170-620: A light fighter or lightweight fighter is a fighter aircraft towards the low end of the practical range of weight, cost, and complexity over which fighters are fielded. The light or lightweight fighter retains carefully selected competitive features, in order to provide cost-effective design and performance. A well-designed lightweight fighter is able to match or better a heavier type plane-for-plane in many missions, and for lower cost. The lightweight class can therefore be strategically valuable. In attempts to scale this efficiency to still lower cost, some manufacturers have in recent years adopted
340-584: A by now mediocre performance. The first Eindecker victory came on 1 July 1915, when Leutnant Kurt Wintgens , of Feldflieger Abteilung 6 on the Western Front, downed a Morane-Saulnier Type L. His was one of five Fokker M.5 K/MG prototypes for the Eindecker , and was armed with a synchronized aviation version of the Parabellum MG14 machine gun. The success of the Eindecker kicked off
510-470: A cadre of exceptional pilots. In the United Kingdom, at the behest of Neville Chamberlain (more famous for his 'peace in our time' speech), the entire British aviation industry was retooled, allowing it to change quickly from fabric covered metal framed biplanes to cantilever stressed skin monoplanes in time for the war with Germany, a process that France attempted to emulate, but too late to counter
680-612: A cheap "light weight tactical strike fighter" able to carry conventional or tactical nuclear weapons and operate from dispersed airfields with minimum ground support led to designs including the French SNCASE Baroudeur , Breguet Taon and Dassault Étendard VI , the Italian Aeritalia G.91 and Aerfer Ariete . Other competitors included the Northrop F-5A. The British chose to continue production of
850-435: A competitive cycle of improvement among the combatants, both sides striving to build ever more capable single-seat fighters. The Albatros D.I and Sopwith Pup of 1916 set the classic pattern followed by fighters for about twenty years. Most were biplanes and only rarely monoplanes or triplanes . The strong box structure of the biplane provided a rigid wing that allowed the accurate control essential for dogfighting. They had
1020-501: A continuous stream of bullets at Red. Let symbol A represent the number of soldiers in the Red force. Each one has offensive firepower α , which is the number of enemy soldiers it can incapacitate (e.g., kill or injure) per unit time. Likewise, Blue has B soldiers, each with offensive firepower β . Lanchester's square law calculates the number of soldiers lost on each side using the following pair of equations. Here, dA/dt represents
1190-443: A difficult deflection shot. The first step in finding a real solution was to mount the weapon on the aircraft, but the propeller remained a problem since the best direction to shoot is straight ahead. Numerous solutions were tried. A second crew member behind the pilot could aim and fire a swivel-mounted machine gun at enemy airplanes; however, this limited the area of coverage chiefly to the rear hemisphere, and effective coordination of
1360-635: A fighter and used for ground attack. Production ceased in mid-1944. The Hurricane IIC weighed 2,605 kg (5,743 lb) empty. On the eve of the war, the United States Army Air Corps contracted for several "very light" fighter designs based on the Ranger V-770 engine, an air-cooled inverted V12 engine, that delivered up to 700 hp. Two prototypes were the Bell XP-77 (empty weight 2,855 lb (1,295 kg)) and
1530-552: A form that would replace all others in the 1930s. As collective combat experience grew, the more successful pilots such as Oswald Boelcke , Max Immelmann , and Edward Mannock developed innovative tactical formations and maneuvers to enhance their air units' combat effectiveness. Allied and – before 1918 – German pilots of World War I were not equipped with parachutes , so in-flight fires or structural failures were often fatal. Parachutes were well-developed by 1918 having previously been used by balloonists, and were adopted by
1700-664: A great deal of ground-attack work. In World War II, the USAAF and RAF often favored fighters over dedicated light bombers or dive bombers , and types such as the Republic P-47 Thunderbolt and Hawker Hurricane that were no longer competitive as aerial combat fighters were relegated to ground attack. Several aircraft, such as the F-111 and F-117, have received fighter designations though they had no fighter capability due to political or other reasons. The F-111B variant
1870-561: A kill ratio of 12 to 1. However, Japan was unable to keep improving the aircraft through the war, primarily limited by lagging engine technology, and by mid-1942 a combination of new tactics and the introduction of better aircraft enabled the Allied pilots to engage the Zero on equal or superior terms. For instance, the larger and heavier Grumman F6F Hellcat had superior performance to the Zero in all aspects other than manoeuvrability. Combined with
SECTION 10
#17327872151222040-563: A non-linear advantage to the light fighter opposing a heavy fighter. Additionally, smaller targets take longer to visually acquire even if they are visible. These two factors together give the light fighter pilot much better statistical odds of seeing the heavy fighter first and setting up a decisive first shot. Once the small fighter sees and turns towards the opponent its very small frontal area reduces maximum visual detection range to about 2 to 2.5 miles (3.2 to 4.0 km). Given similar technology, smaller fighters typically have about two thirds
2210-431: A number of twin-engine fighters were built; however they were found to be outmatched against single-engine fighters and were relegated to other tasks, such as night fighters equipped with radar sets. By the end of the war, turbojet engines were replacing piston engines as the means of propulsion, further increasing aircraft speed. Since the weight of the turbojet engine was far less than a piston engine, having two engines
2380-550: A part of military nomenclature, a letter is often assigned to various types of aircraft to indicate their use, along with a number to indicate the specific aircraft. The letters used to designate a fighter differ in various countries. In the English-speaking world, "F" is often now used to indicate a fighter (e.g. Lockheed Martin F-35 Lightning II or Supermarine Spitfire F.22 ), though "P" used to be used in
2550-638: A range of specialized aircraft types. Some of the most expensive fighters such as the US Grumman F-14 Tomcat , McDonnell Douglas F-15 Eagle , Lockheed Martin F-22 Raptor and Russian Sukhoi Su-27 were employed as all-weather interceptors as well as air superiority fighter aircraft, while commonly developing air-to-ground roles late in their careers. An interceptor is generally an aircraft intended to target (or intercept) bombers and so often trades maneuverability for climb rate. As
2720-742: A result, during the early months of these campaigns, Axis air forces destroyed large numbers of Red Air Force aircraft on the ground and in one-sided dogfights. In the later stages on the Eastern Front, Soviet training and leadership improved, as did their equipment. By 1942 Soviet designs such as the Yakovlev Yak-9 and Lavochkin La-5 had performance comparable to the German Bf 109 and Focke-Wulf Fw 190 . Also, significant numbers of British, and later U.S., fighter aircraft were supplied to aid
2890-643: A separate (and vulnerable) radiator, but had increased drag. Inline engines often had a better power-to-weight ratio . Some air forces experimented with " heavy fighters " (called "destroyers" by the Germans). These were larger, usually twin-engined aircraft, sometimes adaptations of light or medium bomber types. Such designs typically had greater internal fuel capacity (thus longer range) and heavier armament than their single-engine counterparts. In combat, they proved vulnerable to more agile single-engine fighters. The primary driver of fighter innovation, right up to
3060-533: A single engine aircraft of competitive performance, range, and armament load, but with no unnecessary weight and cost. The modern view of light/lightweight fighters is as a capable weapon intended to satisfy the main criteria of air-to-air combat effectiveness, which in order of importance, are: 1. Superiority in the element of surprise , to be aware of the enemy before they are aware of you. In past combats, surprise advantage has been mostly based upon small visual and radar signatures, and having good visibility out of
3230-420: A single operator, who flew the aircraft and also controlled its armament. They were armed with one or two Maxim or Vickers machine guns, which were easier to synchronize than other types, firing through the propeller arc. Gun breeches were in front of the pilot, with obvious implications in case of accidents, but jams could be cleared in flight, while aiming was simplified. The use of metal aircraft structures
3400-447: A stream of firepower that continuously weakens the enemy force over time. By comparison, cruise missiles typically are fired in relatively small quantities. Each one has a high probability of hitting its target, and carries a relatively powerful warhead. Therefore, it makes more sense to model them as a discrete pulse (or salvo) of firepower in a discrete time model. Second, Lanchester's equations include only offensive firepower, whereas
