Misplaced Pages

Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Raman spectroscopy ( / ˈ r ɑː m ən / ) (named after physicist C. V. Raman ) is a spectroscopic technique typically used to determine vibrational modes of molecules , although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

#163836

112-780: Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals ( SHERLOC ) is an ultraviolet Raman spectrometer that uses fine-scale imaging and an ultraviolet (UV) laser to determine fine-scale mineralogy, and detect organic compounds designed for the Perseverance rover as part of the Mars 2020 mission. It was constructed at the Jet Propulsion Laboratory with major subsystems being delivered from Malin Space Science Systems and Los Alamos National Laboratory . SHERLOC has

224-400: A NeCu laser to generate UV photons (248.6 nm) which can generate characteristic Raman and fluorescence photons from a scientifically interesting sample. The deep UV laser is co-boresighted to a context imager and integrated into an autofocusing/scanning optical system that allows correlation of spectral signatures to surface textures, morphology and visible features. The context imager has

336-459: A laser in the visible , near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. Typically,

448-902: A light beam by means of refraction . A simple lens consists of a single piece of transparent material , while a compound lens consists of several simple lenses ( elements ), usually arranged along a common axis . Lenses are made from materials such as glass or plastic and are ground , polished , or molded to the required shape. A lens can focus light to form an image , unlike a prism , which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses , acoustic lenses , or explosive lenses . Lenses are used in various imaging devices such as telescopes , binoculars , and cameras . They are also used as visual aids in glasses to correct defects of vision such as myopia and hypermetropia . The word lens comes from lēns ,

560-418: A polarizer . The Raman scattered light collected is passed through a second polarizer (called the analyzer) before entering the detector. The analyzer is oriented either parallel or perpendicular to the polarization of the laser. Spectra acquired with the analyzer set at both perpendicular and parallel to the excitation plane can be used to calculate the depolarization ratio . Typically a polarization scrambler

672-462: A beam of filtered monochromatic light generated by a gas discharge lamp . The photons that were scattered by the sample were collected through an optical flat at the end of the tube. To maximize the sensitivity, the sample was highly concentrated (1 M or more) and relatively large volumes (5 mL or more) were used. The magnitude of the Raman effect correlates with polarizability of the electrons in

784-405: A biconcave or plano-concave lens in a lower-index medium, a collimated beam of light passing through the lens is diverged (spread); the lens is thus called a negative or diverging lens. The beam, after passing through the lens, appears to emanate from a particular point on the axis in front of the lens. For a thin lens in air, the distance from this point to the lens is the focal length, though it

896-533: A calibration target with possible Mars suit materials, and it will measure how they change over time in the Martian surface environment. According to a 2017 Universities Space Research Association (USRA) report: The goals of the SHERLOC investigation are to: To do this SHERLOC does the following: There are three locations on the rover where SHERLOC components are located. The SHERLOC Turret Assembly (STA)

1008-425: A detector. Spontaneous Raman scattering is typically very weak; as a result, for many years the main difficulty in collecting Raman spectra was separating the weak inelastically scattered light from the intense Rayleigh scattered laser light (referred to as "laser rejection"). Historically, Raman spectrometers used holographic gratings and multiple dispersion stages to achieve a high degree of laser rejection. In

1120-642: A focus. This led to the invention of the compound achromatic lens by Chester Moore Hall in England in 1733, an invention also claimed by fellow Englishman John Dollond in a 1758 patent. Developments in transatlantic commerce were the impetus for the construction of modern lighthouses in the 18th century, which utilize a combination of elevated sightlines, lighting sources, and lenses to provide navigational aid overseas. With maximal distance of visibility needed in lighthouses, conventional convex lenses would need to be significantly sized which would negatively affect

1232-412: A great deal of experimentation with lens shapes in the 17th and early 18th centuries by those trying to correct chromatic errors seen in lenses. Opticians tried to construct lenses of varying forms of curvature, wrongly assuming errors arose from defects in the spherical figure of their surfaces. Optical theory on refraction and experimentation was showing no single-element lens could bring all colours to

SECTION 10

#1732772795164

1344-417: A hyperspectral image could show the distribution of cholesterol, as well as proteins, nucleic acids, and fatty acids. Sophisticated signal- and image-processing techniques can be used to ignore the presence of water, culture media, buffers, and other interferences. Because a Raman microscope is a diffraction-limited system , its spatial resolution depends on the wavelength of light, the numerical aperture of

1456-537: A lens in air, f   is then given by   1   f   ≈ ( n − 1 ) [   1   R 1   − 1   R 2     ]   . {\displaystyle \ {\frac {1}{\ f\ }}\approx \left(n-1\right)\left[\ {\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\ \right]~.} The spherical thin lens equation in paraxial approximation

1568-616: A light source such as a laser. The resolution of the spectrum relies on the bandwidth of the laser source used. Generally shorter wavelength lasers give stronger Raman scattering due to the ν increase in Raman scattering cross-sections, but issues with sample degradation or fluorescence may result. Continuous wave lasers are most common for normal Raman spectroscopy, but pulsed lasers may also be used. These often have wider bandwidths than their CW counterparts but are very useful for other forms of Raman spectroscopy such as transient, time-resolved and resonance Raman. Raman scattered light

