Misplaced Pages

Hamming code

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In computer science and telecommunications , Hamming codes are a family of linear error-correcting codes . Hamming codes can detect one-bit and two-bit errors, or correct one-bit errors without detection of uncorrected errors. By contrast, the simple parity code cannot correct errors, and can detect only an odd number of bits in error. Hamming codes are perfect codes , that is, they achieve the highest possible rate for codes with their block length and minimum distance of three. Richard W. Hamming invented Hamming codes in 1950 as a way of automatically correcting errors introduced by punched card readers. In his original paper, Hamming elaborated his general idea, but specifically focused on the Hamming(7,4) code which adds three parity bits to four bits of data.

#203796

99-438: In mathematical terms, Hamming codes are a class of binary linear code. For each integer r ≥ 2 there is a code-word with block length n = 2 − 1 and message length k = 2 − r − 1 . Hence the rate of Hamming codes is R = k / n = 1 − r / (2 − 1) , which is the highest possible for codes with minimum distance of three (i.e., the minimal number of bit changes needed to go from any code word to any other code word

198-591: A set whose elements are unspecified, of operations acting on the elements of the set, and rules that these operations must follow. The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called modern algebra or abstract algebra , as established by the influence and works of Emmy Noether . Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics. Their study became autonomous parts of algebra, and include: The study of types of algebraic structures as mathematical objects

297-407: A Hamming code is constructed by listing all columns of length m that are pair-wise independent. Thus H is a matrix whose left side is all of the nonzero n -tuples where order of the n -tuples in the columns of matrix does not matter. The right hand side is just the ( n  −  k )- identity matrix . So G can be obtained from H by taking the transpose of the left hand side of H with

396-440: A distance of 3, as three bits need to be flipped in the same triple to obtain another code word with no visible errors. It can correct one-bit errors or it can detect - but not correct - two-bit errors. A (4,1) repetition (each bit is repeated four times) has a distance of 4, so flipping three bits can be detected, but not corrected. When three bits flip in the same group there can be situations where attempting to correct will produce

495-614: A foundation for all mathematics). Mathematics involves the description and manipulation of abstract objects that consist of either abstractions from nature or—in modern mathematics—purely abstract entities that are stipulated to have certain properties, called axioms . Mathematics uses pure reason to prove properties of objects, a proof consisting of a succession of applications of deductive rules to already established results. These results include previously proved theorems , axioms, and—in case of abstraction from nature—some basic properties that are considered true starting points of

594-669: A fruitful interaction between mathematics and science , to the benefit of both. Mathematical discoveries continue to be made to this very day. According to Mikhail B. Sevryuk, in the January ;2006 issue of the Bulletin of the American Mathematical Society , "The number of papers and books included in the Mathematical Reviews (MR) database since 1940 (the first year of operation of MR)

693-404: A mathematical problem. In turn, the axiomatic method allows for the study of various geometries obtained either by changing the axioms or by considering properties that do not change under specific transformations of the space . Today's subareas of geometry include: Algebra is the art of manipulating equations and formulas. Diophantus (3rd century) and al-Khwarizmi (9th century) were

792-422: A mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a conjecture . Through a series of rigorous arguments employing deductive reasoning , a statement that is proven to be true becomes a theorem. A specialized theorem that is mainly used to prove another theorem is called a lemma . A proven instance that forms part of

891-555: A minority of these repetitions. This way the receiver will notice that a transmission error occurred since the received data stream is not the repetition of a single message, and moreover, the receiver can recover the original message by looking at the received message in the data stream that occurs most often. Because of the bad error correcting performance coupled with the low code rate (ratio between useful information symbols and actual transmitted symbols), other error correction codes are preferred in most cases. The chief attraction of

990-402: A more general finding is termed a corollary . Numerous technical terms used in mathematics are neologisms , such as polynomial and homeomorphism . Other technical terms are words of the common language that are used in an accurate meaning that may differ slightly from their common meaning. For example, in mathematics, " or " means "one, the other or both", while, in common language, it

1089-505: A noisy transmission medium, a successful transmission could take a long time or may never occur. However, while the quality of parity checking is poor, since it uses only a single bit, this method results in the least overhead. A two-out-of-five code is an encoding scheme which uses five bits consisting of exactly three 0s and two 1s. This provides ( 5 3 ) = 10 {\displaystyle {\binom {5}{3}}=10} possible combinations, enough to represent

SECTION 10

#1732788092204

1188-535: A population mean with a given level of confidence. Because of its use of optimization , the mathematical theory of statistics overlaps with other decision sciences , such as operations research , control theory , and mathematical economics . Computational mathematics is the study of mathematical problems that are typically too large for human, numerical capacity. Numerical analysis studies methods for problems in analysis using functional analysis and approximation theory ; numerical analysis broadly includes