3570-554: A strong factor favoring the heavy fighter. The specific argument usually presented is that heavy fighters have superior radar range and longer range BVR missiles that take advantage of that range. This radar range advantage is one of the major reasons for the existence of the modern heavy fighter, but it has not turned out to be a significant advantage in air combat history to date for several reasons. A major reason has been because long range BVR missile shots have often been unusable, and often unreliable when they could be taken. The weight of
SECTION 20
#17327872151223740-399: A time. If each soldier kills, and is killed by, exactly one other, then the number of soldiers remaining at the end of the battle is simply the difference between the larger army and the smaller, assuming identical weapons. The linear law also applies to unaimed fire into an enemy-occupied area. The rate of attrition depends on the density of the available targets in the target area as well as
3910-444: Is a basic outcome of Lanchester's laws , or the salvo combat model , that a larger number of less-sophisticated units will tend to be successful over a smaller number of more advanced ones; the damage dealt is based on the square of the number of units firing, while the quality of those units has only a linear effect on the outcome. This non-linear relationship favors the light and lightweight fighter. Additionally, as pilot capability
4080-402: Is a fast, heavily armed and long-range type, able to act as an escort fighter protecting bombers , to carry out offensive sorties of its own as a penetration fighter and maintain standing patrols at significant distance from its home base. Bombers are vulnerable due to their low speed, large size and poor maneuvrability. The escort fighter was developed during World War II to come between
4250-627: Is a kind of "average" (specifically, the geometric mean ) of the casualty fractions justifies using it as an index of the bitterness of the battle. Statistical work prefers natural logarithms of the Helmbold Parameters. They are noted log μ {\displaystyle \log \mu } , log ε {\displaystyle \log \varepsilon } , and log λ {\displaystyle \log \lambda } . See Helmbold (2021): Some observers have noticed
4420-549: Is able to defend itself while conducting attack sorties. The word "fighter" was first used to describe a two-seat aircraft carrying a machine gun (mounted on a pedestal) and its operator as well as the pilot . Although the term was coined in the United Kingdom, the first examples were the French Voisin pushers beginning in 1910, and a Voisin III would be the first to shoot down another aircraft, on 5 October 1914. However at
4590-472: Is actually the top consideration in maximizing total effectiveness of the pilot-aircraft system, the lower purchase and operational cost of light fighters permits more training, thus delivering more effective pilots. For example, as of 2013, total heavy F-15C operating cost is reported at US$ 41,900 per hour, and light F-16C cost at US$ 22,500 per hour. 3. Superior maneuverability , which in maneuvering combat allows getting into superior position to fire and score
4760-456: Is also known as the N-square law . With firearms engaging each other directly with aimed shooting from a distance, they can attack multiple targets and can receive fire from multiple directions. The rate of attrition now depends only on the number of weapons shooting. Lanchester determined that the power of such a force is proportional not to the number of units it has, but to the square of
4930-461: Is also known, then it is possible to solve for λ {\displaystyle \lambda } . If, as is normally the case, ε {\displaystyle \varepsilon } is small enough that the hyperbolic functions can, without any significant error, be replaced by their series expansion up to terms in the first power of ε {\displaystyle \varepsilon } , and if abbreviations adopted for
5100-578: Is another late 2nd/early 3rd generation delta wing Mach 2 fighter. Stemming from a French requirement for a lightweight all-weather interceptor, it has been in service since 1961. With an empty weight of 7,076 kg (15,600 lb) in the "E" version with added ground attack capability, the Mirage III is a light fighter by modern standards (though twice as heavy as initial Mirage I). Its maneuverability, modest cost, reliability and armament of 30mm cannons and heat seeking missiles proved effective. It served
5270-466: Is exceeded by several lighter fighters such as the F-16. Light fighters have no inherent aerodynamic advantage for speed and range, but when designed to be as simple as possible they do tend to have lower wing loading and higher thrust to weight ratio. Additionally, smaller fighters are lower in inertia, allowing a faster transient response in maneuvering combat. 4. Weapon systems effectiveness . This area
Light fighter - Misplaced Pages Continue
5440-406: Is illustrated by the defense investment at stake. As an example where well referenced data is available, though numerous trial and combat references consider the lightweight F-16 to be as good or better on a per plane as the excellent but expensive F-15, fielding and maintaining a light fighter force based on the F-16 is approximately half the cost of the same number of F-15's. The US Air Force reports
5610-519: Is important since in the majority of air-to-air kills, the element of surprise is dominant. Their comparative lower cost and higher reliability also allows for greater numbers per budget. Finally, while a single engine light fighter would typically only carry about half the weapons load of a heavy twin engine fighter, its surprise and maneuverability advantages often allow it to gain positional advantage to make better use of those weapons. A requirement for low cost and therefore small fighters first arose in
5780-623: Is known as an interceptor . Recognized classes of fighter include: Of these, the Fighter-bomber , reconnaissance fighter and strike fighter classes are dual-role, possessing qualities of the fighter alongside some other battlefield role. Some fighter designs may be developed in variants performing other roles entirely, such as ground attack or unarmed reconnaissance . This may be for political or national security reasons, for advertising purposes, or other reasons. The Sopwith Camel and other "fighting scouts" of World War I performed
5950-1073: Is modeled after a solution of the Lanchester Square Law's differential equations, their numerical values are based entirely on the initial and final strengths of the opponents and in no way depend upon the validity of Lanchester's Square Law as a model of attrition during the course of a battle. The solution of Lanchester's Square Law used here can be written as: a ( t ) = cosh ( λ t ) − μ sinh ( λ t ) d ( t ) = cosh ( λ t ) − μ − 1 sinh ( λ t ) ε = λ T {\displaystyle {\begin{aligned}a(t)&=\cosh(\lambda t)-\mu \sinh(\lambda t)\\d(t)&=\cosh(\lambda t)-\mu ^{-1}\sinh(\lambda t)\\\varepsilon &=\lambda T\end{aligned}}} Where: If
6120-403: Is not just better radar but better systems support for the fighter pilot in other ways as well. Examples include all weather capability, precise electronic navigation, electronic counter-measures, data-linking for improved information awareness, and automation to lighten pilot workload and keep the pilot focused on tasks essential to combat. This was a compelling argument, as the greatest factor in
6290-472: Is of national level strategic importance. Fighter aircraft Fighter aircraft (early on also pursuit aircraft ) are military aircraft designed primarily for air-to-air combat . In military conflict, the role of fighter aircraft is to establish air superiority of the battlespace . Domination of the airspace above a battlefield permits bombers and attack aircraft to engage in tactical and strategic bombing of enemy targets, and helps prevent
6460-559: Is one where the light fighter can be at a disadvantage, since the combat load of a single engine light fighter is typically about half of a twin engine heavy fighter. However, modern single engine light fighters such as the General Dynamics F-16 Fighting Falcon and the Saab JAS 39 Gripen generally carry similar cannon and air-to-air missile fighter weapons as heavier fighters. Actual aerial combat in
6630-437: Is to satisfy standard air-to-air fighter effectiveness requirements at minimum cost. These criteria, in order of importance, are the ability to benefit from the element of surprise, to have numerical superiority in the air, to have superior maneuverability, and to possess adequate weapon systems effectiveness. Light fighters typically achieve a surprise advantage over larger aircraft due to smaller visual and radar signatures, which
6800-608: Is why the US Air Force adopted both the F-15 Eagle and F-16 in a "hi/lo" strategy of both an outstanding but expensive heavy fighter and a lower cost but also outstanding lightweight fighter. The investment to maintain a competitive modern lightweight fighter air force is approximately $ 90M to $ 130M (2013 dollars) per plane over a 20-year service life, which is approximately half the cost of heavy fighters so understanding fighter aircraft design trade-offs and combat effectiveness
6970-537: The 1965 war , for the loss of two Gnats downed by PAF fighters. During the Indo-Pakistani War of 1971 , Indian Gnats shot down several Pakistani F-86s without loss. The Gnat was successful against the capable F-86 flown by well-trained Pakistani pilots because its smaller size allowed a superior level of surprise and greater agility in dogfighting. In the early 1950s, the NATO NBMR-1 competition for
Light fighter - Misplaced Pages Continue