1680-427: A lower frequency (lower energy) so that the total energy remains the same. This shift in frequency is called a Stokes shift , or downshift. If the final state is lower in energy, the scattered photon will be shifted to a higher frequency, which is called an anti-Stokes shift, or upshift. For a molecule to exhibit a Raman effect, there must be a change in its electric dipole-electric dipole polarizability with respect to

1792-579: A magnifying glass, or a burning glass. Others have suggested that certain Egyptian hieroglyphs depict "simple glass meniscal lenses". The oldest certain reference to the use of lenses is from Aristophanes ' play The Clouds (424 BCE) mentioning a burning-glass. Pliny the Elder (1st century) confirms that burning-glasses were known in the Roman period. Pliny also has the earliest known reference to

1904-500: A means to detect explosives from a safe distance using laser beams. Raman Spectroscopy is being further developed so it could be used in the clinical setting. Raman4Clinic is a European organization that is working on incorporating Raman Spectroscopy techniques in the medical field. They are currently working on different projects, one of them being monitoring cancer using bodily fluids such as urine and blood samples which are easily accessible. This technique would be less stressful on

2016-432: A molecule. It is a form of inelastic light scattering , where a photon excites the sample. This excitation puts the molecule into a virtual energy state for a short time before the photon is emitted. Inelastic scattering means that the energy of the emitted photon is of either lower or higher energy than the incident photon. After the scattering event, the sample is in a different rotational or vibrational state . For

2128-441: A quantitative measure for wound healing progress. Spatially offset Raman spectroscopy (SORS), which is less sensitive to surface layers than conventional Raman, can be used to discover counterfeit drugs without opening their packaging, and to non-invasively study biological tissue. A reason why Raman spectroscopy is useful in biological applications is because its results often do not face interference from water molecules, due to

2240-401: A sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator . Elastic scattered radiation at the wavelength corresponding to the laser line ( Rayleigh scattering ) is filtered out by either a notch filter , edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto

2352-428: A small change in its length such as that which occurs during a vibration has only a small resultant effect on polarization. Vibrations involving polar bonds (e.g. C-O , N-O , O-H) are therefore, comparatively weak Raman scatterers. Such polarized bonds, however, carry their electrical charges during the vibrational motion, (unless neutralized by symmetry factors), and this results in a larger net dipole moment change during

SECTION 20

#1732772795164

2464-550: A spatial resolution of 30 μm and currently is designed to operate in the 400-500 nm wavelength range. Over the course of three years, SHERLOC and WATSON have been successfully collecting spectra and images of minerals and organics on the surface of Mars. Utilizing WATSON and ACI images, there was confirmation that the Jezero Crater floor consists of aqueously altered mafic material with various igneous origins. In addition, WATSON has been used to collect selfies of

2576-831: A spherical lens in air or vacuum for paraxial rays can be calculated from the lensmaker's equation : 1   f   = ( n − 1 ) [   1   R 1   − 1   R 2   +   ( n − 1 )   d     n   R 1   R 2     ]   , {\displaystyle {\frac {1}{\ f\ }}=\left(n-1\right)\left[\ {\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}+{\frac {\ \left(n-1\right)\ d~}{\ n\ R_{1}\ R_{2}\ }}\ \right]\ ,} where The focal length   f   {\textstyle \ f\ }

2688-403: A standard optical microscope, and adds an excitation laser, a monochromator or polychromator , and a sensitive detector (such as a charge-coupled device (CCD), or photomultiplier tube (PMT)). FT-Raman has also been used with microscopes, typically in combination with near-infrared (NIR) laser excitation. Ultraviolet microscopes and UV enhanced optics must be used when a UV laser source

2800-412: A vibrationally excited state on the ground electronic state potential energy surface. Raman scattering also contrasts with infrared (IR) absorption, where the energy of the absorbed photon matches the difference in energy between the initial and final rovibronic states. The dependence of Raman on the electric dipole-electric dipole polarizability derivative also differs from IR spectroscopy, which depends on

2912-444: Is hyperspectral imaging or chemical imaging , in which thousands of Raman spectra are acquired from all over the field of view by, for example, raster scanning of a focused laser beam through a sample. The data can be used to generate images showing the location and amount of different components. Having the full spectroscopic information available in every measurement spot has the advantage that several components can be mapped at

3024-403: Is biconvex (or double convex , or just convex ) if both surfaces are convex . If both surfaces have the same radius of curvature, the lens is equiconvex . A lens with two concave surfaces is biconcave (or just concave ). If one of the surfaces is flat, the lens is plano-convex or plano-concave depending on the curvature of the other surface. A lens with one convex and one concave side

3136-407: Is convex-concave or meniscus . Convex-concave lenses are most commonly used in corrective lenses , since the shape minimizes some aberrations. For a biconvex or plano-convex lens in a lower-index medium, a collimated beam of light passing through the lens converges to a spot (a focus ) behind the lens. In this case, the lens is called a positive or converging lens. For a thin lens in air,

