Misplaced Pages

Micro Four Thirds system

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Micro Four Thirds system ( MFT or M4/3 or M43 ) ( マイクロフォーサーズシステム , Maikuro Fō Sāzu Shisutemu ) is a standard released by Olympus Imaging Corporation and Panasonic in 2008, for the design and development of mirrorless interchangeable lens digital cameras , camcorders and lenses . Camera bodies are available from Blackmagic , DJI , JVC , Kodak , Olympus, OM System , Panasonic, Sharp , Logitech Mevo and Xiaomi . MFT lenses are produced by Cosina Voigtländer , Kowa , Kodak, Mitakon, Olympus, Panasonic, Samyang , Sharp, Sigma , SLR Magic, Tamron , Tokina , TTArtisan, Veydra, Xiaomi, Laowa, Yongnuo, Zonlai, Lensbaby , Venus Optics and 7artisans amongst others.

#326673

98-550: The specifications of the MFT system inherit the original sensor format of the Four Thirds system , designed for DSLRs . However, unlike Four Thirds, the MFT system design specification does not require lens telecentricity , a parameter which accommodated for the inaccurate sensitivity to off-angle light due to the geometry of the photodetectors of contemporary image sensors. Later improvements in manufacturing capabilities enabled

196-415: A flange focal distance of 19.25 mm. By avoiding internal mirrors, the MFT standard allows a much thinner camera body. Viewing is achieved on all models by live view electronic displays with LCD screens. In addition, some models feature a built-in electronic viewfinder (EVF), while others may offer optional detachable electronic viewfinders. An independent optical viewfinder typically matched to

294-446: A 122 mm filter. Olympus and Panasonic have both produced cameras with sensor-based stabilization, and lenses with stabilization. However, the lens stabilization will only work together with body stabilization for cameras of the same brand. Before 2013, Olympus and Panasonic approached image stabilization (IS) differently. Olympus used sensor-shift image stabilization only, which it calls IBIS ( I n- B ody I mage S tabilization),

392-769: A 36 × 24 mm frame of 35 mm film. As another example, the Pentax K200D 's sensor (made by Sony ) measures 23.5 × 15.7 mm, while the contemporaneous K20D 's sensor (made by Samsung ) measures 23.4 × 15.6 mm. Most of these image sensor formats approximate the 3:2 aspect ratio of 35 mm film. Again, the Four Thirds System is a notable exception, with an aspect ratio of 4:3 as seen in most compact digital cameras (see below). Most sensors are made for camera phones, compact digital cameras, and bridge cameras. Most image sensors equipping compact cameras have an aspect ratio of 4:3. This matches

490-733: A commitment to the Micro Four Thirds system. The first Micro Four Thirds system camera was Panasonic Lumix DMC-G1 , which was launched in Japan in October 2008. In April 2009, Panasonic Lumix DMC-GH1 with HD video recording added to it. The first Olympus model, the Olympus PEN E-P1 , was shipped in July 2009. Blackmagic Design sells cameras made for cinematography, some of which use the MFT lens mount. Their first MFT camera

588-481: A common autofocus system for mirrorless compact or "point-and-shoot" . By comparison, DSLRs use phase-detection autofocus (PDAF). The use of separate PDAF sensors has been favored in DSLR systems because of mirror box and pentaprism design, along with better performance for fast-moving subjects. The (non-Micro) Four Thirds system design standard specifies a 40 mm flange focal length distance, which allowed for using

686-487: A contrast-based system called DFD (Depth from Defocus) until the release of the G9 II in 2023. Both systems today provide focusing speeds to rival or even surpass many current DSLRs. The image sensor of Four Thirds and MFT measures 18 mm × 13.5 mm (22.5 mm diagonal), with an imaging area of 17.3 mm × 13.0 mm (21.63 mm diagonal), comparable to the frame size of 110 film . Its area, ca. 220 mm,

784-527: A feature included all of its cameras. Until 2013, Panasonic used lens-based stabilization only, called Mega OIS or Power OIS ( O ptical I mage S tabilization). These stabilize the image by shifting a small optical block within the lens. In 2013, Panasonic began including sensor-based stabilization in its cameras, beginning with the Lumix DMC-GX7. Panasonic called the combination of lens and body stabilization "Dual IS," and this function won an award of

882-407: A few identical image parameters for some popular image sensor classes compared to Micro Four Thirds. The smaller the focal length, the smaller the displacement in the image space between the last principal plane of the lens and the image sensor needed to focus a certain object. Therefore, the energy needed for focusing as well as the appropriate delay for shifting the focusing lens system are shorter,

980-558: A flange focal distance greater than or marginally less than 20 mm can often be used on MFT bodies via an adapter. While MFT cameras can use many of these "legacy" lenses only with manual focus and manual aperture control mode, hundreds of lenses are available, even those designed for cameras no longer in production. While lens manufacturers seldom publish lens mount specifications, the MFT mount has been reverse-engineered by enthusiasts, with CAD files available. Until 2013, MFT cameras exclusively used contrast-detection autofocus (CDAF),