7140-562: The Combined Bomber Offensive . Unescorted Consolidated B-24 Liberators and Boeing B-17 Flying Fortress bombers, however, proved unable to fend off German interceptors (primarily Bf 109s and Fw 190s). With the later arrival of long range fighters, particularly the North American P-51 Mustang , American fighters were able to escort far into Germany on daylight raids and by ranging ahead attrited
7310-517: The Douglas XP-48 (empty weight 2,655 lb (1,204 kg)). Problems with the engine and performance and a perceived lack of need saw both programs canceled. However, they were specifically defined as "light" or "very light" fighter aircraft. Instead, the US developed a number of standard pursuit fighters, the most efficient being the relatively lightweight North American P-51 Mustang . The P-51
7480-737: The Hawker Hunter , while the French decided to work independently of the competition. Italy produced the Fiat G.91 while the competition was underway and, in 1957, this was selected as NATO's standard strike fighter. With an empty weight of 3,100 kg (6,800 lb) it was very light for a jet fighter. The G.91 entered service with the Italian Air Force in 1961, with the West German Luftwaffe , in 1962, and later with
7650-585: The Junkers D.I , made with corrugated duralumin , all based on his experience in creating the pioneering Junkers J 1 all-metal airframe technology demonstration aircraft of late 1915. While Fokker would pursue steel tube fuselages with wooden wings until the late 1930s, and Junkers would focus on corrugated sheet metal, Dornier was the first to build a fighter (the Dornier-Zeppelin D.I ) made with pre-stressed sheet aluminum and having cantilevered wings,
7820-561: The Portuguese Air Force . It was in production for 19 years, with production ceasing in 1977 with 756 aircraft built. In the mid-1950s, it was realized that fighter costs were escalating to possibly unacceptable levels, and some companies sought to reverse the trend to heavier and more expensive fighters. A prominent result was the Mach 1.3 to Mach 1.6, 4,335 kg (9,557 lb) Northrop F-5 . Smaller, cheaper and simpler than
7990-510: The RAF and the USAAF against German industry intended to wear down the Luftwaffe. Axis fighter aircraft focused on defending against Allied bombers while Allied fighters' main role was as bomber escorts. The RAF raided German cities at night, and both sides developed radar-equipped night fighters for these battles. The Americans, in contrast, flew daylight bombing raids into Germany delivering
8160-588: The Sopwith Tabloid and Bristol Scout . The French and the Germans didn't have an equivalent as they used two seaters for reconnaissance, such as the Morane-Saulnier L , but would later modify pre-war racing aircraft into armed single seaters. It was quickly found that these were of little use since the pilot couldn't record what he saw while also flying, while military leaders usually ignored what
8330-792: The Stangensteuerung in German, for "pushrod control system") devised by the engineers of Anthony Fokker 's firm was the first system to enter service. It would usher in what the British called the " Fokker scourge " and a period of air superiority for the German forces, making the Fokker Eindecker monoplane a feared name over the Western Front , despite its being an adaptation of an obsolete pre-war French Morane-Saulnier racing airplane, with poor flight characteristics and
8500-665: The 1863 Battle of Gettysburg , the 1940 Battle of Britain between the British and German air forces, and the Battle of Kursk . In modern warfare, to take into account that to some extent both linear and the square apply often, an exponent of 1.5 is used. Lanchester's laws have also been used to model guerrilla warfare . The laws have also been applied to repeat battles with a range of inter-battle reinforcement strategies. Attempts have been made to apply Lanchester's laws to conflicts between animal groups. Examples include tests with chimpanzees and ants . The chimpanzee application
8670-411: The 1930s as a means to expand France 's fleet of aircraft and counter the buildup of the German air force. This focused on light wooden fighters that could be built quickly without affecting production of other aircraft. A mid-thirties specification requiring fixed undercarriage produced two prototypes and in 1936 a revised requirement for retractable gear resulted in three prototypes. The most numerous of
SECTION 50
#17327872151228840-668: The British Royal Flying Corps and Royal Air Force referred to them as " scouts " until the early 1920s, while the U.S. Army called them "pursuit" aircraft until the late 1940s (using the designation P, as in Curtiss P-40 Warhawk , Republic P-47 Thunderbolt and Bell P-63 Kingcobra ). The UK changed to calling them fighters in the 1920s , while the US Army did so in the 1940s. A short-range fighter designed to defend against incoming enemy aircraft
9010-658: The British mid-50s Folland Gnat , the American North American F-86 Sabre , Northrop F-5 and the Soviet Mikoyan MiG-15 . The Mikoyan-Gurevich MiG-15 was a Soviet jet fighter developed shortly after World War II. It weighed 3,630 kg (8,000 lb) empty and was one of the first successful jet fighters to use swept wings for high transonic speeds. It first saw service in the Chinese Civil War. In combat during
9180-639: The British, the Americans, the Spanish (in the Spanish civil war) and the Germans. Given limited budgets, air forces were conservative in aircraft design, and biplanes remained popular with pilots for their agility, and remained in service long after they ceased to be competitive. Designs such as the Gloster Gladiator , Fiat CR.42 Falco , and Polikarpov I-15 were common even in the late 1930s, and many were still in service as late as 1942. Up until
9350-624: The European battlefield, played a crucial role in the eventual defeat of the Axis, which Reichmarshal Hermann Göring , commander of the German Luftwaffe summed up when he said: "When I saw Mustangs over Berlin, I knew the jig was up." Lanchester%27s laws Lanchester's laws are mathematical formulas for calculating the relative strengths of military forces . The Lanchester equations are differential equations describing
9520-458: The F-5 remains in service with many nations, some of which have undertaken extensive upgrade programs to modernize its abilities with digital avionics and radar guided missiles. The light middleweight Saab 35 Draken was a second to third generation Mach 2 fighter produced from 1955 to 1974 and in service for 45 years, with empty weights from 6,577 kg (14,500) to 7,440 kg (16,400 lb). It
9690-451: The F-5 with a planform area of about 300 square feet (28 m) or the F-16 at about 400 square feet (37 m), compared to about 1,050 square feet (98 m) for the F-15, have a much lower visual profile. The small fighter is typically invisible to opposing pilots beyond about 4 miles (6.4 km), whereas a larger fighter such as the F-15 is visible to about 7 miles (11 km). This is
9860-872: The French Air Force and was exported to many countries. It performed very well for Israel in the Six-Day War of 1967 and Yom Kippur War of 1973. However, Argentina's Mirage IIIs were out-performed by British Sea Harriers during the Falklands War of 1982. Similar in size to the F-5, the Russian Mikoyan-Gurevich MiG-21 entered service in 1959, was produced until 1985, and is still in widespread use today. The late Generation 2 to Generation 3, Mach 2 MiG-21 has an empty weight of 4,535 kg (9,998 lb), and has served nearly 60 nations. It shot down 37 to 104 US Phantoms, in
10030-483: The German flying services during the course of that year. The well known and feared Manfred von Richthofen , the "Red Baron", was wearing one when he was killed, but the allied command continued to oppose their use on various grounds. In April 1917, during a brief period of German aerial supremacy a British pilot's average life expectancy was calculated to average 93 flying hours, or about three weeks of active service. More than 50,000 airmen from both sides died during
10200-618: The German invasion. The period of improving the same biplane design over and over was now coming to an end, and the Hawker Hurricane and Supermarine Spitfire started to supplant the Gloster Gladiator and Hawker Fury biplanes but many biplanes remained in front-line service well past the start of World War II. While not a combatant in Spain, they too absorbed many of the lessons in time to use them. The Spanish Civil War also provided an opportunity for updating fighter tactics. One of
10370-756: The Italians developed several monoplanes such as the Fiat G.50 Freccia , but being short on funds, were forced to continue operating obsolete Fiat CR.42 Falco biplanes. From the early 1930s the Japanese were at war against both the Chinese Nationalists and the Russians in China, and used the experience to improve both training and aircraft, replacing biplanes with modern cantilever monoplanes and creating
SECTION 60
#173278721512210540-968: The Japanese Nakajima Ki-27 , Nakajima Ki-43 and Mitsubishi A6M Zero and the Italian Fiat G.50 Freccia and Macchi MC.200 . In contrast, designers in the United Kingdom, Germany, the Soviet Union, and the United States believed that the increased speed of fighter aircraft would create g -forces unbearable to pilots who attempted maneuvering dogfights typical of the First World War, and their fighters were instead optimized for speed and firepower. In practice, while light, highly maneuverable aircraft did possess some advantages in fighter-versus-fighter combat, those could usually be overcome by sound tactical doctrine, and