3248-445: Is h ), and v {\textstyle v} is the on-axis image distance from the line. Due to paraxial approximation where the line of h is close to the vertex of the spherical surface meeting the optical axis on the left, u {\textstyle u} and v {\textstyle v} are also considered distances with respect to the vertex. Moving v {\textstyle v} toward

3360-539: Is a light scattering technique, specimens do not need to be fixed or sectioned. Raman spectra can be collected from a very small volume (< 1 μm in diameter, < 10 μm in depth); these spectra allow the identification of species present in that volume. Water does not generally interfere with Raman spectral analysis. Thus, Raman spectroscopy is suitable for the microscopic examination of minerals , materials such as polymers and ceramics, cells , proteins and forensic trace evidence. A Raman microscope begins with

3472-417: Is an efficient and non-destructive way to investigate works of art and cultural heritage artifacts, in part because it is a non-invasive process which can be applied in situ . It can be used to analyze the corrosion products on the surfaces of artifacts (statues, pottery, etc.), which can lend insight into the corrosive environments experienced by the artifacts. The resulting spectra can also be compared to

Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals - Misplaced Pages Continue

3584-416: Is completely round. When used in novelty photography it is often called a "lensball". A ball-shaped lens has the advantage of being omnidirectional, but for most optical glass types, its focal point lies close to the ball's surface. Because of the ball's curvature extremes compared to the lens size, optical aberration is much worse than thin lenses, with the notable exception of chromatic aberration . For

3696-794: Is derived here with respect to the right figure. The 1st spherical lens surface (which meets the optical axis at   V 1   {\textstyle \ V_{1}\ } as its vertex) images an on-axis object point O to the virtual image I , which can be described by the following equation,     n 1     u   +   n 2     v ′   =   n 2 − n 1     R 1     . {\displaystyle \ {\frac {\ n_{1}\ }{\ u\ }}+{\frac {\ n_{2}\ }{\ v'\ }}={\frac {\ n_{2}-n_{1}\ }{\ R_{1}\ }}~.} For

3808-460: Is further along in the direction of the ray travel (right, in the accompanying diagrams), while negative R means that rays reaching the surface have already passed the center of curvature. Consequently, for external lens surfaces as diagrammed above, R 1 > 0 and R 2 < 0 indicate convex surfaces (used to converge light in a positive lens), while R 1 < 0 and R 2 > 0 indicate concave surfaces. The reciprocal of

3920-459: Is in the wavenumber range 500–1,500 cm ), Raman provides a fingerprint to identify molecules. For instance, Raman and IR spectra were used to determine the vibrational frequencies of SiO, Si 2 O 2 , and Si 3 O 3 on the basis of normal coordinate analyses. Raman is also used to study the addition of a substrate to an enzyme. In solid-state physics , Raman spectroscopy is used to characterize materials, measure temperature , and find

4032-642: Is mounted at the end of the rover arm. The STA contains spectroscopy and imaging components. The SHERLOC Body Assembly (SBA) is located on the rover chassis and acts as the interface between the STA and the Mars 2020 rover. The SBA deals with command and data handling, along with power distribution. The SHERLOC Calibration Target (SCT) is located on the front of the rover chassis and hold spectral standards. SHERLOC consists of both imaging and spectroscopic elements. It has two imaging components consisting of heritage hardware from

4144-407: Is negative with respect to the focal length of a converging lens. The behavior reverses when a lens is placed in a medium with higher refractive index than the material of the lens. In this case a biconvex or plano-convex lens diverges light, and a biconcave or plano-concave one converges it. Convex-concave (meniscus) lenses can be either positive or negative, depending on the relative curvatures of

4256-415: Is often performed using red to near-infrared excitation (e.g., 785 nm, or 1,064 nm wavelength). Due to typically low absorbances of biological samples in this spectral range, the risk of damaging the specimen as well as autofluorescence emission are reduced, and high penetration depths into tissues can be achieved. However, the intensity of Raman scattering at long wavelengths is low (owing to

4368-413: Is placed between the analyzer and detector also. It is convenient in polarized Raman spectroscopy to describe the propagation and polarization directions using Porto's notation, described by and named after Brazilian physicist Sergio Pereira da Silva Porto . For isotropic solutions, the Raman scattering from each mode either retains the polarization of the laser or becomes partly or fully depolarized. If

4480-472: Is polarization sensitive and can provide detailed information on symmetry of Raman active modes. While conventional Raman spectroscopy identifies chemical composition, polarization effects on Raman spectra can reveal information on the orientation of molecules in single crystals and anisotropic materials, e.g. strained plastic sheets, as well as the symmetry of vibrational modes. Polarization–dependent Raman spectroscopy uses (plane) polarized laser excitation from

4592-433: Is positive for converging lenses, and negative for diverging lenses. The reciprocal of the focal length,   1   f     , {\textstyle \ {\tfrac {1}{\ f\ }}\ ,} is the optical power of the lens. If the focal length is in metres, this gives the optical power in dioptres (reciprocal metres). Lenses have the same focal length when light travels from

Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals - Misplaced Pages Continue

4704-487: Is the excitation wavelength, and λ 1 is the Raman spectrum wavelength. Most commonly, the unit chosen for expressing wavenumber in Raman spectra is inverse centimeters (cm ). Since wavelength is often expressed in units of nanometers (nm), the formula above can scale for this unit conversion explicitly, giving Modern Raman spectroscopy nearly always involves the use of lasers as excitation light sources. Because lasers were not available until more than three decades after

4816-427: Is the intensity of Raman scattering when the analyzer is rotated 90 degrees with respect to the incident light's polarization axis, and I u {\displaystyle I_{u}} the intensity of Raman scattering when the analyzer is aligned with the polarization of the incident laser. When polarized light interacts with a molecule, it distorts the molecule which induces an equal and opposite effect in

4928-400: Is the radius of the spherical surface, n 2 is the refractive index of the material of the surface, n 1 is the refractive index of medium (the medium other than the spherical surface material), u {\textstyle u} is the on-axis (on the optical axis) object distance from the line perpendicular to the axis toward the refraction point on the surface (which height

5040-519: Is typically collected and either dispersed by a spectrograph or used with an interferometer for detection by Fourier Transform (FT) methods. In many cases commercially available FT-IR spectrometers can be modified to become FT-Raman spectrometers. In most cases, modern Raman spectrometers use array detectors such as CCDs. Various types of CCDs exist which are optimized for different wavelength ranges. Intensified CCDs can be used for very weak signals and/or pulsed lasers. The spectral range depends on

5152-409: Is used for Raman microspectroscopy. In direct imaging (also termed global imaging or wide-field illumination ), the whole field of view is examined for light scattering integrated over a small range of wavenumbers (Raman shifts). For instance, a wavenumber characteristic for cholesterol could be used to record the distribution of cholesterol within a cell culture. This technique is being used for

5264-572: Is usually necessary to separate the Raman scattered light from the Rayleigh signal and reflected laser signal in order to collect high quality Raman spectra using a laser rejection filter. Notch or long-pass optical filters are typically used for this purpose. Before the advent of holographic filters it was common to use a triple-grating monochromator in subtractive mode to isolate the desired signal. This may still be used to record very small Raman shifts as holographic filters typically reflect some of

5376-1135: Is with respect to the principal planes of the lens, and the locations of the principal planes   h 1   {\textstyle \ h_{1}\ } and   h 2   {\textstyle \ h_{2}\ } with respect to the respective lens vertices are given by the following formulas, where it is a positive value if it is right to the respective vertex.   h 1 = −     ( n − 1 ) f   d     n   R 2     {\displaystyle \ h_{1}=-\ {\frac {\ \left(n-1\right)f\ d~}{\ n\ R_{2}\ }}\ }   h 2 = −     ( n − 1 ) f   d     n   R 1     {\displaystyle \ h_{2}=-\ {\frac {\ \left(n-1\right)f\ d~}{\ n\ R_{1}\ }}\ } The focal length   f   {\displaystyle \ f\ }

5488-494: The MSL MAHLI instrument. The Wide Angle Topographic Sensor for Operations and eNgineering (WATSON) is a built to print re-flight that can generate color images over multiple scales. The other, Autofocus Context Imager (ACI), acts as the mechanism that allows the instrument to get a contextual image of a sample and to autofocus the laser spot for the spectroscopic part of the SHERLOC investigation. For Spectroscopy, it utilizes

5600-606: The Perseverance rover and the Ingenuity helicopter. Recently, it successfully sealed and stored the first two rock samples from Mars. Because of it, We now know that these rocks derived from a volcanic environment, and that there was liquid water there in Mars's past, that formed salts that SHERLOC has seen. Raman spectroscopy Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering . A source of monochromatic light, usually from

5712-480: The 11th and 13th century " reading stones " were invented. These were primitive plano-convex lenses initially made by cutting a glass sphere in half. The medieval (11th or 12th century) rock crystal Visby lenses may or may not have been intended for use as burning glasses. Spectacles were invented as an improvement of the "reading stones" of the high medieval period in Northern Italy in the second half of

SECTION 50

#1732772795164

5824-512: The 13th century. This was the start of the optical industry of grinding and polishing lenses for spectacles, first in Venice and Florence in the late 13th century, and later in the spectacle-making centres in both the Netherlands and Germany . Spectacle makers created improved types of lenses for the correction of vision based more on empirical knowledge gained from observing the effects of

5936-979: The Gaussian thin lens equation is   1   u   + 1   v   = 1   f     . {\displaystyle \ {\frac {1}{\ u\ }}+{\frac {1}{\ v\ }}={\frac {1}{\ f\ }}~.} For the thin lens in air or vacuum where   n 1 = 1   {\textstyle \ n_{1}=1\ } can be assumed,   f   {\textstyle \ f\ } becomes   1   f   = ( n − 1 ) ( 1   R 1   − 1   R 2   )   {\displaystyle \ {\frac {1}{\ f\ }}=\left(n-1\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)\ } where