1287-411: A separate branch of mathematics until the seventeenth century. At the end of the 19th century, the foundational crisis in mathematics and the resulting systematization of the axiomatic method led to an explosion of new areas of mathematics. The 2020 Mathematics Subject Classification contains no less than sixty-three first-level areas. Some of these areas correspond to the older division, as

1386-424: A single unknown , which were called algebraic equations (a term still in use, although it may be ambiguous). During the 19th century, mathematicians began to use variables to represent things other than numbers (such as matrices , modular integers , and geometric transformations ), on which generalizations of arithmetic operations are often valid. The concept of algebraic structure addresses this, consisting of

1485-418: A statistical action, such as using a procedure in, for example, parameter estimation , hypothesis testing , and selecting the best . In these traditional areas of mathematical statistics , a statistical-decision problem is formulated by minimizing an objective function , like expected loss or cost , under specific constraints. For example, designing a survey often involves minimizing the cost of estimating

1584-531: A taped interview, Hamming said, "And so I said, 'Damn it, if the machine can detect an error, why can't it locate the position of the error and correct it?'". Over the next few years, he worked on the problem of error-correction, developing an increasingly powerful array of algorithms. In 1950, he published what is now known as Hamming code, which remains in use today in applications such as ECC memory . A number of simple error-detecting codes were used before Hamming codes, but none were as effective as Hamming codes in

1683-477: A wide expansion of mathematical logic, with subareas such as model theory (modeling some logical theories inside other theories), proof theory , type theory , computability theory and computational complexity theory . Although these aspects of mathematical logic were introduced before the rise of computers , their use in compiler design, formal verification , program analysis , proof assistants and other aspects of computer science , contributed in turn to

1782-703: Is Fermat's Last Theorem . This conjecture was stated in 1637 by Pierre de Fermat, but it was proved only in 1994 by Andrew Wiles , who used tools including scheme theory from algebraic geometry , category theory , and homological algebra . Another example is Goldbach's conjecture , which asserts that every even integer greater than 2 is the sum of two prime numbers . Stated in 1742 by Christian Goldbach , it remains unproven despite considerable effort. Number theory includes several subareas, including analytic number theory , algebraic number theory , geometry of numbers (method oriented), diophantine equations , and transcendence theory (problem oriented). Geometry

1881-400: Is flat " and "a field is always a ring ". Repetition code In coding theory , the repetition code is one of the most basic linear error-correcting codes . In order to transmit a message over a noisy channel that may corrupt the transmission in a few places, the idea of the repetition code is to just repeat the message several times. The hope is that the channel corrupts only

1980-401: Is 0, which is incorrect. If we increase the size of the bit string to four, we can detect all two-bit errors but cannot correct them (the quantity of parity bits is even); at five bits, we can both detect and correct all two-bit errors, but not all three-bit errors. Moreover, increasing the size of the parity bit string is inefficient, reducing throughput by three times in our original case, and

2079-811: Is called a (canonical) generator matrix of a linear ( n , k ) code, and H := ( A I n − k ) {\displaystyle \mathbf {H} :={\begin{pmatrix}{\begin{array}{c|c}A&I_{n-k}\\\end{array}}\end{pmatrix}}} is called a parity-check matrix . This is the construction of G and H in standard (or systematic) form. Regardless of form, G and H for linear block codes must satisfy H G T = 0 {\displaystyle \mathbf {H} \,\mathbf {G} ^{\text{T}}=\mathbf {0} } , an all-zeros matrix. Since [7, 4, 3] = [ n ,  k ,  d ] = [2 − 1, 2 − 1 −  m , 3]. The parity-check matrix H of

SECTION 20

#1732788092204

2178-403: Is commonly used for advanced parts. Analysis is further subdivided into real analysis , where variables represent real numbers , and complex analysis , where variables represent complex numbers . Analysis includes many subareas shared by other areas of mathematics which include: Discrete mathematics, broadly speaking, is the study of individual, countable mathematical objects. An example

2277-513: Is defined by the set of all similar objects and the properties that these objects must have. For example, in Peano arithmetic , the natural numbers are defined by "zero is a number", "each number has a unique successor", "each number but zero has a unique predecessor", and some rules of reasoning. This mathematical abstraction from reality is embodied in the modern philosophy of formalism , as founded by David Hilbert around 1910. The "nature" of

2376-407: Is either ambiguous or means "one or the other but not both" (in mathematics, the latter is called " exclusive or "). Finally, many mathematical terms are common words that are used with a completely different meaning. This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every free module