10710-704: The Korean War, it outclassed straight-winged jet day fighters. Some 18,000 were produced. The North American F-86 Sabre , a transonic jet fighter manufactured from 1949, was the United States's first swept wing fighter. With an empty weight of 5,000 kg (11,000 lb) it was nearly 40 per cent heavier than the MiG-15, but light compared with today's fighters. The F-86 had a bubble canopy, small size, moderate cost, high maneuverability, and an armament of six .50 in (13 mm) calibre machine guns. It could turn faster than any modern fighter. It saw combat against
10880-594: The Lanchester equations continue to form the basis of analysis in many of the US Army’s combat simulations, and in 2016 a RAND Corporation report examined by these laws the probable outcome in the event of a Russian invasion into the Baltic nations of Estonia, Latvia, and Lithuania. For ancient combat, between phalanxes of soldiers with spears for example, one soldier could only ever fight exactly one other soldier at
11050-613: The Luftwaffe to establish control of the skies over Western Europe. By the time of Operation Overlord in June 1944, the Allies had gained near complete air superiority over the Western Front. This cleared the way both for intensified strategic bombing of German cities and industries, and for the tactical bombing of battlefield targets. With the Luftwaffe largely cleared from the skies, Allied fighters increasingly served as ground attack aircraft. Allied fighters, by gaining air superiority over
11220-420: The Luftwaffe, and while the Luftwaffe maintained a qualitative edge over the Red Air Force for much of the war, the increasing numbers and efficacy of the Soviet Air Force were critical to the Red Army's efforts at turning back and eventually annihilating the Wehrmacht . Meanwhile, air combat on the Western Front had a much different character. Much of this combat focused on the strategic bombing campaigns of
11390-476: The Mig 15 in high-speed dogfights during the Korean War . Considered (with the MiG 15) as one of the best fighters in the Korean War, it was the most-produced Western jet fighter, with total production of 9,860 units. It continued as a front-line fighter in numerous air forces until 1994. The Folland Gnat was a British private venture design for a light fighter and was the product of "Teddy" Petter 's theories about fighter aircraft design. Although only adopted by
11560-417: The Navy and a smaller number in the Marines. Navy author James Perry Stevenson called the Bearcat "the quintessential lightweight fighter". The Soviet Yakovlev Yak-3 , which entered service in 1944, was an attempt to develop the smallest and lightest fighter around the 1,600 hp (1,200 kW) V-12 Klimov M-107 engine. As this engine was not available in time, the 1,300 hp (970 kW) Klimov M-105
11730-419: The Soviet Polikarpov I-16 . The later German design was earlier in its design cycle, and had more room for development and the lessons learned led to greatly improved models in World War II. The Russians failed to keep up and despite newer models coming into service, I-16s remaining the most common Soviet front-line fighter into 1942 despite being outclassed by the improved Bf 109s in World War II. For their part,
11900-417: The Soviet MiG-21. It also participated in large scale trials of aircraft and missile effectiveness. In the extensive 9 month long AIMVAL/ACEVAL trial at Nellis AFB in 1977, the F-5 "Red Force" was quite effective against the considerably larger F-14 Tomcat naval fighter and F-15 Eagle single seat fighters making up the "Blue Force". These modern aircraft are approximately five to ten times more expensive than
12070-419: The Soviet war effort as part of Lend-Lease , with the Bell P-39 Airacobra proving particularly effective in the lower-altitude combat typical of the Eastern Front. The Soviets were also helped indirectly by the American and British bombing campaigns, which forced the Luftwaffe to shift many of its fighters away from the Eastern Front in defense against these raids. The Soviets increasingly were able to challenge
12240-655: The UK as a trainer, the Gnat served successfully as a fighter for the Indian Air Force and was in service from 1959 to 1979. India produced an improved derivative of it, the HAL Ajeet . With an empty weight of 2,177 kg (4,799 lb) it was the lightest successful post-World War II jet fighter, though at the cost of shorter range compared to other fighters. The Gnat is credited as having shot down seven Pakistani F-86s in
12410-640: The US Navy's superior training standards, units equipped with the type achieved a large victory-to-loss ratio against the Zero and other Japanese aircraft. The Royal Air Force entered World War II with two modern single-engined fighters forming the majority of the fighter force of the RAF – the Supermarine Spitfire and the Hawker Hurricane . Initially introduced as bomber interceptors, both started with eight machine gun armament but changed to cannons in
12580-504: The US for pursuit (e.g. Curtiss P-40 Warhawk ), a translation of the French "C" ( Dewoitine D.520 C.1 ) for Chasseur while in Russia "I" was used for Istrebitel , or exterminator ( Polikarpov I-16 ). As fighter types have proliferated, the air superiority fighter emerged as a specific role at the pinnacle of speed, maneuverability, and air-to-air weapon systems – able to hold its own against all other fighters and establish its dominance in
12750-529: The United States, Russia, India and China. The first step was to find ways to reduce the aircraft's reflectivity to radar waves by burying the engines, eliminating sharp corners and diverting any reflections away from the radar sets of opposing forces. Various materials were found to absorb the energy from radar waves, and were incorporated into special finishes that have since found widespread application. Composite structures have become widespread, including major structural components, and have helped to counterbalance
12920-666: The Vietnam War, with the Phantoms shooting down 54 to 66 MiG-21s in return. In December 1966 the MiG-21 pilots of the 921st FR downed 14 F-105s without any losses. Its weaknesses include poor visibility and relatively short range, but has otherwise proven to be a capable fighter. The US's Vought F-8 Crusader used in Vietnam weighed 8,000 kg (18,000 lb), as compared with 13,750 kg (30,310 lb) for an F-4 Phantom. It
13090-497: The ability to gather information by reconnaissance over the battlefield. Early fighters were very small and lightly armed by later standards, and most were biplanes built with a wooden frame covered with fabric, and a maximum airspeed of about 100 mph (160 km/h). A successful German biplane, the Albatross, however, was built with a plywood shell, rather than fabric, which created a stronger, faster airplane. As control of
13260-538: The advantages of fighting above Britain's home territory allowed the RAF to deny Germany air superiority, saving the UK from possible German invasion and dealing the Axis a major defeat early in the Second World War. On the Eastern Front , Soviet fighter forces were overwhelmed during the opening phases of Operation Barbarossa . This was a result of the tactical surprise at the outset of the campaign,
13430-481: The aircraft. By concentrating wing, engine and landing gear weight in the firewall, the structure of the Bf 109 could be made relatively light and simple. The Bf 109 was the second-smallest major fighter aircraft of World War II and the lightest in the European theater. The "E" version used in the Battle of Britain had an empty weight of 2,010 kg (4,430 lb). The more heavily armed and powerful G version used later in
13600-419: The airframe. But, these Mach 2 and above class speeds have zero utility in combat. Combat speeds never exceed Mach 1.7 and seldom 1.2, for two reasons. First, it requires extensive use of the afterburner, which typically increases fuel consumption by about a factor of three or even four, and rapidly reduces operational radius. Second, speeds even above about Mach 0.7 to Mach 1 (depending on circumstances) so widen
13770-534: The airspace over armies became increasingly important, all of the major powers developed fighters to support their military operations. Between the wars, wood was largely replaced in part or whole by metal tubing, and finally aluminum stressed skin structures (monocoque) began to predominate. By World War II , most fighters were all-metal monoplanes armed with batteries of machine guns or cannons and some were capable of speeds approaching 400 mph (640 km/h). Most fighters up to this point had one engine, but
13940-502: The basis for an effective "fighter" in the modern sense of the word. It was based on small fast aircraft developed before the war for air racing such with the Gordon Bennett Cup and Schneider Trophy . The military scout airplane was not expected to carry serious armament, but rather to rely on speed to "scout" a location, and return quickly to report, making it a flying horse. British scout aircraft, in this sense, included
14110-408: The benefit of being flown by well trained pilots using a well considered operational plan. Only 120 were delivered to units, and it scored only a few kills in experimental use before the war ended. After World War II fighter design moved into the jet era, and many jet fighters followed the successful World War II formula of highly efficient mostly single-engine designs. Prominent early examples include
14280-414: The bombers and enemy attackers as a protective shield. The primary requirement was for long range, with several heavy fighters given the role. However they too proved unwieldy and vulnerable, so as the war progressed techniques such as drop tanks were developed to extend the range of more nimble conventional fighters. The penetration fighter is typically also fitted for the ground-attack role, and so