6048-575: The Indian scientist C. V. Raman , who observed the effect in organic liquids in 1928 together with K. S. Krishnan , and independently by Grigory Landsberg and Leonid Mandelstam in inorganic crystals. Raman won the Nobel Prize in Physics in 1930 for this discovery. The first observation of Raman spectra in gases was in 1929 by Franco Rasetti . Systematic pioneering theory of the Raman effect

6160-555: The Kramers-Heisenberg-Dirac (KHD) equation using the Albrecht A and B terms, as demonstrated. The KHD expression is conveniently linked to the polarizability of the molecule within its frame of reference. The polarizability operator connecting the initial and final states expresses the transition polarizability as a matrix element , as a function of the incidence frequency ω 0 . The directions x, y, and z in

6272-484: The Latin name of the lentil (a seed of a lentil plant), because a double-convex lens is lentil-shaped. The lentil also gives its name to a geometric figure . Some scholars argue that the archeological evidence indicates that there was widespread use of lenses in antiquity, spanning several millennia. The so-called Nimrud lens is a rock crystal artifact dated to the 7th century BCE which may or may not have been used as

6384-471: The Latin translation of an incomplete and very poor Arabic translation. The book was, however, received by medieval scholars in the Islamic world, and commented upon by Ibn Sahl (10th century), who was in turn improved upon by Alhazen ( Book of Optics , 11th century). The Arabic translation of Ptolemy's Optics became available in Latin translation in the 12th century ( Eugenius of Palermo 1154). Between

6496-505: The Raman-shifted backscatter from laser pulses to determine the temperature along optical fibers. The orientation of an anisotropic crystal can be found from the polarization of Raman-scattered light with respect to the crystal and the polarization of the laser light, if the crystal structure ’s point group is known. In nanotechnology, a Raman microscope can be used to analyze nanowires to better understand their structures, and

6608-405: The back to the front as when light goes from the front to the back. Other properties of the lens, such as the aberrations are not the same in both directions. The signs of the lens' radii of curvature indicate whether the corresponding surfaces are convex or concave. The sign convention used to represent this varies, but in this article a positive R indicates a surface's center of curvature

6720-505: The causes behind deterioration. The IRUG (Infrared and Raman Users Group) Spectral Database is a rigorously peer-reviewed online database of IR and Raman reference spectra for cultural heritage materials such as works of art, architecture, and archaeological artifacts. The database is open for the general public to peruse, and includes interactive spectra for over a hundred different types of pigments and paints. Raman spectroscopy offers several advantages for microscopic analysis. Since it

6832-436: The characterization of large-scale devices, mapping of different compounds and dynamics study. It has already been used for the characterization of graphene layers, J-aggregated dyes inside carbon nanotubes and multiple other 2D materials such as MoS 2 and WSe 2 . Since the excitation beam is dispersed over the whole field of view, those measurements can be done without damaging the sample. The most common approach

SECTION 60

#1732772795164

6944-541: The crystallographic orientation of a sample. As with single molecules, a solid material can be identified by characteristic phonon modes. Information on the population of a phonon mode is given by the ratio of the Stokes and anti-Stokes intensity of the spontaneous Raman signal. Raman spectroscopy can also be used to observe other low frequency excitations of a solid, such as plasmons , magnons , and superconducting gap excitations. Distributed temperature sensing (DTS) uses

7056-421: The development of lighthouses in terms of cost, design, and implementation. Fresnel lens were developed that considered these constraints by featuring less material through their concentric annular sectioning. They were first fully implemented into a lighthouse in 1823. Most lenses are spherical lenses : their two surfaces are parts of the surfaces of spheres. Each surface can be convex (bulging outwards from

7168-415: The discovery of the effect, Raman and Krishnan used a mercury lamp and photographic plates to record spectra. Early spectra took hours or even days to acquire due to weak light sources, poor sensitivity of the detectors and the weak Raman scattering cross-sections of most materials. Various colored filters and chemical solutions were used to select certain wavelength regions for excitation and detection but

7280-403: The distance from the lens to the spot is the focal length of the lens, which is commonly represented by f in diagrams and equations. An extended hemispherical lens is a special type of plano-convex lens, in which the lens's curved surface is a full hemisphere and the lens is much thicker than the radius of curvature. Another extreme case of a thick convex lens is a ball lens , whose shape

7392-432: The drug Cayston ( aztreonam ), marketed by Gilead Sciences for cystic fibrosis , can be identified and characterized by IR and Raman spectroscopy. Using the correct polymorphic form in bio-pharmaceutical formulations is critical, since different forms have different physical properties, like solubility and melting point. Raman spectroscopy has a wide variety of applications in biology and medicine. It has helped confirm

7504-426: The effect of the lens' thickness. For a single refraction for a circular boundary, the relation between object and its image in the paraxial approximation is given by n 1 u + n 2 v = n 2 − n 1 R {\displaystyle {\frac {n_{1}}{u}}+{\frac {n_{2}}{v}}={\frac {n_{2}-n_{1}}{R}}} where R