1078-614: A frame of APS -C film, with a crop factor of 1.5–1.6; or 30% smaller than that, with a crop factor of 2.0 (this is the Four Thirds System , adopted by Olympus and Panasonic ). As of November 2013 , there was only one mirrorless model equipped with a very small sensor, more typical of compact cameras: the Pentax Q7 , with a 1/1.7" sensor (4.55 crop factor). See Sensors equipping Compact digital cameras and camera-phones section below. Many different terms are used in marketing to describe DSLR/SLT/mirrorless sensor formats, including

SECTION 10

#1732780617327

1176-415: A given fixed photon flux per pixel area (the P in the formulas); this analysis is useful for a fixed number of pixels with pixel area proportional to sensor area, and fixed absolute aperture diameter for a fixed imaging situation in terms of depth of field, diffraction limit at the subject, etc. Or it can be compared for a fixed focal-plane illuminance, corresponding to a fixed f-number , in which case P

1274-674: A lens aperture is where λ is the wavelength of the light passing through the system and N is the f-number of the lens. If that aperture is circular, as are (approximately) most photographic apertures, then the MTF is given by for ξ < ξ c u t o f f {\displaystyle \xi <\xi _{\mathrm {cutoff} }} and 0 {\displaystyle 0} for ξ ≥ ξ c u t o f f {\displaystyle \xi \geq \xi _{\mathrm {cutoff} }} The diffraction based factor of

1372-450: A lens with the same f-number and angle of view, with a size proportional to the sensor crop factor. In practice, simple scaling of lens designs is not always achievable, due to factors such as the non-scalability of manufacturing tolerance , structural integrity of glass lenses of different sizes and available manufacturing techniques and costs. Moreover, to maintain the same absolute amount of information in an image (which can be measured as

1470-421: A limiting factor. And even at short or medium exposure times, a few outliers in the dark-current distribution may show up as "hot pixels". Typically, for astrophotography applications sensors are cooled to reduce dark current in situations where exposures may be measured in several hundreds of seconds. Dynamic range is the ratio of the largest and smallest recordable signal, the smallest being typically defined by

1568-471: A particular non-zoom prime lens is sometimes an option. The throat diameter is about 38 mm, 6 mm less than that of the Four Thirds system. Electrically, MFT uses an 11-contact connector between lens and camera, adding to the nine contacts in the Four Thirds system design specification. Olympus claims full backward compatibility for many of its existing Four Thirds lenses on MFT bodies, using

1666-693: A pixel's photoreceptor the geometrical extent (also known as etendue or light throughput) of the objective lens / pixel system must be smaller than or equal to the geometrical extent of the microlens / photoreceptor system. The geometrical extent of the objective lens / pixel system is given by G o b j e c t i v e ≃ w p i x e l 2 ( f / # ) o b j e c t i v e , {\displaystyle G_{\mathrm {objective} }\simeq {\frac {w_{\mathrm {pixel} }}{2{(f/\#)}_{\mathrm {objective} }}}\,,} where w pixel

1764-478: A purpose built adapter with both mechanical and electrical interfaces. The shallow but wide MFT lens mount also allows the use of existing lenses including Leica M , Leica R , and Olympus OM system lenses, via Panasonic and Olympus adapters. Aftermarket adapters include Leica Screw Mount , Contax G , C mount , Arri PL mount, Praktica , Canon, Nikon, and Pentax, amongst others. In fact, almost any still camera, movie or video camera interchangeable lens that has

1862-393: A sensor (SNR), expressed as signal electrons relative to rms noise in electrons, observed at the scale of a single pixel, assuming shot noise from Poisson distribution of signal electrons and dark electrons, is where P {\displaystyle P} is the incident photon flux (photons per second in the area of a pixel), Q e {\displaystyle Q_{e}}

1960-427: A single lens reflex design, with mirror box and pentaprism. Four Thirds DSLR cameras designed by Olympus and Panasonic initially used exclusively PDAF focusing systems. Olympus then introduced the first live view DSLR camera, which incorporated both traditional DSLR phase focus and also optional contrast detection focus. As a result, newer Four Thirds system lenses were designed both for PDAF and contrast focus. Several of

2058-425: A slight losses in image quality. This is the result of placing high resolution demands on the center crop of decade old 35mm lenses. Therefore, 100% crops from the lenses do not usually represent the same level of pixel-level sharpness as they would on their native formats. Another slight disadvantage of using adapted lenses can be size. By using a 35mm film lens, one would be using a lens that casts an image circle that

SECTION 20

#1732780617327

2156-495: A small sensor can be fitted into a compact package. Small body means small lens and means small sensor, so to keep smartphones slim and light, the smartphone manufacturers use a tiny sensor usually less than the 1/2.3" used in most bridge cameras . At one time only Nokia 808 PureView used a 1/1.2" sensor, almost three times the size of a 1/2.3" sensor. Bigger sensors have the advantage of better image quality, but with improvements in sensor technology, smaller sensors can achieve