2475-493: Is in Babylonian mathematics that elementary arithmetic ( addition , subtraction , multiplication , and division ) first appear in the archaeological record. The Babylonians also possessed a place-value system and used a sexagesimal numeral system which is still in use today for measuring angles and time. In the 6th century BC, Greek mathematics began to emerge as a distinct discipline and some Ancient Greeks such as

2574-425: Is in error. If only one parity bit indicates an error, the parity bit itself is in error. With m parity bits, bits from 1 up to 2 m − 1 {\displaystyle 2^{m}-1} can be covered. After discounting the parity bits, 2 m − m − 1 {\displaystyle 2^{m}-m-1} bits remain for use as data. As m varies, we get all

2673-586: Is mostly used for numerical calculations . Number theory dates back to ancient Babylon and probably China . Two prominent early number theorists were Euclid of ancient Greece and Diophantus of Alexandria. The modern study of number theory in its abstract form is largely attributed to Pierre de Fermat and Leonhard Euler . The field came to full fruition with the contributions of Adrien-Marie Legendre and Carl Friedrich Gauss . Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example

2772-404: Is not sufficient to verify by measurement that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results ( theorems ) and a few basic statements. The basic statements are not subject to proof because they are self-evident ( postulates ), or are part of the definition of the subject of study ( axioms ). This principle, foundational for all mathematics,

2871-1192: Is now more than 1.9 million, and more than 75 thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical theorems and their proofs." Mathematical notation is widely used in science and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. This notation consists of symbols used for representing operations , unspecified numbers, relations and any other mathematical objects, and then assembling them into expressions and formulas. More precisely, numbers and other mathematical objects are represented by symbols called variables, which are generally Latin or Greek letters, and often include subscripts . Operation and relations are generally represented by specific symbols or glyphs , such as + ( plus ), × ( multiplication ), ∫ {\textstyle \int } ( integral ), = ( equal ), and < ( less than ). All these symbols are generally grouped according to specific rules to form expressions and formulas. Normally, expressions and formulas do not appear alone, but are included in sentences of

2970-547: Is often held to be Archimedes ( c.  287  – c.  212 BC ) of Syracuse . He developed formulas for calculating the surface area and volume of solids of revolution and used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series , in a manner not too dissimilar from modern calculus. Other notable achievements of Greek mathematics are conic sections ( Apollonius of Perga , 3rd century BC), trigonometry ( Hipparchus of Nicaea , 2nd century BC), and

3069-433: Is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as lines , angles and circles , which were developed mainly for the needs of surveying and architecture , but has since blossomed out into many other subfields. A fundamental innovation was the ancient Greeks' introduction of the concept of proofs , which require that every assertion must be proved . For example, it

Hamming code - Misplaced Pages Continue

3168-532: Is possible to increase the minimum distance of the Hamming code to 4, which allows the decoder to distinguish between single bit errors and two-bit errors. Thus the decoder can detect and correct a single error and at the same time detect (but not correct) a double error. If the decoder does not attempt to correct errors, it can reliably detect triple bit errors. If the decoder does correct errors, some triple errors will be mistaken for single errors and "corrected" to

3267-411: Is possible to set the error-correcting bits so that the index-XOR of the whole message is 0. If the receiver receives a string with index-XOR 0, they can conclude there were no corruptions, and otherwise, the index-XOR indicates the index of the corrupted bit. An algorithm can be deduced from the following description: If a byte of data to be encoded is 10011010, then the data word (using _ to represent

3366-567: Is sometimes mistranslated as a condemnation of mathematicians. The apparent plural form in English goes back to the Latin neuter plural mathematica ( Cicero ), based on the Greek plural ta mathēmatiká ( τὰ μαθηματικά ) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective mathematic(al) and formed the noun mathematics anew, after

3465-434: Is that a parity value of one indicates that there is an odd number of ones in the data, and a parity value of zero indicates that there is an even number of ones. If the number of bits changed is even, the check bit will be valid and the error will not be detected. Moreover, parity does not indicate which bit contained the error, even when it can detect it. The data must be discarded entirely and re-transmitted from scratch. On

3564-441: Is that any given bit is included in a unique set of parity bits. To check for errors, check all of the parity bits. The pattern of errors, called the error syndrome , identifies the bit in error. If all parity bits are correct, there is no error. Otherwise, the sum of the positions of the erroneous parity bits identifies the erroneous bit. For example, if the parity bits in positions 1, 2 and 8 indicate an error, then bit 1+2+8=11

3663-418: Is the purpose of universal algebra and category theory . The latter applies to every mathematical structure (not only algebraic ones). At its origin, it was introduced, together with homological algebra for allowing the algebraic study of non-algebraic objects such as topological spaces ; this particular area of application is called algebraic topology . Calculus, formerly called infinitesimal calculus,