14450-628: The casualty fractions are F A = 1 − a ( T ) {\displaystyle F_{A}=1-a(T)} and F D = 1 − d ( T ) {\displaystyle F_{D}=1-d(T)} , then the approximate relations that hold include ε = F A F D {\displaystyle \varepsilon ={\sqrt {F_{A}F_{D}}}} and μ = F A / F D {\displaystyle \mu =F_{A}/F_{D}} . That ε {\displaystyle \varepsilon }
14620-501: The cockpit. Surprise is a significant advantage, since historically in about 80% of air-to-air kills, the victim was unaware of the attacker until too late. As the former editor of 'The Topgun Journal', the author asked hundreds of pilots over a six-year period what single advantage they would like to have, that is, longer-range missiles, more guns, better maneuverability, etc. To a pilot they all said 'The first sighting.' James Stevenson, The Pentagon Paradox. Small fighters like
14790-536: The contemporary F-4 Phantom, the F-5 had excellent performance and was popular on the export market. It was perhaps the most effective US-produced fighter in the 1960s and early 1970s, with a high sortie rate, low accident rate, high maneuverability, and an effective armament of 20mm cannon and heat-seeking missiles. Though the United States never procured the F-5 for main line service, it did adopt it as an opposing forces (OPFOR) "aggressor" for dissimilar training role because of its small size and similarity in performance to
14960-459: The course of the war. The Spitfire, designed by R. J. Mitchell , entered service in 1938 and remained in production throughout the war. The empty weight of the Battle of Britain -era Spitfire IIA was 2,142 kg (4,722 lb), increasing to 2,984 kg (6,579 lb) in a later variant. It was highly maneuverable and was generally a match for its German opponents. Most Spitfires had a Rolls-Royce Merlin engine, but later variants used one of
15130-610: The defense budgets of modern armed forces. The global combat aircraft market was worth $ 45.75 billion in 2017 and is projected by Frost & Sullivan at $ 47.2 billion in 2026: 35% modernization programs and 65% aircraft purchases, dominated by the Lockheed Martin F-35 with 3,000 deliveries over 20 years. A fighter aircraft is primarily designed for air-to-air combat . A given type may be designed for specific combat conditions, and in some cases for additional roles such as air-to-ground fighting. Historically
15300-616: The design approach of the Italians and Japanese made their fighters ill-suited as interceptors or attack aircraft. During the invasion of Poland and the Battle of France , Luftwaffe fighters—primarily the Messerschmitt Bf 109 —held air superiority, and the Luftwaffe played a major role in German victories in these campaigns. During the Battle of Britain , however, British Hurricanes and Spitfires proved roughly equal to Luftwaffe fighters. Additionally Britain's radar-based Dowding system directing fighters onto German attacks and
15470-522: The early 1960s since both were believed unusable at the speeds being attained, however the Vietnam War showed that guns still had a role to play, and most fighters built since then are fitted with cannon (typically between 20 and 30 mm (0.79 and 1.18 in) in caliber) in addition to missiles. Most modern combat aircraft can carry at least a pair of air-to-air missiles. In the 1970s, turbofans replaced turbojets, improving fuel economy enough that
15640-470: The early jet fighter era. In World War II fighter design was strongly influenced by the seeking of higher speeds that were valuable in combat in order to close with the enemy or to escape. This trend was instinctively continued in some jet fighters through the 3rd generation (F-4 at Mach 2.23) and into the 4th generation (F-14 at Mach 2.35 and F-15 at Mach 2.5+). The aerodynamic requirements to operate at such speeds add considerable complexity, weight, and cost to
15810-650: The easiest, and the only way to achieve it. This was the idea underlying the first two American superfighters; the F-14 Tomcat and the F-15 Eagle.” While the technology advantage for heavy fighters that better supported the pilot may well have been a valid point in the 1970s (when the F-14 and F-15 first entered service), this advantage has not been maintained over time. Engine performance improvements have improved load carry capability, and with more compact electronics,
15980-445: The effectiveness of a fighter plane has always been the pilot. Quoting a prominent reference, "Throughout the history of air combat, a few outstanding fighter pilots, typically less than five percent of the whole, have run up large scores at the expense of their less gifted brethren. The numerical imbalance was such that a large number of high scorers was needed. The quest was on to turn each fighter pilot into an ace, and technology seemed
16150-586: The enemy from doing the same. The key performance features of a fighter include not only its firepower but also its high speed and maneuverability relative to the target aircraft. The success or failure of a combatant's efforts to gain air superiority hinges on several factors including the skill of its pilots, the tactical soundness of its doctrine for deploying its fighters, and the numbers and performance of those fighters. Many modern fighter aircraft also have secondary capabilities such as ground attack and some types, such as fighter-bombers , are designed from
16320-513: The fighter. Rifle-caliber .30 and .303 in (7.62 and 7.70 mm) calibre guns remained the norm, with larger weapons either being too heavy and cumbersome or deemed unnecessary against such lightly built aircraft. It was not considered unreasonable to use World War I-style armament to counter enemy fighters as there was insufficient air-to-air combat during most of the period to disprove this notion. The rotary engine , popular during World War I, quickly disappeared, its development having reached
16490-410: The first shot and inflicting multiple casualties. Note that Lanchester's square law does not apply to technological force, only numerical force; so it requires an N-squared-fold increase in quality to compensate for an N-fold decrease in quantity. Suppose that two armies, Red and Blue, are engaging each other in combat. Red is shooting a continuous stream of bullets at Blue. Meanwhile, Blue is shooting
16660-442: The greatly superior German Messerschmitt Me 262 jet fighter, flown by the finest pilots Germany had left, many of them very high scoring aces with kill counts far in excess of Allied pilots, in its relatively small numbers suffered heavy losses and was unable to fundamentally alter the air war over Germany. Such issues are relevant to future military planning and deployments. The light fighter class originally stemmed from concern at
16830-636: The growing size and cost of the frontline fighters in the 1920s. During the late 1920s and 1930s the light fighter would receive significant attention, especially in France. One early light fighter project was the French Air Force 's 'Jockey' interceptor program of 1926. Several aircraft, including the Nieuport-Delage NiD 48 and Amiot 110 , were trialed without much success as they offered little over aircraft already in production In
17000-406: The guns were subjected). Shooting with this traditional arrangement was also easier because the guns shot directly ahead in the direction of the aircraft's flight, up to the limit of the guns range; unlike wing-mounted guns which to be effective required to be harmonised , that is, preset to shoot at an angle by ground crews so that their bullets would converge on a target area a set distance ahead of
17170-420: The initial and final strengths of the two sides are known it is possible to solve for the parameters a ( T ) {\displaystyle a(T)} , d ( T ) {\displaystyle d(T)} , μ {\displaystyle \mu } , and ε {\displaystyle \varepsilon } . If the battle duration T {\displaystyle T}
17340-433: The innovations was the development of the " finger-four " formation by the German pilot Werner Mölders . Each fighter squadron (German: Staffel ) was divided into several flights ( Schwärme ) of four aircraft. Each Schwarm was divided into two Rotten , which was a pair of aircraft. Each Rotte was composed of a leader and a wingman. This flexible formation allowed the pilots to maintain greater situational awareness, and
17510-514: The interceptor. The equipment necessary for daytime flight is inadequate when flying at night or in poor visibility. The night fighter was developed during World War I with additional equipment to aid the pilot in flying straight, navigating and finding the target. From modified variants of the Royal Aircraft Factory B.E.2c in 1915, the night fighter has evolved into the highly capable all-weather fighter. The strategic fighter
17680-416: The jet fighter era showed a combat history similar in general trend to that of the propeller fighters of World War II. So long as lighter fighters are of sufficient power-to-weight ratio and airframe sophistication, and flown by similarly skilled pilots, they tend to dominate over heavier fighters using surprise, numbers, and maneuverability. However, one significant difference did emerge in design strategy in
17850-438: The kill. This is a function of achieving lower wing loading, higher thrust to weight ratio, and superior aerodynamics. This is sometimes described colloquially as “wrapping the smallest possible airframe around the most powerful available engine.” Professional analysis through 4th generation fighters shows that among heavier fighters only the F-15 has been generally competitive with lighter fighters, and its maneuvering performance
