Engineers . The word "engine" itself is of even older origin, ultimately deriving from the Latin ingenium ( c. 1250 ), meaning "innate quality, especially mental power, hence a clever invention." Later, as the design of civilian structures, such as bridges and buildings, matured as a technical discipline, the term civil engineering entered the lexicon as
1656-546: The ancient Greeks and in ancient India where they were used by the Magadhan King Ajatashatru around the early to mid 5th century BC. The catapult and crossbow in Greece are closely intertwined. Primitive catapults were essentially "the product of relatively straightforward attempts to increase the range and penetrating power of missiles by strengthening the bow which propelled them". The historian Diodorus Siculus (fl. 1st century BC), described
1725-506: The gastraphetes , which he credits to Zopyros , an engineer from southern Italy . Zopyrus has been plausibly equated with a Pythagorean of that name who seems to have flourished in the late 5th century BC. He probably designed his bow-machines on the occasion of the sieges of Cumae and Milet between 421 BC and 401 BC. The bows of these machines already featured a winched pull back system and could apparently throw two missiles at once. Philo of Byzantium provides probably
1794-528: The inclined plane (ramp) were known since prehistoric times. The wheel , along with the wheel and axle mechanism, was invented in Mesopotamia (modern Iraq) during the 5th millennium BC. The lever mechanism first appeared around 5,000 years ago in the Near East , where it was used in a simple balance scale , and to move large objects in ancient Egyptian technology . The lever was also used in
1863-566: The shadoof water-lifting device, the first crane machine, which appeared in Mesopotamia c. 3000 BC , and then in ancient Egyptian technology c. 2000 BC . The earliest evidence of pulleys date back to Mesopotamia in the early 2nd millennium BC, and ancient Egypt during the Twelfth Dynasty (1991–1802 BC). The screw , the last of the simple machines to be invented, first appeared in Mesopotamia during
1932-639: The water wheel and watermill , first appeared in the Persian Empire , in what are now Iraq and Iran, by the early 4th century BC. Kush developed the Sakia during the 4th century BC, which relied on animal power instead of human energy. Hafirs were developed as a type of reservoir in Kush to store and contain water as well as boost irrigation. Sappers were employed to build causeways during military campaigns. Kushite ancestors built speos during
2001-412: The 14th century when an engine'er (literally, one who builds or operates a siege engine ) referred to "a constructor of military engines". In this context, now obsolete, an "engine" referred to a military machine, i.e. , a mechanical contraption used in war (for example, a catapult ). Notable examples of the obsolete usage which have survived to the present day are military engineering corps, e.g. ,
2070-426: The 1800s included the experiments of Alessandro Volta , Michael Faraday , Georg Ohm and others and the invention of the electric telegraph in 1816 and the electric motor in 1872. The theoretical work of James Maxwell (see: Maxwell's equations ) and Heinrich Hertz in the late 19th century gave rise to the field of electronics . The later inventions of the vacuum tube and the transistor further accelerated
2139-489: The 1840s, the invention of vulcanized rubber allowed the making of small hand-held catapults, either improvised from Y-shaped sticks or manufactured for sale; both were popular with children and teenagers. These devices were also known as slingshots in the United States. Small catapults, referred to as "traps", are still widely used to launch clay targets into the air in the sport of clay pigeon shooting . In
Nancy Rothwell Building - Misplaced Pages Continue
2208-529: The 1990s and early 2000s, a powerful catapult, a trebuchet, was used by thrill-seekers first on private property and in 2001–2002 at Middlemoor Water Park, Somerset, England, to experience being catapulted through the air for 100 feet (30 m). The practice has been discontinued due to a fatality at the Water Park. There had been an injury when the trebuchet was in use on private property. Injury and death occurred when those two participants failed to land onto
2277-603: The 36 licensed member institutions of the UK Engineering Council . New specialties sometimes combine with the traditional fields and form new branches – for example, Earth systems engineering and management involves a wide range of subject areas including engineering studies , environmental science , engineering ethics and philosophy of engineering . Aerospace engineering covers the design, development, manufacture and operational behaviour of aircraft , satellites and rockets . Marine engineering covers