2254-450: Is 'better than the best 35 mm lenses – but only for a very small image'. In summary, as sensor size reduces, the accompanying lens designs will change, often quite radically, to take advantage of manufacturing techniques made available due to the reduced size. The functionality of such lenses can also take advantage of these, with extreme zoom ranges becoming possible. These lenses are often very large in relation to sensor size, but with

2352-454: Is approximately 30% less than the APS-C sensors used in other manufacturers' DSLRs ; it is around 9 times larger than the 1/2.3" sensors typically used in compact digital cameras . The Four Thirds system uses a 4:3 image aspect ratio , like compact digital cameras. In comparison, DSLRs usually adhere to the 3:2 aspect ratio of the traditional 35 mm format. Thus, "Four Thirds" refers to both

2450-406: Is equivalent to a 2.0 crop factor when compared to a 35 mm film (full frame) camera. This means that the field of view of an MFT lens is the same as a full frame lens with twice the focal length. For example, a 50 mm lens on a MFT body would have a field of view equivalent to a 100 mm lens on a full frame camera. For this reason, MFT lenses can be smaller and lighter because to achieve

2548-417: Is far larger than what is required by Micro Four Thirds Sensors. The main disadvantage of using adapted lenses however, is that focus is manual even with natively autofocus lenses. Full metering functionality is maintained however, as are some automated shooting modes (aperture priority). A further disadvantage with some LM and LTM lenses is that lenses with significant rear protrusions simply do not fit inside

2646-525: Is formed in a given mode of the camera. The active area may be smaller than the image sensor, and active area can differ in different modes of operation of the same camera. Active area size depends on the aspect ratio of the sensor and aspect ratio of the output image of the camera. The active area size can depend on number of pixels in given mode of the camera. The active area size and lens focal length determines angles of view. Semiconductor image sensors can suffer from shading effects at large apertures and at

2744-419: Is interesting to compare performance of cameras with small and big sensors. A good cell phone camera with typical pixel size 1.1 μm (Samsung A8) would have about 3 times worse SNR due to shot noise than a 3.7 μm pixel interchangeable lens camera (Panasonic G85) and 5 times worse than a 6 μm full frame camera (Sony A7 III). Taking into consideration the dynamic range makes the difference even more prominent. As such

2842-737: Is omitted in the Panasonic Lumix DMC-GF3 design. Similar to Olympus, the LVF1 is usable on high-end Panasonic compact point and shoot cameras, such as the Panasonic Lumix DMC-LX5 . Due to the short native flange distance of the Micro Four Thirds System, the usage of adapted lenses from practically all formats has become widely popular. Because lenses can be used from old and abandoned camera systems, adapted lenses typically represent good value for

2940-399: Is only partly correlated between pixels, and the shot noise associated with dark offset, which is uncorrelated between pixels. Only the shot-noise component Dt is included in the formula above, since the uncorrelated part of the dark offset is hard to predict, and the correlated or mean part is relatively easy to subtract off. The mean dark current contains contributions proportional both to

3038-504: Is performed by uniformly scaling the pixel. Considering the signal to noise ratio due to read noise at a given exposure, the signal will scale as the sensor area along with the read noise and therefore read noise SNR will be unaffected by sensor area. In a depth of field constrained situation, the exposure of the larger sensor will be reduced in proportion to the sensor area, and therefore the read noise SNR will reduce likewise. Dark current contributes two kinds of noise: dark offset, which

Micro Four Thirds system - Misplaced Pages Continue

3136-444: Is proportional to pixel area, independent of sensor area. The formulas above and below can be evaluated for either case. In the above equation, the shot noise SNR is given by Apart from the quantum efficiency it depends on the incident photon flux and the exposure time, which is equivalent to the exposure and the sensor area; since the exposure is the integration time multiplied with the image plane illuminance , and illuminance

3234-524: Is reduced by half —i.e., an adapted 50mm lens is still a 50mm lens in terms of focal length but has a narrower FOV equivalent to a 100mm lens due to the Micro Four Thirds System 2x crop factor. Therefore, most adapted glass from the 35mm film era and current DSLR lineups provide effective fields of view varying from normal to extreme telephoto. Wide angles are generally not practical for adapted use from both an image quality and value point of view. Using older adapted lenses on Micro Four Thirds sometimes leads to

3332-419: Is the luminous flux per unit area. Thus for equal exposures, the signal to noise ratios of two different size sensors of equal quantum efficiency and pixel count will (for a given final image size) be in proportion to the square root of the sensor area (or the linear scale factor of the sensor). If the exposure is constrained by the need to achieve some required depth of field (with the same shutter speed) then

3430-426: Is the quantum efficiency , t {\displaystyle t} is the exposure time, D {\displaystyle D} is the pixel dark current in electrons per second and N r {\displaystyle N_{r}} is the pixel read noise in electrons rms. Each of these noises has a different dependency on sensor size. Image sensor noise can be compared across formats for