7616-452: The electric dipole moment derivative, the atomic polar tensor (APT). This contrasting feature allows rovibronic transitions that might not be active in IR to be analyzed using Raman spectroscopy, as exemplified by the rule of mutual exclusion in centrosymmetric molecules . Transitions which have large Raman intensities often have weak IR intensities and vice versa. If a bond is strongly polarized,

7728-499: The existence of low-frequency phonons in proteins and DNA, promoting studies of low-frequency collective motion in proteins and DNA and their biological functions. Raman reporter molecules with olefin or alkyne moieties are being developed for tissue imaging with SERS-labeled antibodies . Raman spectroscopy has also been used as a noninvasive technique for real-time, in situ biochemical characterization of wounds. Multivariate analysis of Raman spectra has enabled development of

7840-467: The fact that they have permanent dipole moments, and as a result, the Raman scattering cannot be picked up on. This is a large advantage, specifically in biological applications. Raman spectroscopy also has a wide usage for studying biominerals. Lastly, Raman gas analyzers have many practical applications, including real-time monitoring of anesthetic and respiratory gas mixtures during surgery. Raman spectroscopy has been used in several research projects as

7952-431: The focusing element, and — in the case of confocal microscopy — on the diameter of the confocal aperture. When operated in the visible to near-infrared range, a Raman microscope can achieve lateral resolutions of approx. 1 μm down to 250 nm, depending on the wavelength and type of objective lens (e.g., air vs. water or oil immersion lenses). The depth resolution (if not limited by the optical penetration depth of

8064-405: The frequencies of vibrations in highly symmetric molecules that may be both IR and Raman inactive. The IINS selection rules, or allowed transitions, differ from those of IR and Raman, so the three techniques are complementary. They all give the same frequency for a given vibrational transition, but the relative intensities provide different information due to the different types of interaction between

8176-1499: The imaging by second lens surface, by taking the above sign convention,   u ′ = − v ′ + d   {\textstyle \ u'=-v'+d\ } and   n 2   − v ′ + d   +   n 1     v   =   n 1 − n 2     R 2     . {\displaystyle \ {\frac {n_{2}}{\ -v'+d\ }}+{\frac {\ n_{1}\ }{\ v\ }}={\frac {\ n_{1}-n_{2}\ }{\ R_{2}\ }}~.} Adding these two equations yields     n 1   u +   n 1   v = ( n 2 − n 1 ) ( 1   R 1   − 1   R 2   ) +   n 2   d     (   v ′ − d   )   v ′     . {\displaystyle \ {\frac {\ n_{1}\ }{u}}+{\frac {\ n_{1}\ }{v}}=\left(n_{2}-n_{1}\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)+{\frac {\ n_{2}\ d\ }{\ \left(\ v'-d\ \right)\ v'\ }}~.} For

8288-417: The lens), concave (depressed into the lens), or planar (flat). The line joining the centres of the spheres making up the lens surfaces is called the axis of the lens. Typically the lens axis passes through the physical centre of the lens, because of the way they are manufactured. Lenses may be cut or ground after manufacturing to give them a different shape or size. The lens axis may then not pass through

8400-399: The lens. These two cases are examples of image formation in lenses. In the former case, an object at an infinite distance (as represented by a collimated beam of waves) is focused to an image at the focal point of the lens. In the latter, an object at the focal length distance from the lens is imaged at infinity. The plane perpendicular to the lens axis situated at a distance f from the lens

8512-402: The lenses (probably without the knowledge of the rudimentary optical theory of the day). The practical development and experimentation with lenses led to the invention of the compound optical microscope around 1595, and the refracting telescope in 1608, both of which appeared in the spectacle-making centres in the Netherlands . With the invention of the telescope and microscope there was

8624-437: The low frequency bands in addition to the unshifted laser light. However, Volume hologram filters are becoming more common which allow shifts as low as 5 cm to be observed. Raman spectroscopy is used in chemistry to identify molecules and study chemical bonding and intramolecular bonds. Because vibrational frequencies are specific to a molecule's chemical bonds and symmetry (the fingerprint region of organic molecules

8736-469: The measurement parameters have to be individually optimized. For that reason, modern Raman microscopes are often equipped with several lasers offering different wavelengths, a set of objective lenses, and neutral density filters for tuning of the laser power reaching the sample. Selection of the laser wavelength mainly depends on optical properties of the sample and on the aim of the investigation. For example, Raman microscopy of biological and medical specimens

8848-485: The molecular frame are represented by the Cartesian tensor ρ and σ here. Analyzing Raman excitation patterns requires the use of this equation, which is a sum-over-states expression for polarizability. This series of profiles illustrates the connection between a Raman active vibration's excitation frequency and intensity . Lens (optics) A lens is a transmissive optical device that focuses or disperses

8960-422: The molecule and the incoming particles, photons for IR and Raman, and neutrons for IINS. Raman shifts are typically reported in wavenumbers , which have units of inverse length, as this value is directly related to energy. In order to convert between spectral wavelength and wavenumbers of shift in the Raman spectrum, the following formula can be used: where Δν̃ is the Raman shift expressed in wavenumber, λ 0