3762-405: Is the set of all integers. Because the objects of study here are discrete, the methods of calculus and mathematical analysis do not directly apply. Algorithms —especially their implementation and computational complexity —play a major role in discrete mathematics. The four color theorem and optimal sphere packing were two major problems of discrete mathematics solved in the second half of

3861-426: Is three) and block length 2 − 1 . The parity-check matrix of a Hamming code is constructed by listing all columns of length r that are non-zero, which means that the dual code of the Hamming code is the shortened Hadamard code , also known as a Simplex code. The parity-check matrix has the property that any two columns are pairwise linearly independent . Due to the limited redundancy that Hamming codes add to

3960-508: Is true regarding number theory (the modern name for higher arithmetic ) and geometry. Several other first-level areas have "geometry" in their names or are otherwise commonly considered part of geometry. Algebra and calculus do not appear as first-level areas but are respectively split into several first-level areas. Other first-level areas emerged during the 20th century or had not previously been considered as mathematics, such as mathematical logic and foundations . Number theory began with

4059-402: The 111 000 111 , which will be transmitted. Let's say three errors corrupt the transmitted bits and the received sequence is 111 010 100 . Decoding is usually done by a simple majority decision for each code word. That lead us to 100 as the decoded information bits, because in the first and second code word occurred less than two errors, so the majority of the bits are correct. But in

Hamming code - Misplaced Pages Continue

4158-586: The Babylonians and Egyptians began using arithmetic, algebra, and geometry for taxation and other financial calculations, for building and construction, and for astronomy. The oldest mathematical texts from Mesopotamia and Egypt are from 2000 to 1800 BC. Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It

4257-768: The Golden Age of Islam , especially during the 9th and 10th centuries, mathematics saw many important innovations building on Greek mathematics. The most notable achievement of Islamic mathematics was the development of algebra . Other achievements of the Islamic period include advances in spherical trigonometry and the addition of the decimal point to the Arabic numeral system. Many notable mathematicians from this period were Persian, such as Al-Khwarizmi , Omar Khayyam and Sharaf al-Dīn al-Ṭūsī . The Greek and Arabic mathematical texts were in turn translated to Latin during

4356-511: The Pythagoreans appeared to have considered it a subject in its own right. Around 300 BC, Euclid organized mathematical knowledge by way of postulates and first principles, which evolved into the axiomatic method that is used in mathematics today, consisting of definition, axiom, theorem, and proof. His book, Elements , is widely considered the most successful and influential textbook of all time. The greatest mathematician of antiquity

4455-536: The Renaissance , mathematics was divided into two main areas: arithmetic , regarding the manipulation of numbers, and geometry , regarding the study of shapes. Some types of pseudoscience , such as numerology and astrology , were not then clearly distinguished from mathematics. During the Renaissance, two more areas appeared. Mathematical notation led to algebra which, roughly speaking, consists of

4554-446: The controversy over Cantor's set theory . In the same period, various areas of mathematics concluded the former intuitive definitions of the basic mathematical objects were insufficient for ensuring mathematical rigour . This became the foundational crisis of mathematics. It was eventually solved in mainstream mathematics by systematizing the axiomatic method inside a formalized set theory . Roughly speaking, each mathematical object

4653-427: The (7,4) encoded word (see Hamming(7,4) ). This can be summed up with the revised matrices: and Note that H is not in standard form. To obtain G, elementary row operations can be used to obtain an equivalent matrix to H in systematic form: For example, the first row in this matrix is the sum of the second and third rows of H in non-systematic form. Using the systematic construction for Hamming codes from above,

4752-492: The 16 possible data vectors a → {\displaystyle {\vec {a}}} is given by the standard matrix product x → = a → G {\displaystyle {\vec {x}}={\vec {a}}G} where the summing operation is done modulo-2. For example, let a → = [ 1 , 0 , 1 , 1 ] {\displaystyle {\vec {a}}=[1,0,1,1]} . Using

4851-400: The 17th century, when René Descartes introduced what is now called Cartesian coordinates . This constituted a major change of paradigm : Instead of defining real numbers as lengths of line segments (see number line ), it allowed the representation of points using their coordinates , which are numbers. Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry

4950-405: The 19th century, mathematicians discovered non-Euclidean geometries , which do not follow the parallel postulate . By questioning that postulate's truth, this discovery has been viewed as joining Russell's paradox in revealing the foundational crisis of mathematics . This aspect of the crisis was solved by systematizing the axiomatic method, and adopting that the truth of the chosen axioms is not