3528-926: Is the width of the photoreceptor and ( f /#) microlens is the f-number of the microlens. In order to avoid shading, G p i x e l ≥ G o b j e c t i v e , {\textstyle G_{\mathrm {pixel} }\geq G_{\mathrm {objective} },} therefore w p h o t o r e c e p t o r ( f / # ) m i c r o l e n s ≥ w p i x e l ( f / # ) o b j e c t i v e . {\displaystyle {\frac {w_{\mathrm {photoreceptor} }}{{(f/\#)}_{\mathrm {microlens} }}}\geq {\frac {w_{\mathrm {pixel} }}{{(f/\#)}_{\mathrm {objective} }}}.} If w photoreceptor / w pixel = ff ,

3626-593: Is the width of the pixel and ( f /#) objective is the f-number of the objective lens. The geometrical extent of the microlens / photoreceptor system is given by G p i x e l ≃ w p h o t o r e c e p t o r 2 ( f / # ) m i c r o l e n s , {\displaystyle G_{\mathrm {pixel} }\simeq {\frac {w_{\mathrm {photoreceptor} }}{2{(f/\#)}_{\mathrm {microlens} }}}\,,} where w photoreceptor

3724-401: Is to be avoided the f-number of the microlens must be smaller than the f-number of the taking lens by at least a factor equal to the linear fill factor of the pixel. The f-number of the microlens is determined ultimately by the width of the pixel and its height above the silicon, which determines its focal length. In turn, this is determined by the height of the metallisation layers, also known as

3822-666: The Olympus XZ-1 . Olympus announced the VF-4 in May 2013, along with the fourth generation PEN flagship, the E-P5. As of mid-2011, Panasonic G and GH series cameras have built in EVF's, while two of the three GF models are able to use the add-on LVF1 hotshoe EVF. The LVF1 must also plug into a proprietary port built into the camera for power and communication. This proprietary port and the accessory

3920-569: The YI M1 , a 20MP MFT camera with 4K video capability. Also in 2016, Z-Camera released the E1, designed to shoot still and video with an MFT lens mount. Because the flange focal distance of Micro Four Thirds cameras are shorter than DSLRs, most lenses are smaller and cheaper. Of particular interest in illustrating this fact are the Panasonic 7–14 mm ultra-wide angle (equivalent to 14–28 mm in

4018-423: The image plane . As a consequence, the equivalent exposure indexes (respectively equivalent ISO speeds) are different in order to get the identical shutter speeds (i.e., exposure times) with the same levels of motion blur and image stabilisation . Furthermore, for a given guide number of a photoflash device all systems have the same exposure at the same flash-to-subject distance. The following table shows

Micro Four Thirds system - Misplaced Pages Continue

4116-447: The microlenses of the image sensor. Furthermore, in low light conditions by using low f-numbers a too-shallow depth of field can lead to less satisfying image results, especially in videography, when the object being filmed by the camera or the camera itself is moving. Equivalent focal lengths are given, if the angle of view is identical. The depth of field is identical, if angle of view and absolute aperture width are identical. Also

4214-425: The photolithography process, which requires separate masks and quality control steps. Canon selected the intermediate APS-H size, since it was at the time the largest that could be patterned with a single mask, helping to control production costs and manage yields. Newer photolithography equipment now allows single-pass exposures for full-frame sensors, although other size-related production constraints remain much

4312-445: The space-bandwidth product ) the lens for a smaller sensor requires a greater resolving power. The development of the ' Tessar ' lens is discussed by Nasse, and shows its transformation from an f /6.3 lens for plate cameras using the original three-group configuration through to an f /2.8 5.2 mm four-element optic with eight extremely aspheric surfaces, economically manufacturable because of its small size. Its performance

4410-496: The 'noise floor'. In the image sensor literature, the noise floor is taken as the readout noise, so D R = Q max / σ readout {\displaystyle DR=Q_{\text{max}}/\sigma _{\text{readout}}} (note, the read noise σ r e a d o u t {\displaystyle \sigma _{readout}} is the same quantity as N r {\displaystyle N_{r}} referred to in

4508-414: The 'same picture' conditions, same angle of view, subject distance and depth of field, then the f-numbers are in the ratio 1 / C {\displaystyle 1/C} , so the scale factor for the diffraction MTF is 1, leading to the conclusion that the diffraction MTF at a given depth of field is independent of sensor size. In both the 'same photometric exposure' and 'same lens' conditions,

4606-399: The 'stack height'. For a given stack height, the f-number of the microlenses will increase as pixel size reduces, and thus the objective lens f-number at which shading occurs will tend to increase. In order to maintain pixel counts smaller sensors will tend to have smaller pixels, while at the same time smaller objective lens f-numbers are required to maximise the amount of light projected on

4704-459: The 150mm f/2 and 300mm f/2.8 lenses are as quick and accurate as a native Four Thirds body). The Panasonic G9 II is the first micro four thirds camera from Panasonic which has phase detect autofocus. The much shorter flange focal distance enabled by the removal of the mirror allows normal and wide angle lenses to be significantly smaller because they do not have to use strongly retrofocal designs. The Four Thirds sensor format used in MFT cameras