2346-576: The 9th century. In 1206, Al-Jazari invented programmable automata / robots . He described four automaton musicians, including drummers operated by a programmable drum machine , where they could be made to play different rhythms and different drum patterns. Before the development of modern engineering, mathematics was used by artisans and craftsmen, such as millwrights , clockmakers , instrument makers and surveyors. Aside from these professions, universities were not believed to have had much practical significance to technology. A standard reference for
2415-546: The Antikythera mechanism, required sophisticated knowledge of differential gearing or epicyclic gearing , two key principles in machine theory that helped design the gear trains of the Industrial Revolution, and are widely used in fields such as robotics and automotive engineering . Ancient Chinese, Greek, Roman and Hunnic armies employed military machines and inventions such as artillery which
2484-484: The Bronze Age between 3700 and 3250 BC. Bloomeries and blast furnaces were also created during the 7th centuries BC in Kush. Ancient Greece developed machines in both civilian and military domains. The Antikythera mechanism , an early known mechanical analog computer , and the mechanical inventions of Archimedes , are examples of Greek mechanical engineering. Some of Archimedes' inventions, as well as
2553-579: The United Kingdom . Such investments in building infrastructure have been criticised as a race to the bottom , building frenzy and a gold rush by critics such as Jonathan Wolff and Fionn Stevenson. The building was officially named after Nancy Rothwell in July 2024 to mark her retirement as Vice Chancellor of the university in 2024. It is one of the few buildings named after a woman on campus. A portrait of Nancy Rothwell by Carla van de Puttelaar
2622-591: The United States went to Josiah Willard Gibbs at Yale University in 1863; it was also the second PhD awarded in science in the U.S. Only a decade after the successful flights by the Wright brothers , there was extensive development of aeronautical engineering through development of military aircraft that were used in World War I . Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments. Engineering
2691-409: The aviation pioneers around the start of the 20th century although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering. The first PhD in engineering (technically, applied science and engineering ) awarded in
2760-491: The building was a collaboration between Mecanoo and the Building Design Partnership (BDP) with engineering services provided by Arup . The main contractor was Balfour Beatty with Buro Happold as the environmental sustainability advisor. The building has a BREEAM excellent rating and a green roof . The building was constructed during period of heavy investment in buildings by universities in
2829-571: The design, development, manufacture and operational behaviour of watercraft and stationary structures like oil platforms and ports . Computer engineering (CE) is a branch of engineering that integrates several fields of computer science and electronic engineering required to develop computer hardware and software . Computer engineers usually have training in electronic engineering (or electrical engineering ), software design , and hardware-software integration instead of only software engineering or electronic engineering. Geological engineering
Nancy Rothwell Building - Misplaced Pages Continue
2898-407: The development and large scale manufacturing of chemicals in new industrial plants. The role of the chemical engineer was the design of these chemical plants and processes. Aeronautical engineering deals with aircraft design process design while aerospace engineering is a more modern term that expands the reach of the discipline by including spacecraft design. Its origins can be traced back to
2967-418: The development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other engineering specialty. Chemical engineering developed in the late nineteenth century. Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to
3036-421: The first commercial piston steam engine in 1712, was not known to have any scientific training. The application of steam-powered cast iron blowing cylinders for providing pressurized air for blast furnaces lead to a large increase in iron production in the late 18th century. The higher furnace temperatures made possible with steam-powered blast allowed for the use of more lime in blast furnaces , which enabled
3105-409: The first half of the 19th century. These included the use of gigs to guide the machining tool over the work and fixtures to hold the work in the proper position. Machine tools and machining techniques capable of producing interchangeable parts lead to large scale factory production by the late 19th century. The United States Census of 1850 listed the occupation of "engineer" for the first time with
3174-519: The invention of Portland cement . Applied science led to the development of the steam engine. The sequence of events began with the invention of the barometer and the measurement of atmospheric pressure by Evangelista Torricelli in 1643, demonstration of the force of atmospheric pressure by Otto von Guericke using the Magdeburg hemispheres in 1656, laboratory experiments by Denis Papin , who built experimental model steam engines and demonstrated