5049-532: The 20th century. The P versus NP problem , which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult problems. Discrete mathematics includes: The two subjects of mathematical logic and set theory have belonged to mathematics since the end of the 19th century. Before this period, sets were not considered to be mathematical objects, and logic , although used for mathematical proofs, belonged to philosophy and

SECTION 50

#1732788092204

5148-637: The Middle Ages and made available in Europe. During the early modern period , mathematics began to develop at an accelerating pace in Western Europe , with innovations that revolutionized mathematics, such as the introduction of variables and symbolic notation by François Viète (1540–1603), the introduction of logarithms by John Napier in 1614, which greatly simplified numerical calculations, especially for astronomy and marine navigation ,

5247-616: The SECDED level of protection, no longer use Hamming's method, relying instead on the designs with longer codewords (128 to 256 bits of data) and modified balanced parity-check trees. The (72,64) Hamming code is still popular in some hardware designs, including Xilinx FPGA families. In 1950, Hamming introduced the [7,4] Hamming code. It encodes four data bits into seven bits by adding three parity bits. As explained earlier, it can either detect and correct single-bit errors or it can detect (but not correct) both single and double-bit errors. With

5346-438: The addition of an overall parity bit, it becomes the [8,4] extended Hamming code and can both detect and correct single-bit errors and detect (but not correct) double-bit errors. The matrix G := ( I k − A T ) {\displaystyle \mathbf {G} :={\begin{pmatrix}{\begin{array}{c|c}I_{k}&-A^{\text{T}}\\\end{array}}\end{pmatrix}}}

5445-583: The beginnings of algebra (Diophantus, 3rd century AD). The Hindu–Arabic numeral system and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in India and were transmitted to the Western world via Islamic mathematics . Other notable developments of Indian mathematics include the modern definition and approximation of sine and cosine , and an early form of infinite series . During

5544-511: The concept of a proof and its associated mathematical rigour first appeared in Greek mathematics , most notably in Euclid 's Elements . Since its beginning, mathematics was primarily divided into geometry and arithmetic (the manipulation of natural numbers and fractions ), until the 16th and 17th centuries, when algebra and infinitesimal calculus were introduced as new fields. Since then,

5643-399: The current language, where expressions play the role of noun phrases and formulas play the role of clauses . Mathematics has developed a rich terminology covering a broad range of fields that study the properties of various abstract, idealized objects and how they interact. It is based on rigorous definitions that provide a standard foundation for communication. An axiom or postulate is

5742-424: The data, they can only detect and correct errors when the error rate is low. This is the case in computer memory (usually RAM), where bit errors are extremely rare and Hamming codes are widely used, and a RAM with this correction system is an ECC RAM ( ECC memory ). In this context, an extended Hamming code having one extra parity bit is often used. Extended Hamming codes achieve a Hamming distance of four, which allows

5841-487: The decoder to distinguish between when at most one one-bit error occurs and when any two-bit errors occur. In this sense, extended Hamming codes are single-error correcting and double-error detecting, abbreviated as SECDED . Richard Hamming , the inventor of Hamming codes, worked at Bell Labs in the late 1940s on the Bell Model V computer, an electromechanical relay-based machine with cycle times in seconds. Input

5940-569: The derived expression mathēmatikḗ tékhnē ( μαθηματικὴ τέχνη ), meaning ' mathematical science ' . It entered the English language during the Late Middle English period through French and Latin. Similarly, one of the two main schools of thought in Pythagoreanism was known as the mathēmatikoi (μαθηματικοί)—which at the time meant "learners" rather than "mathematicians" in the modern sense. The Pythagoreans were likely

6039-439: The digits 0–9. This scheme can detect all single bit-errors, all odd numbered bit-errors and some even numbered bit-errors (for example the flipping of both 1-bits). However it still cannot correct any of these errors. Another code in use at the time repeated every data bit multiple times in order to ensure that it was sent correctly. For instance, if the data bit to be sent is a 1, an n = 3 repetition code will send 111. If

SECTION 60

#1732788092204

6138-512: The efficiency drops drastically as we increase the number of times each bit is duplicated in order to detect and correct more errors. If more error-correcting bits are included with a message, and if those bits can be arranged such that different incorrect bits produce different error results, then bad bits could be identified. In a seven-bit message, there are seven possible single bit errors, so three error control bits could potentially specify not only that an error occurred but also which bit caused

6237-503: The error. Hamming studied the existing coding schemes, including two-of-five, and generalized their concepts. To start with, he developed a nomenclature to describe the system, including the number of data bits and error-correction bits in a block. For instance, parity includes a single bit for any data word, so assuming ASCII words with seven bits, Hamming described this as an (8,7) code, with eight bits in total, of which seven are data. The repetition example would be (3,1) , following