4802-574: The 35 mm film format) and the Olympus M.Zuiko Digital ED 9–18 mm ultra wide-angle lens (equivalent to an 18–36 mm zoom lens in the 35 mm film format). This feature also permitted the lens designers to develop the world's fastest fisheye lens with autofocus, the Olympus ED 8 mm f/1.8 . On the telephoto end, the Panasonic 100–300 mm or the Leica DG 100-400 mm as well as

4900-490: The European Imaging and Sound Association (EISA) in the category Photo Innovation 2016–2017. In 2016, Olympus added lens-based stabilization to the M. Zuiko 300mm f/4.0 Pro telephoto prime lens and the M. Zuiko 12-100mm f/4.0 IS Pro lens. Image sensor format In digital photography, the image sensor format is the shape and size of the image sensor . The image sensor format of a digital camera determines

4998-557: The Four Thirds lenses focus on Micro Four Thirds proficiently when an electrically compatible adapter is used on the Micro Four Thirds cameras, and they focus on Micro Four Thirds cameras much quicker than earlier generation Four Thirds lenses can. Some MFT cameras, beginning with the Olympus OM-D E-M1 in 2013, incorporate phase-detection hardware on the sensor. Besides offering faster autofocus speed, these camera bodies perform better with legacy lenses (e.g. focus performance of

SECTION 50

#1732780617327

5096-651: The Kodak brand, released its first Micro Four Thirds camera, the Kodak Pixpro S-1 ; several lenses and niche camera makers have products made for the standard. In 2015, DJI released the Zenmuse X5 and X5R, which are gimbal-mounted cameras with a MFT lens mount, as optional upgrades for its Inspire drone line. Both cameras can capture 16MP stills and up to 4K/30fps video using one of four interchangeable lenses, ranging from 12mm to 17mm. In 2016, Xiaoyi introduced

5194-510: The Micro Four Thirds system (body and lenses) is smaller and lighter. However, their sensors are smaller than full-frame or even APS-C systems . The small lenses do not allow the noise depth-of-field tradeoffs of larger lenses in other systems. Many, but not all Micro Four Thirds cameras use an electronic viewfinder. Resolutions and refresh speeds on these EVF displays were originally compared negatively to optical viewfinders, but today's EVF systems are faster, brighter and much higher resolution than

5292-429: The Olympus 75–300 mm zooms show how small and light extreme telephotos can be made. The 400 mm focal length in Micro Four Thirds has the same angle of view as an 800 mm focal length in full frame cameras. When compared to a full frame camera lens providing a similar angle of view, rather than weighing a few kilograms (several pounds) and generally having a length exceeding 60 cm (24 in) end to end,

5390-578: The SNR calculation ). The resolution of all optical systems is limited by diffraction . One way of considering the effect that diffraction has on cameras using different sized sensors is to consider the modulation transfer function (MTF). Diffraction is one of the factors that contribute to the overall system MTF. Other factors are typically the MTFs of the lens, anti-aliasing filter and sensor sampling window. The spatial cut-off frequency due to diffraction through

5488-499: The angle of view of a particular lens when used with a particular sensor. Because the image sensors in many digital cameras are smaller than the 24 mm × 36 mm image area of full-frame 35 mm cameras, a lens of a given focal length gives a narrower field of view in such cameras. Sensor size is often expressed as optical format in inches. Other measures are also used; see table of sensor formats and sizes below. Lenses produced for 35 mm film cameras may mount well on

5586-456: The angle of view). The change in depth of field is brought about by the requirement for a different degree of enlargement to achieve the same final image size. In this case the ratio of depths of field becomes In practice, if applying a lens with a fixed focal length and a fixed aperture and made for an image circle to meet the requirements for a large sensor is to be adapted, without changing its physical properties, to smaller sensor sizes neither

5684-516: The area and the linear dimension of the photodiode, with the relative proportions and scale factors depending on the design of the photodiode. Thus in general the dark noise of a sensor may be expected to rise as the size of the sensor increases. However, in most sensors the mean pixel dark current at normal temperatures is small, lower than 50 e- per second, thus for typical photographic exposure times dark current and its associated noises may be discounted. At very long exposure times, however, it may be

5782-516: The area of those equipping common compacts include Canon PowerShot G-series (G3 X to G9 X), Sony DSC RX100 series, Panasonic Lumix TZ100 and Panasonic DMC-LX15. Canon has APS-C sensor on its top model PowerShot G1 X Mark III. Finally, Sony has the DSC-RX1 and DSC-RX1R cameras in their lineup, which have a full-frame sensor usually only used in professional DSLRs, SLTs and MILCs. Video camera tube Too Many Requests If you report this error to