3243-484: The invention of a mechanical arrow-firing catapult ( katapeltikon ) by a Greek task force in 399 BC. The weapon was soon after employed against Motya (397 BC), a key Carthaginian stronghold in Sicily . Diodorus is assumed to have drawn his description from the highly rated history of Philistus , a contemporary of the events then. The introduction of crossbows however, can be dated further back: according to
3312-694: The inventor Hero of Alexandria (fl. 1st century AD), who referred to the now lost works of the 3rd-century BC engineer Ctesibius , this weapon was inspired by an earlier foot-held crossbow, called the gastraphetes , which could store more energy than the Greek bows. A detailed description of the gastraphetes , or the "belly-bow", along with a watercolor drawing, is found in Heron's technical treatise Belopoeica . A third Greek author, Biton (fl. 2nd century BC), whose reliability has been positively reevaluated by recent scholarship, described two advanced forms of
3381-446: The limits within which a viable object or system may be produced and operated. Catapult A catapult is a ballistic device used to launch a projectile a great distance without the aid of gunpowder or other propellants – particularly various types of ancient and medieval siege engines . A catapult uses the sudden release of stored potential energy to propel its payload. Most convert tension or torsion energy that
3450-507: The mid-4th century BC onwards, evidence of the Greek use of arrow-shooting machines becomes more dense and varied: arrow firing machines ( katapaltai ) are briefly mentioned by Aeneas Tacticus in his treatise on siegecraft written around 350 BC. An extant inscription from the Athenian arsenal, dated between 338 and 326 BC, lists a number of stored catapults with shooting bolts of varying size and springs of sinews. The later entry
3519-477: The most detailed account on the establishment of a theory of belopoietics ( belos = "projectile"; poietike = "(art) of making") circa 200 BC. The central principle to this theory was that "all parts of a catapult, including the weight or length of the projectile, were proportional to the size of the torsion springs". This kind of innovation is indicative of the increasing rate at which geometry and physics were being assimilated into military enterprises. From
SECTION 50
#17327866527083588-479: The power to weight ratio of steam engines made practical steamboats and locomotives possible. New steel making processes, such as the Bessemer process and the open hearth furnace, ushered in an area of heavy engineering in the late 19th century. One of the most famous engineers of the mid-19th century was Isambard Kingdom Brunel , who built railroads, dockyards and steamships. The Industrial Revolution created
3657-434: The rise of engineering as a profession in the 18th century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering, the fields then known as the mechanic arts became incorporated into engineering. Canal building was an important engineering work during the early phases of the Industrial Revolution. John Smeaton
3726-426: The safety net. The operators of the trebuchet were tried, but found not guilty of manslaughter, though the jury noted that the fatality might have been avoided had the operators "imposed stricter safety measures." Human cannonball circus acts use a catapult launch mechanism, rather than gunpowder, and are risky ventures for the human cannonballs. Early launched roller coasters used a catapult system powered by
3795-517: The same time, Greek fortifications began to feature high towers with shuttered windows in the top, which could have been used to house anti-personnel arrow shooters, as in Aigosthena . Projectiles included both arrows and (later) stones that were sometimes lit on fire. Onomarchus of Phocis first used catapults on the battlefield against Philip II of Macedon . Philip's son, Alexander the Great ,
3864-426: The same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property. Engineering has existed since ancient times, when humans devised inventions such as the wedge, lever, wheel and pulley, etc. The term engineering is derived from the word engineer , which itself dates back to
3933-470: The state of mechanical arts during the Renaissance is given in the mining engineering treatise De re metallica (1556), which also contains sections on geology, mining, and chemistry. De re metallica was the standard chemistry reference for the next 180 years. The science of classical mechanics , sometimes called Newtonian mechanics, formed the scientific basis of much of modern engineering. With
4002-489: The takeoff runway is too short for a powered takeoff or simply impractical to extend. Ships also use them to launch torpedoes and deploy bombs against submarines. In 2024, during the Israel-Hamas war , a trebuchet created by private initiative of an IDF reserve unit was used to throw firebrands over the border into Lebanon, in order to set on fire the undergrowth which offered camouflage to Hezbollah fighters. In