6336-428: The expansion of these logical theories. The field of statistics is a mathematical application that is employed for the collection and processing of data samples, using procedures based on mathematical methods especially probability theory . Statisticians generate data with random sampling or randomized experiments . Statistical theory studies decision problems such as minimizing the risk ( expected loss ) of

6435-403: The few known codes whose code rate can be automatically adjusted to varying channel capacity , by sending more or less parity information as required to overcome the channel noise, and it is the only such code known for non- erasure channels . Practical adaptive codes for erasure channels have been invented only recently, and are known as fountain codes . Some UARTs , such as the ones used in

6534-567: The first to constrain the use of the word to just the study of arithmetic and geometry. By the time of Aristotle (384–322 BC) this meaning was fully established. In Latin and English, until around 1700, the term mathematics more commonly meant " astrology " (or sometimes " astronomy ") rather than "mathematics"; the meaning gradually changed to its present one from about 1500 to 1800. This change has resulted in several mistranslations: For example, Saint Augustine 's warning that Christians should beware of mathematici , meaning "astrologers",

6633-599: The following operations: From the above matrix we have 2 = 2 = 16 codewords. Let a → {\displaystyle {\vec {a}}} be a row vector of binary data bits, a → = [ a 1 , a 2 , a 3 , a 4 ] , a i ∈ { 0 , 1 } {\displaystyle {\vec {a}}=[a_{1},a_{2},a_{3},a_{4}],\quad a_{i}\in \{0,1\}} . The codeword x → {\displaystyle {\vec {x}}} for any of

6732-1281: The generator matrix G {\displaystyle G} from above, we have (after applying modulo 2, to the sum), x → = a → G = ( 1 0 1 1 ) ( 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 ) = ( 1 0 1 1 2 3 2 ) = ( 1 0 1 1 0 1 0 ) {\displaystyle {\vec {x}}={\vec {a}}G={\begin{pmatrix}1&0&1&1\end{pmatrix}}{\begin{pmatrix}1&0&0&0&1&1&0\\0&1&0&0&1&0&1\\0&0&1&0&0&1&1\\0&0&0&1&1&1&1\\\end{pmatrix}}={\begin{pmatrix}1&0&1&1&2&3&2\end{pmatrix}}={\begin{pmatrix}1&0&1&1&0&1&0\end{pmatrix}}} The [7,4] Hamming code can easily be extended to an [8,4] code by adding an extra parity bit on top of

6831-1391: The identity k - identity matrix on the left hand side of  G . The code generator matrix G {\displaystyle \mathbf {G} } and the parity-check matrix H {\displaystyle \mathbf {H} } are: G := ( 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 ) 4 , 7 {\displaystyle \mathbf {G} :={\begin{pmatrix}1&0&0&0&1&1&0\\0&1&0&0&1&0&1\\0&0&1&0&0&1&1\\0&0&0&1&1&1&1\end{pmatrix}}_{4,7}} and H := ( 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 ) 3 , 7 . {\displaystyle \mathbf {H} :={\begin{pmatrix}1&1&0&1&1&0&0\\1&0&1&1&0&1&0\\0&1&1&1&0&0&1\end{pmatrix}}_{3,7}.} Finally, these matrices can be mutated into equivalent non-systematic codes by

6930-491: The interaction between mathematical innovations and scientific discoveries has led to a correlated increase in the development of both. At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the axiomatic method , which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary Mathematics Subject Classification lists more than sixty first-level areas of mathematics. Before

7029-400: The introduction of coordinates by René Descartes (1596–1650) for reducing geometry to algebra, and the development of calculus by Isaac Newton (1643–1727) and Gottfried Leibniz (1646–1716). Leonhard Euler (1707–1783), the most notable mathematician of the 18th century, unified these innovations into a single corpus with a standardized terminology, and completed them with the discovery and

7128-406: The length of a binary repetition code is odd, then it's a perfect code . The binary repetition code of length n is equivalent to the ( n , 1)- Hamming code . A ( n , 1) BCH code is also a repetition code. Consider a binary repetition code of length 3. The user wants to transmit the information bits 101 . Then the encoding maps each bit either to the all ones or all zeros code word, so we get

7227-409: The manipulation of numbers , that is, natural numbers ( N ) , {\displaystyle (\mathbb {N} ),} and later expanded to integers ( Z ) {\displaystyle (\mathbb {Z} )} and rational numbers ( Q ) . {\displaystyle (\mathbb {Q} ).} Number theory was once called arithmetic, but nowadays this term