18020-410: The larger missiles also reduces performance and range needed to get in position to fire. Due to these factors, between 1958 and 1982 in five wars there were 2,014 missile firings by fighter pilots engaged in air-to-air combat, but there were only four beyond-visual-range kills. The more general and often misunderstood argument for more technology that has been historically assumed to favor heavy fighters
18190-420: The last piston engine support aircraft could be replaced with jets, making multi-role combat aircraft possible. Honeycomb structures began to replace milled structures, and the first composite components began to appear on components subjected to little stress. With the steady improvements in computers, defensive systems have become increasingly efficient. To counter this, stealth technologies have been pursued by
18360-432: The late 1920s the British similarly issued specification F.20/27 for a short-range fast-climbing daylight interceptor. The de Havilland DH.77 and Vickers Jockey monoplanes were among seven designs tendered to meet the specification but neither went into production, the heavier but faster biplane Hawker Fury being preferred. Despite the failure of their Jockey program, the French returned to lightweight fighters during
18530-637: The leadership vacuum within the Soviet military left by the Great Purge , and the general inferiority of Soviet designs at the time, such as the obsolescent Polikarpov I-15 biplane and the I-16 . More modern Soviet designs, including the Mikoyan-Gurevich MiG-3 , LaGG-3 and Yakolev Yak-1 , had not yet arrived in numbers and in any case were still inferior to the Messerschmitt Bf 109 . As
18700-499: The light to middle-weight range proved to be the most effective. Properly designed with competitive power to weight and thrust to drag ratios, these aircraft out-performed heavy fighters in combat due to greater surprise and maneuverability. They were also more cost effective, allowing greater numbers to be deployed as a combat advantage. Some single-engined fighters (including the P-51 Mustang and A6M Zero) could also match or beat
18870-432: The lightest major fighter in current production, carries a combat load of a 27mm cannon and up to six air-to-air missiles of the same types as carried by heavy fighters. Additionally, combat experience shows that weapons systems "effectiveness" has not been dominated by the amount of weaponry or "load out", but by the ability to achieve split second kills when in position to do so. Superior technology has often been quoted as
19040-399: The lightweight fighter has, from the 1980s onwards, had similar pilot enhancing technical features. The lightweight fighter carries equally effective weapons including BVR missiles, and has similar combat range and persistence. The modern lightweight fighter achieves these competitive features while still maintaining the classic advantages of better surprise, numbers, and maneuverability. Thus,
19210-453: The lightweight fighter natural advantages have remained in force despite the addition of more technology to air combat. Due to their lower costs, modern light fighters equip the air forces of many smaller nations. However, as budgets have limits for all nations, the optimum selection of fighter aircraft weight, complexity, and cost is an important strategic issue even for wealthy nations. The budgetary and strategic significance of light fighters
19380-451: The lightweight fighter. For example, from the front the F-15 actually presents about 20 square metres (220 sq ft) radar cross sectional area, and has been typically defeated by opposing F-16 forces not only in close dogfighting combat, but also in extensive Beyond Visual Range (BVR) trials. Also, airborne fighter radars are limited: their coverage is only to the front, and are far from perfect in detecting enemy aircraft. Although radar
19550-410: The mid-1930s, the majority of fighters in the US, the UK, Italy and Russia remained fabric-covered biplanes. Fighter armament eventually began to be mounted inside the wings, outside the arc of the propeller, though most designs retained two synchronized machine guns directly ahead of the pilot, where they were more accurate (that being the strongest part of the structure, reducing the vibration to which
19720-474: The modern era is of short duration, typically about two minutes, and as only a small fraction of this is spent actually firing, modest weapons load outs are generally effective. The ideal weapons load for a modern fighter is considered to be an internal gun and two to four guided missiles, a load that modern light fighters are fully capable of while maintaining high agility. For example, the JAS 39 Gripen , despite being
19890-443: The more recent salvo combat model equations, with two main differences. First, Lanchester's original equations form a continuous time model, whereas the basic salvo equations form a discrete time model. In a gun battle, bullets or shells are typically fired in large quantities. Each round has a relatively low chance of hitting its target, and does a relatively small amount of damage. Therefore, Lanchester's equations model gunfire as
20060-495: The most modern weapons, against an enemy in complete command of the air, fights like a savage…" Throughout the war, fighters performed their conventional role in establishing air superiority through combat with other fighters and through bomber interception, and also often performed roles such as tactical air support and reconnaissance . Fighter design varied widely among combatants. The Japanese and Italians favored lightly armed and armored but highly maneuverable designs such as
20230-536: The most powerful engines of the war – the Rolls-Royce Griffon . The Spitfire was produced and improved throughout the war but was complex to build and had limited range. In other respects it was considered an outstanding fighter. The Hawker Hurricane played an important role in the Battle of Britain , but its performance was inferior to the Spitfire and during the war was removed from frontline duty as
20400-735: The norm the Soviet Mikoyan MiG-21 , the French Mirage III , and the Swedish Saab Draken entered service. The next generation of lightweight fighters included the American F-16 Fighting Falcon , Swedish JAS 39 Gripen , Indian HAL Tejas , Korean FA-50 , Japanese Mitsubishi F-2 , Chinese Chengdu J-10 and Pakistani CAC/PAC JF-17 Thunder . The high practical and budgetary effectiveness of modern light fighters for many missions
20570-410: The number of units. This is known as Lanchester's square law. More precisely, the law specifies the casualties a shooting force will inflict over a period of time, relative to those inflicted by the opposing force. In its basic form, the law is only useful to predict outcomes and casualties by attrition. It does not apply to whole armies, where tactical deployment means not all troops will be engaged all
20740-423: The number of weapons shooting. If two forces, occupying the same land area and using the same weapons, shoot randomly into the same target area, they will both suffer the same rate and number of casualties, until the smaller force is eventually eliminated: the greater probability of any one shot hitting the larger force is balanced by the greater number of shots directed at the smaller force. Lanchester's square law
20910-607: The opposition. Subsequently, radar capabilities grew enormously and are now the primary method of target acquisition . Wings were made thinner and swept back to reduce transonic drag, which required new manufacturing methods to obtain sufficient strength. Skins were no longer sheet metal riveted to a structure, but milled from large slabs of alloy. The sound barrier was broken, and after a few false starts due to required changes in controls, speeds quickly reached Mach 2, past which aircraft cannot maneuver sufficiently to avoid attack. Air-to-air missiles largely replaced guns and rockets in
21080-488: The outbreak of World War I , front-line aircraft were mostly unarmed and used almost exclusively for reconnaissance . On 15 August 1914, Miodrag Tomić encountered an enemy airplane while on a reconnaissance flight over Austria-Hungary which fired at his aircraft with a revolver, so Tomić fired back. It was believed to be the first exchange of fire between aircraft. Within weeks, all Serbian and Austro-Hungarian aircraft were armed. Another type of military aircraft formed
21250-451: The outset for dual roles. Other fighter designs are highly specialized while still filling the main air superiority role, and these include the interceptor and, historically, the heavy fighter and night fighter . Since World War I, achieving and maintaining air superiority has been considered essential for victory in conventional warfare . Fighters continued to be developed throughout World War I, to deny enemy aircraft and dirigibles
21420-399: The past. 2. Numerical superiority in the air , which implies the need for lower procurement cost, lower maintenance cost, and higher reliability. Not even taking into account the sometimes superior combat capability of lighter aircraft based on surprise and maneuverability, the pure numbers issue of lower cost and higher reliability (higher sortie rates) also tends to favor light fighters. It
21590-415: The period between World War I and World War II. Examples include several RAF interceptor designs from the interwar era and French "Jockey" aircraft of the immediate pre-World War II. None of these very light fighters enjoyed success into World War II, as they were too hampered in performance. Similar to the meaning of lightweight fighter today, during World War II the term “small fighter” was used to describe