5880-657: The aspect ratio of the popular SVGA , XGA , and SXGA display resolutions at the time of the first digital cameras, allowing images to be displayed on usual monitors without cropping. As of December 2010 most compact digital cameras used small 1/2.3" sensors. Such cameras include Canon Powershot SX230 IS, Fuji Finepix Z90 and Nikon Coolpix S9100. Some older digital cameras (mostly from 2005–2010) used even smaller 1/2.5" sensors: these include Panasonic Lumix DMC-FS62, Canon Powershot SX120 IS, Sony Cyber-shot DSC-S700 , and Casio Exilim EX-Z80. As of 2018 high-end compact cameras using one inch sensors that have nearly four times

5978-589: The built-in EVF, and the optional hotshoe add-on EVF. Until the introduction of the OM-D E-M5 in February, 2012, none of the Olympus designs included a built-in EVF. Olympus has four available add-on hotshoe viewfinders. The Olympus VF-1 is an optical viewfinder with an angle of view of 65 degrees, equivalent to the 17mm pancake lens field of view, and was designed primarily for the EP-1. Olympus has since introduced

SECTION 60

#1732780617327

6076-678: The camera body and risk damaging lens or body. An example is the Biogon type of lens. Overall, the ability to use adapted lenses gives Micro Four Thirds a great advantage in overall versatility and the practice has gained a somewhat cult following. Image samples can be found readily online, and in particular on the MU-43 adapted lenses forum. As of June 2012, Olympus , Panasonic , Cosina Voigtländer , Carl Zeiss AG , Jos. Schneider Optische Werke GmbH , Komamura Corporation, Sigma Corporation , Tamron , Astrodesign, Yasuhara, and Blackmagic Design have

6174-447: The characteristic dimensions of the format, and thus l 1 / l 2 {\displaystyle l_{1}/l_{2}} is the relative crop factor between the sensors. It is this result that gives rise to the common opinion that small sensors yield greater depth of field than large ones. An alternative is to consider the depth of field given by the same lens in conjunction with different sized sensors (changing

6272-440: The depth of field nor the light gathering l x = l m m 2 {\displaystyle \mathrm {lx=\,{\frac {lm}{m^{2}}}} } will change. Discounting photo response non-uniformity (PRNU) and dark noise variation, which are not intrinsically sensor-size dependent, the noises in an image sensor are shot noise , read noise , and dark noise . The overall signal to noise ratio of

6370-446: The depth of field of sensors receiving the same photometric exposure – the f-number is fixed instead of the aperture diameter – the sensors are operating at the same ISO setting in that case, but the smaller sensor is receiving less total light, by the area ratio. The ratio of depths of field is then where l 1 {\displaystyle l_{1}} and l 2 {\displaystyle l_{2}} are

6468-575: The digital bodies, but the larger image circle of the 35 mm system lens allows unwanted light into the camera body, and the smaller size of the image sensor compared to 35 mm film format results in cropping of the image. This latter effect is known as field-of-view crop. The format size ratio (relative to the 35 mm film format) is known as the field-of-view crop factor, crop factor, lens factor, focal-length conversion factor, focal-length multiplier, or lens multiplier. Three possible depth-of-field comparisons between formats are discussed, applying

6566-404: The division of the noise measured in volts by the conversion gain of the pixel. This is given, for an active pixel sensor , by the voltage at the input (gate) of the read transistor divided by the charge which generates that voltage, C G = V r t / Q r t {\displaystyle CG=V_{rt}/Q_{rt}} . This is the inverse of the capacitance of

6664-492: The equivalent 35 mm film camera field of view, the MFT focal length is much shorter. See the table of lenses below to understand the differences better. For comparison, typical DSLR sensors, such as Canon's APS-C sensors, have a crop factor of 1.6. Equivalent images are made by photographing the same angle of view , with the same depth of field and the same Angular resolution due to diffraction limitation (which requires different f-stops on different focal length lenses),

6762-400: The exception of a few MFT cameras, most MFT cameras record in a native 4:3 format image aspect ratio, and through cropping of the 4:3 image, can record in 16:9, 3:2 and 1:1 formats. Olympus E-M1 II, E-M1 III, E-M5 III, PEN-F, OM-System OM-5 25 Mpx (Rev.2) Gen 6 Panasonic G9 II (Rev.2) September 2023 (Panasonic G9 II) The MFT system design specifies a bayonet type lens mount with

6860-414: The exposures will be in inverse relation to the sensor area, producing the interesting result that if depth of field is a constraint, image shot noise is not dependent on sensor area. For identical f-number lenses the signal to noise ratio increases as square root of the pixel area, or linearly with pixel pitch. As typical f-numbers for lenses for cell phones and DSLR are in the same range f /1.5–2 it

6958-410: The f-number is not changed, and thus the spatial cutoff and resultant MTF on the sensor is unchanged, leaving the MTF in the viewed image to be scaled as the magnification, or inversely as the crop factor. It might be expected that lenses appropriate for a range of sensor sizes could be produced by simply scaling the same designs in proportion to the crop factor. Such an exercise would in theory produce

7056-439: The f-number required to equalise depth of field. But the aperture area is held constant, so sensors of all sizes receive the same total amount of light energy from the subject. The smaller sensor is then operating at a lower ISO setting , by the square of the crop factor). This condition of equal field of view, equal depth of field, equal aperture diameter, and equal exposure time is known as "equivalence". And, we might compare