7326-686: The matrix A is apparent and the systematic form of G is written as The non-systematic form of G can be row reduced (using elementary row operations) to match this matrix. Mathematics Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as

7425-400: The natural numbers, there are theorems that are true (that is provable in a stronger system), but not provable inside the system. This approach to the foundations of mathematics was challenged during the first half of the 20th century by mathematicians led by Brouwer , who promoted intuitionistic logic , which explicitly lacks the law of excluded middle . These problems and debates led to

7524-536: The objects defined this way is a philosophical problem that mathematicians leave to philosophers, even if many mathematicians have opinions on this nature, and use their opinion—sometimes called "intuition"—to guide their study and proofs. The approach allows considering "logics" (that is, sets of allowed deducing rules), theorems, proofs, etc. as mathematical objects, and to prove theorems about them. For example, Gödel's incompleteness theorems assert, roughly speaking that, in every consistent formal system that contains

7623-411: The original message in the presence of errors is known as an error-correcting code. This triple repetition code is a Hamming code with m = 2, since there are two parity bits, and 2 − 2 − 1 = 1 data bit. Such codes cannot correctly repair all errors, however. In our example, if the channel flips two bits and the receiver gets 001, the system will detect the error, but conclude that the original bit

7722-405: The parity bits) would be __1_001_1010, and the code word is 011100101010. The choice of the parity, even or odd, is irrelevant but the same choice must be used for both encoding and decoding. This general rule can be shown visually: Shown are only 20 encoded bits (5 parity, 15 data) but the pattern continues indefinitely. The key thing about Hamming Codes that can be seen from visual inspection

7821-521: The pattern of physics and metaphysics , inherited from Greek. In English, the noun mathematics takes a singular verb. It is often shortened to maths or, in North America, math . In addition to recognizing how to count physical objects, prehistoric peoples may have also known how to count abstract quantities, like time—days, seasons, or years. Evidence for more complex mathematics does not appear until around 3000  BC , when

7920-505: The possible Hamming codes: Hamming codes have a minimum distance of 3, which means that the decoder can detect and correct a single error, but it cannot distinguish a double bit error of some codeword from a single bit error of a different codeword. Thus, some double-bit errors will be incorrectly decoded as if they were single bit errors and therefore go undetected, unless no correction is attempted. To remedy this shortcoming, Hamming codes can be extended by an extra parity bit. This way, it

8019-658: The proof of numerous theorems. Perhaps the foremost mathematician of the 19th century was the German mathematician Carl Gauss , who made numerous contributions to fields such as algebra, analysis, differential geometry , matrix theory , number theory, and statistics . In the early 20th century, Kurt Gödel transformed mathematics by publishing his incompleteness theorems , which show in part that any consistent axiomatic system—if powerful enough to describe arithmetic—will contain true propositions that cannot be proved. Mathematics has since been greatly extended, and there has been

8118-660: The repetition code is the ease of implementation. In the case of a binary repetition code, there exist two code words - all ones and all zeros - which have a length of n {\displaystyle n} . Therefore, the minimum Hamming distance of the code equals its length n {\displaystyle n} . This gives the repetition code an error correcting capacity of n − 1 2 {\displaystyle {\tfrac {n-1}{2}}} (i.e. it will correct up to n − 1 2 {\displaystyle {\tfrac {n-1}{2}}} errors in any code word). If

8217-466: The same logic. The code rate is the second number divided by the first, for our repetition example, 1/3. Hamming also noticed the problems with flipping two or more bits, and described this as the "distance" (it is now called the Hamming distance , after him). Parity has a distance of 2, so one bit flip can be detected but not corrected, and any two bit flips will be invisible. The (3,1) repetition has

8316-399: The same overhead of space. Parity adds a single bit that indicates whether the number of ones (bit-positions with values of one) in the preceding data was even or odd . If an odd number of bits is changed in transmission, the message will change parity and the error can be detected at this point; however, the bit that changed may have been the parity bit itself. The most common convention

8415-657: The study and the manipulation of formulas . Calculus , consisting of the two subfields differential calculus and integral calculus , is the study of continuous functions , which model the typically nonlinear relationships between varying quantities, as represented by variables . This division into four main areas—arithmetic, geometry, algebra, and calculus —endured until the end of the 19th century. Areas such as celestial mechanics and solid mechanics were then studied by mathematicians, but now are considered as belonging to physics. The subject of combinatorics has been studied for much of recorded history, yet did not become

8514-568: The study of approximation and discretization with special focus on rounding errors . Numerical analysis and, more broadly, scientific computing also study non-analytic topics of mathematical science, especially algorithmic- matrix -and- graph theory . Other areas of computational mathematics include computer algebra and symbolic computation . The word mathematics comes from the Ancient Greek word máthēma ( μάθημα ), meaning ' something learned, knowledge, mathematics ' , and