21760-487: The period of rapid re-armament in the late 1930s, were not military budgets, but civilian aircraft racing. Aircraft designed for these races introduced innovations like streamlining and more powerful engines that would find their way into the fighters of World War II. The most significant of these was the Schneider Trophy races, where competition grew so fierce, only national governments could afford to enter. At
21930-433: The period, going from a typical 180 hp (130 kW) in the 900 kg (2,000 lb) Fokker D.VII of 1918 to 900 hp (670 kW) in the 2,500 kg (5,500 lb) Curtiss P-36 of 1936. The debate between the sleek in-line engines versus the more reliable radial models continued, with naval air forces preferring the radial engines, and land-based forces often choosing inlines. Radial designs did not require
22100-456: The pilot's maneuvering with the gunner's aiming was difficult. This option was chiefly employed as a defensive measure on two-seater reconnaissance aircraft from 1915 on. Both the SPAD S.A and the Royal Aircraft Factory B.E.9 added a second crewman ahead of the engine in a pod but this was both hazardous to the second crewman and limited performance. The Sopwith L.R.T.Tr. similarly added a pod on
22270-451: The pilots reported. Attempts were made with handheld weapons such as pistols and rifles and even light machine guns, but these were ineffective and cumbersome. The next advance came with the fixed forward-firing machine gun, so that the pilot pointed the entire aircraft at the target and fired the gun, instead of relying on a second gunner. Roland Garros bolted metal deflector plates to the propeller so that it would not shoot itself out of
22440-410: The point where rotational forces prevented more fuel and air from being delivered to the cylinders, which limited horsepower. They were replaced chiefly by the stationary radial engine though major advances led to inline engines gaining ground with several exceptional engines—including the 1,145 cu in (18,760 cm ) V-12 Curtiss D-12 . Aircraft engines increased in power several-fold over
22610-575: The propeller arc was evident even before the outbreak of war and inventors in both France and Germany devised mechanisms that could time the firing of the individual rounds to avoid hitting the propeller blades. Franz Schneider , a Swiss engineer, had patented such a device in Germany in 1913, but his original work was not followed up. French aircraft designer Raymond Saulnier patented a practical device in April 1914, but trials were unsuccessful because of
22780-461: The propeller arc. Wing guns were tried but the unreliable weapons available required frequent clearing of jammed rounds and misfires and remained impractical until after the war. Mounting the machine gun over the top wing worked well and was used long after the ideal solution was found. The Nieuport 11 of 1916 used this system with considerable success, however, this placement made aiming and reloading difficult but would continue to be used throughout
22950-458: The propeller blades were fitted with metal wedges to protect them from ricochets . Garros' modified monoplane first flew in March 1915 and he began combat operations soon after. Garros scored three victories in three weeks before he himself was downed on 18 April and his airplane, along with its synchronization gear and propeller was captured by the Germans. Meanwhile, the synchronization gear (called
23120-426: The propensity of the machine gun employed to hang fire due to unreliable ammunition. In December 1914, French aviator Roland Garros asked Saulnier to install his synchronization gear on Garros' Morane-Saulnier Type L parasol monoplane . Unfortunately the gas-operated Hotchkiss machine gun he was provided had an erratic rate of fire and it was impossible to synchronize it with the propeller. As an interim measure,
23290-472: The radar range against the same target as heavy fighters. However, this cannot be counted upon to give the large fighter a winning advantage, as larger fighters with typical radar cross sectional area of about 10 square metres (110 sq ft) are detectable by a given radar at about 50% farther range than the 2 to 3 square metres (22 to 32 sq ft) cross section of the light fighter. This approximately balances these trade-offs, and can sometimes favor
23460-431: The range of their heavy twin-engined counterparts. The German Messerschmitt Bf 109 entered service in 1937 as a high speed interceptor and became the most-produced fighter in history, with nearly 34,000 built. The design philosophy of the Bf 109 was to wrap a small airframe around a powerful engine using Messerschmitt's "lightweight construction" principle, which aimed to minimize the weight and number of separate parts in
23630-403: The rate at which the number of Red soldiers is changing at a particular instant. A negative value indicates the loss of soldiers. Similarly, dB/dt represents the rate of change of the number of Blue soldiers. The solution to these equations shows that: The first three of these conclusions are obvious. The final one is the origin of the name "square law". Lanchester's equations are related to
23800-518: The salvo equations also include defensive firepower. Given their small size and large number, it is not practical to intercept bullets and shells in a gun battle. By comparison, cruise missiles can be intercepted (shot down) by surface-to-air missiles and anti-aircraft guns. Therefore, missile combat models include those active defenses. Lanchester's laws have been used to model historical battles for research purposes. Examples include Pickett's Charge of Confederate infantry against Union infantry during
23970-532: The skies above the battlefield. The interceptor is a fighter designed specifically to intercept and engage approaching enemy aircraft. There are two general classes of interceptor: relatively lightweight aircraft in the point-defence role, built for fast reaction, high performance and with a short range, and heavier aircraft with more comprehensive avionics and designed to fly at night or in all weathers and to operate over longer ranges . Originating during World War I, by 1929 this class of fighters had become known as
24140-417: The sky and a number of Morane-Saulnier Ns were modified. The technique proved effective, however the deflected bullets were still highly dangerous. Soon after the commencement of the war, pilots armed themselves with pistols, carbines , grenades , and an assortment of improvised weapons. Many of these proved ineffective as the pilot had to fly his airplane while attempting to aim a handheld weapon and make
24310-408: The steady increases in aircraft weight—most modern fighters are larger and heavier than World War II medium bombers. Because of the importance of air superiority, since the early days of aerial combat armed forces have constantly competed to develop technologically superior fighters and to deploy these fighters in greater numbers, and fielding a viable fighter fleet consumes a substantial proportion of
24480-516: The term “light fighter” to also refer to light primarily air-to-ground attack aircraft , some of which are modified trainer designs. These lower cost lightweight attack aircraft have become known as light combat aircraft (LCA's), and are sometimes considered to include some multirole light fighters. From 1926 the light fighter concept has been a regular thread in the development of fighter aircraft, with some notable designs entering large-scale use. A key design goal of light/lightweight fighter design
24650-538: The time dependence of two armies' strengths A and B as a function of time, with the function depending only on A and B. In 1915 and 1916 during World War I , M. Osipov and Frederick Lanchester independently devised a series of differential equations to demonstrate the power relationships between opposing forces. Among these are what is known as Lanchester's linear law (for ancient combat ) and Lanchester's square law (for modern combat with long-range weapons such as firearms). As of 2017 modified variations of
24820-432: The time. It only works where each unit (soldier, ship, etc.) can kill only one equivalent unit at a time. For this reason, the law does not apply to machine guns, artillery with unguided munitions, or nuclear weapons. The law requires an assumption that casualties accumulate over time: it does not work in situations in which opposing troops kill each other instantly, either by shooting simultaneously or by one side getting off
24990-485: The top wing with no better luck. An alternative was to build a "pusher" scout such as the Airco DH.2 , with the propeller mounted behind the pilot. The main drawback was that the high drag of a pusher type's tail structure made it slower than a similar "tractor" aircraft. A better solution for a single seat scout was to mount the machine gun (rifles and pistols having been dispensed with) to fire forwards but outside
25160-568: The total loaded cost per hour (as of 2013) of operating the F-16C to be ~US$ 22,500 per hour, while that of the heavy F-15C is $ 41,900 per hour. Numerous authoritative sources report that it takes about 200 to 400 flight hours per year to maintain fighter pilot proficiency. Lanchester's laws on military superiority suggest that any technical superiority of the heavy fighter on a unit basis will not always translate to winning wars. For example, late in WWII