7154-402: The feats of earlier larger sensors. These improvements in sensor technology allow smartphone manufacturers to use image sensors as small as 1/4" without sacrificing too much image quality compared to budget point & shoot cameras. For calculating camera angle of view one should use the size of active area of the sensor. Active area of the sensor implies an area of the sensor on which image

7252-543: The following: Obsolescent and out-of-production sensor sizes include: When full-frame sensors were first introduced, production costs could exceed twenty times the cost of an APS-C sensor. Only twenty full-frame sensors can be produced on an 8 inches (20 cm) silicon wafer , which would fit 100 or more APS-C sensors, and there is a significant reduction in yield due to the large area for contaminants per component. Additionally, full frame sensor fabrication originally required three separate exposures during each step of

7350-565: The formulae derived in the article on depth of field . The depths of field of the three cameras may be the same, or different in either order, depending on what is held constant in the comparison. Considering a picture with the same subject distance and angle of view for two different formats: so the DOFs are in inverse proportion to the absolute aperture diameters d 1 {\displaystyle d_{1}} and d 2 {\displaystyle d_{2}} . Using

7448-514: The high resolution VF-2 EVF, and a newer, less expensive, slightly lower resolution VF-3 for use in all its MFT cameras after the Olympus EP-1 . These EVF's not only slip into the accessory hotshoe, but also plug into a dedicated proprietary port for power and communication with Olympus cameras only. Both the VF-2 and VF-3 may also be used on high-end Olympus compact point and shoot cameras such as

7546-457: The linear fill factor of the lens, then the condition becomes ( f / # ) m i c r o l e n s ≤ ( f / # ) o b j e c t i v e × f f . {\displaystyle {(f/\#)}_{\mathrm {microlens} }\leq {(f/\#)}_{\mathrm {objective} }\times {\mathit {ff}}\,.} Thus if shading

7644-412: The money. Adapters ranging from low- to high-quality are readily available for purchase online. Canon FD, Nikon F (G lenses require special adapters), MD/MC, Leica M, M42 Screw Mount, and C-mount Cine lenses are all easily adaptable to the Micro Four Thirds system with glassless adapters, resulting in no induced loss of light or sharpness. Adapted lenses retain their native focal lengths but field of view

7742-511: The optically stabilized Panasonic Lumix G Vario 100–300 mm lens weighs just 520 g (18 oz), is only 126 mm (5.0 in) long, and uses a relatively petite 67 mm filter size. As a point of comparison, the Nikkor-P 600 mm f5.6 telephoto introduced for the 1964 Summer Olympics in Tokyo weighs 3,600 g (130 oz), is 516.5 mm (20.33 in) in length and uses

7840-631: The original Four Thirds with competing DSLR system see Four Thirds system#Advantages, disadvantages and other considerations Compared to inexpensive digital compact cameras and many bridge cameras , MFT cameras have better, larger sensors , and interchangeable lenses. There are many lenses available. On top of this, a large number of other lenses (even from the analogue film era) can be fitted using an adapter. Different lenses yield greater creative possibilities. However, Micro Four Thirds cameras also tend to be slightly larger, heavier and more expensive than compact cameras. Compared to most digital SLRs ,

7938-507: The original displays. Original Micro Four Thirds cameras used a contrast-detection autofocus system, slower than the phase-detect autofocus that is standard on DSLRs. To this day, most Micro Four Thirds cameras continue to use a contrast-based focusing system. Although some current models, such as the Olympus OM-D E-M1 Mark II , feature a hybrid phase-detect/contrast detect system, Panasonic Lumix cameras continued to use

8036-413: The periphery of the image field, due to the geometry of the light cone projected from the exit pupil of the lens to a point, or pixel, on the sensor surface. The effects are discussed in detail by Catrysse and Wandell. In the context of this discussion the most important result from the above is that to ensure a full transfer of light energy between two coupled optical systems such as the lens' exit pupil to

8134-490: The production of sensors with a lower stack height, improving sensitivity to off-angle light, eliminating the necessity of telecentricity and decreasing the distance from the image sensor at which a lens's rear element could be positioned without compromising light detection. Such a lens, however, would eliminate the room necessary to accommodate the mirror box of the single-lens reflex camera design, and would be incompatible with SLR Four Thirds bodies. Micro Four Thirds reduced

8232-474: The read transistor gate (and the attached floating diffusion) since capacitance C = Q / V {\displaystyle C=Q/V} . Thus C G = 1 / C r t {\displaystyle CG=1/C_{rt}} . In general for a planar structure such as a pixel, capacitance is proportional to area, therefore the read noise scales down with sensor area, as long as pixel area scales with sensor area, and that scaling

8330-404: The rear of the photodetectors and the microlens layer is placed directly on that surface, rather than the front side with its wiring layers. Some professional DSLRs, SLTs and mirrorless cameras use full-frame sensors, equivalent to the size of a frame of 35 mm film. Most consumer-level DSLRs, SLTs and mirrorless cameras use relatively large sensors, either somewhat under the size of