9072-441: The monochromatic light, which can create an induced dipole moment within the molecule based on its polarizability. Because the laser light does not excite the molecule there can be no real transition between energy levels. The Raman effect should not be confused with emission ( fluorescence or phosphorescence ), where a molecule in an excited electronic state emits a photon and returns to the ground electronic state, in many cases to

9184-488: The orientation of molecules with a single crystal or material. The spectral information arising from this analysis is often used to understand macro-molecular orientation in crystal lattices, liquid crystals or polymer samples. The polarization technique is useful in understanding the connections between molecular symmetry , Raman activity, and peaks in the corresponding Raman spectra. Polarized light in one direction only gives access to some Raman–active modes, but rotating

9296-495: The painting in cases where the pigments have degraded with age. Beyond the identification of pigments, extensive Raman microspectroscopic imaging has been shown to provide access to a plethora of trace compounds in Early Medieval Egyptian blue , which enable to reconstruct the individual "biography" of a colourant, including information on the type and provenance of the raw materials, synthesis and application of

9408-588: The past, photomultipliers were the detectors of choice for dispersive Raman setups, which resulted in long acquisition times. However, modern instrumentation almost universally employs notch or edge filters for laser rejection. Dispersive single-stage spectrographs (axial transmissive (AT) or Czerny–Turner (CT) monochromators ) paired with CCD detectors are most common although Fourier transform (FT) spectrometers are also common for use with NIR lasers. The name "Raman spectroscopy" typically refers to vibrational Raman using laser wavelengths which are not absorbed by

9520-581: The patients than constantly having to take biopsies which are not always risk free. In photovoltaics , Raman spectroscopy has gained more interest in the past few years demonstrating high efficacy in delivering important properties for such materials. This includes optoelectronic and physicochemical properties such as open circuit voltage, efficiency, and crystalline structure. This has been demonstrated with several photovoltaic technologies, including kesterite-based, CIGS devices , Monocrystalline silicon cells, and perovskites devices . Raman spectroscopy

9632-531: The photographic spectra were still dominated by a broad center line corresponding to Rayleigh scattering of the excitation source. Technological advances have made Raman spectroscopy much more sensitive, particularly since the 1980s. The most common modern detectors are now charge-coupled devices (CCDs). Photodiode arrays and photomultiplier tubes were common prior to the adoption of CCDs. The advent of reliable, stable, inexpensive lasers with narrow bandwidths has also had an impact. Raman spectroscopy requires

9744-406: The physical centre of the lens. Toric or sphero-cylindrical lenses have surfaces with two different radii of curvature in two orthogonal planes. They have a different focal power in different meridians. This forms an astigmatic lens. An example is eyeglass lenses that are used to correct astigmatism in someone's eye. Lenses are classified by the curvature of the two optical surfaces. A lens

9856-519: The pigment, and the ageing of the paint layer. In addition to paintings and artifacts, Raman spectroscopy can be used to investigate the chemical composition of historical documents (such as the Book of Kells ), which can provide insight about the social and economic conditions when they were created. It also offers a noninvasive way to determine the best method of preservation or conservation of such cultural heritage artifacts, by providing insight into

9968-411: The plane-wave, causing it to be rotated by the difference between the orientation of the molecule and the angle of polarization of the light wave. If ρ ≥ 3 4 {\textstyle \rho \geq {\frac {3}{4}}} , then the vibrations at that frequency are depolarized ; meaning they are not totally symmetric. Resonance Raman selection rules can be explained by

10080-536: The polarization gives access to other modes. Each mode is separated according to its symmetry. The symmetry of a vibrational mode is deduced from the depolarization ratio ρ, which is the ratio of the Raman scattering with polarization orthogonal to the incident laser and the Raman scattering with the same polarization as the incident laser: ρ = I r I u {\displaystyle \rho ={\frac {I_{r}}{I_{u}}}} Here I r {\displaystyle I_{r}}

10192-506: The radial breathing mode of carbon nanotubes is commonly used to evaluate their diameter. Raman active fibers, such as aramid and carbon, have vibrational modes that show a shift in Raman frequency with applied stress. Polypropylene fibers exhibit similar shifts. In solid state chemistry and the bio-pharmaceutical industry, Raman spectroscopy can be used to not only identify active pharmaceutical ingredients (APIs), but to identify their polymorphic forms, if more than one exist. For example,

10304-414: The radius of curvature is called the curvature . A flat surface has zero curvature, and its radius of curvature is infinite . This convention seems to be mainly used for this article, although there is another convention such as Cartesian sign convention requiring different lens equation forms. If d is small compared to R 1 and R 2 then the thin lens approximation can be made. For

10416-775: The right infinity leads to the first or object focal length f 0 {\textstyle f_{0}} for the spherical surface. Similarly, u {\textstyle u} toward the left infinity leads to the second or image focal length f i {\displaystyle f_{i}} . f 0 = n 1 n 2 − n 1 R , f i = n 2 n 2 − n 1 R {\displaystyle {\begin{aligned}f_{0}&={\frac {n_{1}}{n_{2}-n_{1}}}R,\\f_{i}&={\frac {n_{2}}{n_{2}-n_{1}}}R\end{aligned}}} Applying this equation on