4071-414: The transition from charcoal to coke . These innovations lowered the cost of iron, making horse railways and iron bridges practical. The puddling process , patented by Henry Cort in 1784 produced large scale quantities of wrought iron. Hot blast , patented by James Beaumont Neilson in 1828, greatly lowered the amount of fuel needed to smelt iron. With the development of the high pressure steam engine,
4140-587: The use of a piston, which he published in 1707. Edward Somerset, 2nd Marquess of Worcester published a book of 100 inventions containing a method for raising waters similar to a coffee percolator . Samuel Morland , a mathematician and inventor who worked on pumps, left notes at the Vauxhall Ordinance Office on a steam pump design that Thomas Savery read. In 1698 Savery built a steam pump called "The Miner's Friend". It employed both vacuum and pressure. Iron merchant Thomas Newcomen , who built
4209-466: The use of catapults became more commonplace, so did the training required to operate them. Many Greek children were instructed in catapult usage, as evidenced by "a 3rd Century B.C. inscription from the island of Ceos in the Cyclades [regulating] catapult shooting competitions for the young". Arrow firing machines in action are reported from Philip II 's siege of Perinth ( Thrace ) in 340 BC. At
SECTION 60
#17327866527084278-530: The walls. Defensive techniques in the Middle Ages progressed to a point that rendered catapults largely ineffective. The Viking siege of Paris (AD 885–6) "saw the employment by both sides of virtually every instrument of siege craft known to the classical world, including a variety of catapults", to little effect, resulting in failure. The most widely used catapults throughout the Middle Ages were as follows: The last large scale military use of catapults
4347-644: Was a steam jack driven by a steam turbine , described in 1551 by Taqi al-Din Muhammad ibn Ma'ruf in Ottoman Egypt . The cotton gin was invented in India by the 6th century AD, and the spinning wheel was invented in the Islamic world by the early 11th century, both of which were fundamental to the growth of the cotton industry . The spinning wheel was also a precursor to the spinning jenny , which
4416-522: Was a key development during the early Industrial Revolution in the 18th century. The earliest programmable machines were developed in the Muslim world. A music sequencer , a programmable musical instrument , was the earliest type of programmable machine. The first music sequencer was an automated flute player invented by the Banu Musa brothers, described in their Book of Ingenious Devices , in
4485-604: Was developed by the Greeks around the 4th century BC, the trireme , the ballista and the catapult . In the Middle Ages, the trebuchet was developed. The earliest practical wind-powered machines, the windmill and wind pump , first appeared in the Muslim world during the Islamic Golden Age , in what are now Iran, Afghanistan, and Pakistan, by the 9th century AD. The earliest practical steam-powered machine
4554-520: Was during the trench warfare of World War I . During the early stages of the war, catapults were used to throw hand grenades across no man's land into enemy trenches. They were eventually replaced by small mortars . The SPBG (Silent Projector of Bottles and Grenades) was a Soviet proposal for an anti-tank weapon that launched grenades from a spring-loaded shuttle up to 100 m (330 ft). Special variants called aircraft catapults are used to launch planes from land bases and sea carriers when
4623-429: Was more slowly and manually built up within the device before release, via springs, bows, twisted rope, elastic, or any of numerous other materials and mechanisms. During wars in the ancient times, the catapult was usually known to be the strongest heavy weaponry. In modern times the term can apply to devices ranging from a simple hand-held implement (also called a " slingshot ") to a mechanism for launching aircraft from
4692-505: Was the first self-proclaimed civil engineer and is often regarded as the "father" of civil engineering. He was an English civil engineer responsible for the design of bridges, canals, harbors, and lighthouses. He was also a capable mechanical engineer and an eminent physicist . Using a model water wheel, Smeaton conducted experiments for seven years, determining ways to increase efficiency. Smeaton introduced iron axles and gears to water wheels. Smeaton also made mechanical improvements to
4761-751: Was the next commander in recorded history to make such use of catapults on the battlefield as well as to use them during sieges. The Romans started to use catapults as arms for their wars against Syracuse , Macedon, Sparta and Aetolia (3rd and 2nd centuries BC). The Roman machine known as an arcuballista was similar to a large crossbow. Later the Romans used ballista catapults on their warships. In chronological order: Castles and fortified walled cities were common during this period and catapults were used as siege weapons against them. As well as their use in attempts to breach walls, incendiary missiles , or diseased carcasses or garbage could be catapulted over
#707292