8428-472: The relative diameters of the Airy disks representing the limitation by diffraction are identical. Therefore, the equivalent f-numbers are varying. In this case, i.e., with the same luminous flux within the lens, the illuminance quadratically decreases and the luminous intensity quadratically increases with the image size. Therefore, all systems detect the same luminances and the same exposure values in

8526-459: The same motion blur (requires the same shutter speed), therefore the ISO setting must differ to compensate for the f-stop difference. The use of this is only to let us compare the effectiveness of the sensors given the same amount of light hitting them. In normal photography with any one camera, equivalence is not necessarily an issue: there are several lenses faster than f/2.4 for Micro Four Thirds (see

8624-403: The same absolute aperture diameter for both formats with the "same picture" criterion (equal angle of view, magnified to same final size) yields the same depth of field. It is equivalent to adjusting the f-number inversely in proportion to crop factor – a smaller f-number for smaller sensors (this also means that, when holding the shutter speed fixed, the exposure is changed by the adjustment of

8722-406: The same size image for viewing must be accounted for, resulting in an additional scale factor of 1 / C {\displaystyle 1/{C}} where C {\displaystyle {C}} is the relative crop factor, making the overall scale factor 1 / ( N C ) {\displaystyle 1/(NC)} . Considering the three cases above: For

8820-456: The same. Due to the ever-changing constraints of semiconductor fabrication and processing, and because camera manufacturers often source sensors from third-party foundries , it is common for sensor dimensions to vary slightly within the same nominal format. For example, the Nikon D3 and D700 cameras' nominally full-frame sensors actually measure 36 × 23.9 mm, slightly smaller than

8918-403: The sensor. To combat the effect discussed above, smaller format pixels include engineering design features to allow the reduction in f-number of their microlenses. These may include simplified pixel designs which require less metallisation, 'light pipes' built within the pixel to bring its apparent surface closer to the microlens and ' back side illumination ' in which the wafer is thinned to expose

9016-441: The size and the aspect ratio of the sensor. However, the chip diagonal is shorter than 4/3 of an inch; the 4/3 inch designation for this size of sensor dates back to the 1950s and vidicon tubes, when the external diameter of the camera tube was measured, not the active area. The MFT design standard also specifies multiple aspect ratios: 4:3, 3:2, 16:9 (the native HD video format specification), and 1:1 (a square format). With

9114-402: The smaller the focal length is. Micro Four Thirds has several advantages over larger format cameras and lenses: Though many DSLRs also have "live view" functionality, these often function relatively poorly compared to a Micro Four Thirds electronic viewfinder (EVF), which has the following advantages: Olympus and Panasonic approached the implementation of electronic viewfinders in two ways:

9212-499: The specified flange focal distance from 38.67mm to 19.25mm. This reduction facilitates smaller body and lens designs, and enables the use of adapters to fit almost any lens ever made for a camera with a flange distance larger than 19.25mm to a MFT camera body. Still-camera lenses produced by Canon, Leica, Minolta, Nikon, Pentax and Zeiss have all been successfully adapted for MFT use – as well as lenses produced for cinema, e.g. , PL mount or C mount . For comparison of

9310-413: The system MTF will therefore scale according to ξ c u t o f f {\displaystyle \xi _{\mathrm {cutoff} }} and in turn according to 1 / N {\displaystyle 1/N} (for the same light wavelength). In considering the effect of sensor size, and its effect on the final image, the different magnification required to obtain

9408-586: The tables under Fixed Focal Length Lenses, below), and there are certainly many lenses faster than f/4.8 for full frame. Although they can have shallower depth of field than a Nikon 1 at f/1.7, it can be seen as advantageous. However, a further aspect of image resolution is limitation by optical aberration , which can be compensated the better the smaller the focal lengths of a lens is. Lenses designed for mirrorless camera systems such as Nikon 1 or Micro Four Thirds often use image-space telecentric lens designs, which reduce shading and therefore light loss and blurring at

9506-431: The trend of increasing the number of "megapixels" in cell phone cameras during last 10 years was caused rather by marketing strategy to sell "more megapixels" than by attempts to improve image quality. The read noise is the total of all the electronic noises in the conversion chain for the pixels in the sensor array. To compare it with photon noise, it must be referred back to its equivalent in photoelectrons, which requires

9604-770: Was the Blackmagic Pocket Cinema Camera (BPCC), which was announced in April 2013 with 1080HD recording. In August 2013, SVS Vistek GmbH in Seefeld, Germany introduced the first high-speed industrial camera with a MFT lens mount, using 4/3" sensors from Truesense Imaging, Inc (formerly Kodak sensors, now part of ON Semiconductor ). The SVS Vistek Evo "Tracer" cameras have resolution-dependent shutter speeds, ranging from 147 frames per second (fps) at 1 megapixel (model evo1050 TR) to 22 fps at 8 megapixels (model evo8051 TR). In 2014, JK Imaging Ltd., which holds

#326673