25330-453: The turn radius in maneuvering combat that the fighter is thrown too wide to get a tracking solution on an opponent. Speed had reached the limit of its practical combat value, such that optimum fighter design required understanding the penalties the endless search for higher speed was imposing, and sometimes deliberately choosing not to accept those penalties. As supersonic performance, with afterburning engines and modern missile armament, became
25500-464: The two Rotten could split up at any time and attack on their own. The finger-four would be widely adopted as the fundamental tactical formation during World War Two, including by the British and later the Americans. World War II featured fighter combat on a larger scale than any other conflict to date. German Field Marshal Erwin Rommel noted the effect of airpower: "Anyone who has to fight, even with
25670-460: The two designs which went into production was the Caudron C.714 . Delivery began in early 1940, but less than 100 had been built before the fall of France . Although underpowered, it was of necessity used by Polish air force pilots serving in France. There was debate before and during World War II about the optimum size, weight and number of engines for fighter aircraft. During the war, fighters in
25840-485: The use of light weaponry and the absence of armour and self-sealing fuel tanks. Early in World War II the Zero was considered the most capable carrier-based fighter in the world, and the extremely long range meant that the Zero could appear in and strike locations where Japanese air power was otherwise not expected to reach. In early combat operations, the Zero gained a reputation as an excellent dogfighter , achieving
26010-560: The various versions of the F-5. The final result was the F-5 fighting the more modern fighters to an effective plane for plane draw. In direct combat against the similar MiG-21 (which performed well against American fighters in Vietnam), the F-5 is known to have scored 13 victories against 4 losses. Just under 1000 of the F-5A Freedom Fighter were sold worldwide, and another 1,400 of the updated F-5E Tiger II version. As of 2016
26180-542: The very end of the inter-war period in Europe came the Spanish Civil War . This was just the opportunity the German Luftwaffe , Italian Regia Aeronautica , and the Soviet Union's Voenno-Vozdushnye Sily needed to test their latest aircraft. Each party sent numerous aircraft types to support their sides in the conflict. In the dogfights over Spain, the latest Messerschmitt Bf 109 fighters did well, as did
26350-478: The war as the weapons used were lighter and had a higher rate of fire than synchronized weapons. The British Foster mounting and several French mountings were specifically designed for this kind of application, fitted with either the Hotchkiss or Lewis Machine gun , which due to their design were unsuitable for synchronizing. The need to arm a tractor scout with a forward-firing gun whose bullets passed through
26520-544: The war had an empty weight of 2,700 kg (6,000 lb). In comparison, its main fighter opponents weighed 2,100 to 5,800 kg (4,600 to 12,800 lb). The lightest major fighter of World War II was the Japanese Mitsubishi A6M Zero naval fighter. Entering service in 1940 and remaining in use throughout the war, it had an empty weight of 1,680 kg (3,700 lb) for the A6M2 version, which
26690-443: The war. Fighter development stagnated between the wars, especially in the United States and the United Kingdom, where budgets were small. In France, Italy and Russia, where large budgets continued to allow major development, both monoplanes and all metal structures were common. By the end of the 1920s, however, those countries overspent themselves and were overtaken in the 1930s by those powers that hadn't been spending heavily, namely
26860-552: Was a double-delta wing single-engine fighter. Its steeply swept inner delta wing allowed for a high cruise speed. The double-delta, with a shallower rake at the outer wing, improved maneuverability. It was designed to be cheap enough for small countries and simple enough to be maintained by conscripted mechanics. Its high acceleration, light wing loading, and extreme maneuverability enabled it to be an excellent dogfighter. However, it had an overly complex fire control system. It remained in service until 2005. The French Dassault Mirage III
27030-457: Was a simple, supersonic, single engine, gun- and heat-seeker armed fighter in front-line service from 1957 to 1976. It had no radar except a simple ranging gunsite radar. The US claims the Crusader (up to 1968) shot down six enemy aircraft for every loss, compared with 2.4 for every Phantom lost. The three F-8s shot down in air-to-air were all lost to MiG-17 cannon fire. The first few decades of
27200-560: Was a very deliberate attempt at producing a low cost jet fighter without materials that were in short supply at the end of the war. It was a low cost emergency fighter , one of several designs for the Emergency Fighter Program using rockets or jets, which could be built by unskilled labour and would be flown by inexperienced pilots to defend the Third Reich. With an empty weight of 1,660 kg (3,660 lb), it
27370-518: Was among the lighter major fighters of World War II. A development of the Yakovlev Yak-7 , it entered combat in late 1942 and was the Soviet Union's most-produced fighter with 16,769 built. At low altitudes, the Yak-9 was faster and more maneuverable than the Bf 109. However, its armament of one cannon and one machine gun was relatively light. The Luftwaffe's Heinkel He 162 Volksjäger of 1945
27540-410: Was extensively used by the United States in the Vietnam War, only 18% of North Vietnamese fighters were first detected by radar, and only 3% by radar on fighter aircraft. The other 82% were visually acquired. The modern trend to stealth aircraft is an attempt to maximize surprise in an era when Beyond Visual Range (BVR) missiles are becoming more effective than the quite low effectiveness BVR has had in
27710-412: Was extremely light even by the standards of its time. The design team leader, Jiro Horikoshi , intended it to be as light and agile as possible, embodying the qualities of a samurai sword . With Japanese engine technology lagging behind that of the west, but required to out-perform western fighters, the designers minimised weight to maximize range and maneuverability. This was achieved by methods including
27880-666: Was more economical, costing less per air-to-air kill than any other American aircraft. The United States Navy , also made aware of lightweight advantages by combat results, ordered a lighter version of the Grumman F6F Hellcat , which at 9,238 lb (4,190 kg) empty weight had limited maneuverability and rate of climb. The planned Grumman F8F Bearcat replacement used the same engine, but with empty weight reduced to 7,070 lb (3,210 kg) had excellent performance. It entered production too late to see combat in World War II. Postwar, it equipped 24 fighter squadrons in
28050-420: Was no longer a handicap and one or two were used, depending on requirements. This in turn required the development of ejection seats so the pilot could escape, and G-suits to counter the much greater forces being applied to the pilot during maneuvers. In the 1950s, radar was fitted to day fighters, since due to ever increasing air-to-air weapon ranges, pilots could no longer see far enough ahead to prepare for
28220-485: Was originally intended for a fighter role with the U.S. Navy , but it was canceled. This blurring follows the use of fighters from their earliest days for "attack" or "strike" operations against ground targets by means of strafing or dropping small bombs and incendiaries. Versatile multi role fighter-bombers such as the McDonnell Douglas F/A-18 Hornet are a less expensive option than having
28390-508: Was pioneered before World War I by Breguet but would find its biggest proponent in Anthony Fokker, who used chrome-molybdenum steel tubing for the fuselage structure of all his fighter designs, while the innovative German engineer Hugo Junkers developed two all-metal, single-seat fighter monoplane designs with cantilever wings: the strictly experimental Junkers J 2 private-venture aircraft, made with steel, and some forty examples of
28560-403: Was relatively successful. A study of Australian meat ants and Argentine ants confirmed the square law, but a study of fire ants did not confirm the square law. The Helmbold Parameters provide quick, concise, exact numerical indices, soundly based on historical data, for comparing battles with respect to their bitterness and the degree to which side had the advantage. While their definition
28730-551: Was substituted, with a resulting empty weight of 2,100 kg (4,600 lb). Despite the reduced power, the Yak-3 had a top speed of 655 km/h (407 mph). The Yak-3 could out-turn the German Bf 109 and Fw 190. German pilots were ordered to avoid dogfights with the Yak-3 at low level. The Soviet Yakovlev Yak-9 was also a lightweight fighter, initially using the M-105 engine. With an empty weight 2,350 kg (5,180 lb), it
28900-578: Was very light even for the time. The He 162A was powered by a BMW 003 engine. With a top speed of 790 km/h (490 mph) at normal thrust at sea level, and 840 km/h (520 mph) at 6,000 m (20,000 ft), it was about 130 km/h (81 mph) faster than Allied fighters but had no more than 30 minutes fuel. Test pilots reported it to be a fine handling and conceptually well designed aircraft, and considered its problems to be rushed delivery more than any fundamental design flaws. It never formally entered operational service, and did not receive
#121878