8613-672: The theory under consideration. Mathematics is essential in the natural sciences , engineering , medicine , finance , computer science , and the social sciences . Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation. Some areas of mathematics, such as statistics and game theory , are developed in close correlation with their applications and are often grouped under applied mathematics . Other areas are developed independently from any application (and are therefore called pure mathematics ) but often later find practical applications. Historically,

8712-498: The third code word two bits are corrupted, which results in an erroneous information bit, since two errors lie above the error correcting capacity. Despite their poor performance as stand-alone codes, use in Turbo code -like iteratively decoded concatenated coding schemes, such as repeat-accumulate (RA) and accumulate-repeat-accumulate (ARA) codes, allows for surprisingly good error correction performance. Repetition codes are one of

8811-424: The three bits received are not identical, an error occurred during transmission. If the channel is clean enough, most of the time only one bit will change in each triple. Therefore, 001, 010, and 100 each correspond to a 0 bit, while 110, 101, and 011 correspond to a 1 bit, with the greater quantity of digits that are the same ('0' or a '1') indicating what the data bit should be. A code with this ability to reconstruct

8910-487: The title of his main treatise . Algebra became an area in its own right only with François Viète (1540–1603), who introduced the use of variables for representing unknown or unspecified numbers. Variables allow mathematicians to describe the operations that have to be done on the numbers represented using mathematical formulas . Until the 19th century, algebra consisted mainly of the study of linear equations (presently linear algebra ), and polynomial equations in

9009-508: The two main precursors of algebra. Diophantus solved some equations involving unknown natural numbers by deducing new relations until he obtained the solution. Al-Khwarizmi introduced systematic methods for transforming equations, such as moving a term from one side of an equation into the other side. The term algebra is derived from the Arabic word al-jabr meaning 'the reunion of broken parts' that he used for naming one of these methods in

9108-402: The wrong code word. In general, a code with distance k can detect but not correct k − 1 errors. Hamming was interested in two problems at once: increasing the distance as much as possible, while at the same time increasing the code rate as much as possible. During the 1940s he developed several encoding schemes that were dramatic improvements on existing codes. The key to all of his systems

9207-491: The wrong value. Error correction is therefore a trade-off between certainty (the ability to reliably detect triple bit errors) and resiliency (the ability to keep functioning in the face of single bit errors). This extended Hamming code was popular in computer memory systems, starting with IBM 7030 Stretch in 1961, where it is known as SECDED (or SEC-DED, abbreviated from single error correction, double error detection ). Server computers in 21st century, while typically keeping

9306-506: Was fed in on punched paper tape , seven-eighths of an inch wide, which had up to six holes per row. During weekdays, when errors in the relays were detected, the machine would stop and flash lights so that the operators could correct the problem. During after-hours periods and on weekends, when there were no operators, the machine simply moved on to the next job. Hamming worked on weekends, and grew increasingly frustrated with having to restart his programs from scratch due to detected errors. In

9405-462: Was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book Elements . The resulting Euclidean geometry is the study of shapes and their arrangements constructed from lines, planes and circles in the Euclidean plane ( plane geometry ) and the three-dimensional Euclidean space . Euclidean geometry was developed without change of methods or scope until

9504-414: Was introduced independently and simultaneously by 17th-century mathematicians Newton and Leibniz . It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by Euler with the introduction of the concept of a function and many other results. Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis"

9603-437: Was not specifically studied by mathematicians. Before Cantor 's study of infinite sets , mathematicians were reluctant to consider actually infinite collections, and considered infinity to be the result of endless enumeration . Cantor's work offended many mathematicians not only by considering actually infinite sets but by showing that this implies different sizes of infinity, per Cantor's diagonal argument . This led to

9702-571: Was split into two new subfields: synthetic geometry , which uses purely geometrical methods, and analytic geometry , which uses coordinates systemically. Analytic geometry allows the study of curves unrelated to circles and lines. Such curves can be defined as the graph of functions , the study of which led to differential geometry . They can also be defined as implicit equations , often polynomial equations (which spawned algebraic geometry ). Analytic geometry also makes it possible to consider Euclidean spaces of higher than three dimensions. In

9801-484: Was to have the parity bits overlap, such that they managed to check each other as well as the data. The following general algorithm generates a single-error correcting (SEC) code for any number of bits. The main idea is to choose the error-correcting bits such that the index-XOR (the XOR of all the bit positions containing a 1) is 0. We use positions 1, 10, 100, etc. (in binary) as the error-correcting bits, which guarantees it

#203796