10528-422: The same time, including chemically similar and even polymorphic forms, which cannot be distinguished by detecting only one single wavenumber. Furthermore, material properties such as stress and strain , crystal orientation , crystallinity and incorporation of foreign ions into crystal lattices (e.g., doping , solid solution series ) can be determined from hyperspectral maps. Taking the cell culture example,

10640-570: The sample) can range from 1–6 μm with the smallest confocal pinhole aperture to tens of micrometers when operated without a confocal pinhole. Depending on the sample, the high laser power density due to microscopic focussing can have the benefit of enhanced photobleaching of molecules emitting interfering fluorescence. However, the laser wavelength and laser power have to be carefully selected for each type of sample to avoid its degradation. Applications of Raman imaging range from materials sciences to biological studies. For each type of sample,

10752-430: The sample. There are many other variations of Raman spectroscopy including surface-enhanced Raman , resonance Raman , tip-enhanced Raman , polarized Raman, stimulated Raman , transmission Raman, spatially-offset Raman, and hyper Raman . Although the inelastic scattering of light was predicted by Adolf Smekal in 1923, it was not observed in practice until 1928. The Raman effect was named after one of its discoverers,

10864-410: The sign) would have zero optical power (as its focal length becomes infinity as shown in the lensmaker's equation ), meaning that it would neither converge nor diverge light. All real lenses have a nonzero thickness, however, which makes a real lens with identical curved surfaces slightly positive. To obtain exactly zero optical power, a meniscus lens must have slightly unequal curvatures to account for

10976-500: The size of the CCD and the focal length of spectrograph used. It was once common to use monochromators coupled to photomultiplier tubes. In this case the monochromator would need to be moved in order to scan through a spectral range. FT–Raman is almost always used with NIR lasers and appropriate detectors must be used depending on the exciting wavelength. Germanium or Indium gallium arsenide (InGaAs) detectors are commonly used. It

11088-416: The spectra of surfaces that are cleaned or intentionally corroded, which can aid in determining the authenticity of valuable historical artifacts. It is capable of identifying individual pigments in paintings and their degradation products, which can provide insight into the working method of an artist in addition to aiding in authentication of paintings. It also gives information about the original state of

11200-408: The subscript of 2 in   n 2   {\textstyle \ n_{2}\ } is dropped. As mentioned above, a positive or converging lens in air focuses a collimated beam travelling along the lens axis to a spot (known as the focal point ) at a distance f from the lens. Conversely, a point source of light placed at the focal point is converted into a collimated beam by

11312-431: The symmetry labels of vibrational modes. In the solid state, polarized Raman spectroscopy can be useful in the study of oriented samples such as single crystals. The polarizability of a vibrational mode is not equal along and across the bond. Therefore the intensity of the Raman scattering will be different when the laser's polarization is along and orthogonal to a particular bond axis. This effect can provide information on

11424-862: The thin lens approximation where   d → 0   , {\displaystyle \ d\rightarrow 0\ ,} the 2nd term of the RHS (Right Hand Side) is gone, so     n 1   u +   n 1   v = ( n 2 − n 1 ) ( 1   R 1   − 1   R 2   )   . {\displaystyle \ {\frac {\ n_{1}\ }{u}}+{\frac {\ n_{1}\ }{v}}=\left(n_{2}-n_{1}\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)~.} The focal length   f   {\displaystyle \ f\ } of

11536-1110: The thin lens is found by limiting   u → − ∞   , {\displaystyle \ u\rightarrow -\infty \ ,}     n 1     f   = ( n 2 − n 1 ) ( 1   R 1   − 1   R 2   ) → 1   f   = (   n 2     n 1   − 1 ) ( 1   R 1   − 1   R 2   )   . {\displaystyle \ {\frac {\ n_{1}\ }{\ f\ }}=\left(n_{2}-n_{1}\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)\rightarrow {\frac {1}{\ f\ }}=\left({\frac {\ n_{2}\ }{\ n_{1}\ }}-1\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)~.} So,

11648-435: The total energy of the system to remain constant after the molecule moves to a new rovibronic (rotational–vibrational–electronic) state, the scattered photon shifts to a different energy, and therefore a different frequency. This energy difference is equal to that between the initial and final rovibronic states of the molecule. If the final state is higher in energy than the initial state, the scattered photon will be shifted to

11760-1258: The two spherical surfaces of a lens and approximating the lens thickness to zero (so a thin lens) leads to the lensmaker's formula . Applying Snell's law on the spherical surface, n 1 sin ⁡ i = n 2 sin ⁡ r . {\displaystyle n_{1}\sin i=n_{2}\sin r\,.} Also in the diagram, tan ⁡ ( i − θ ) = h u tan ⁡ ( θ − r ) = h v sin ⁡ θ = h R {\displaystyle {\begin{aligned}\tan(i-\theta )&={\frac {h}{u}}\\\tan(\theta -r)&={\frac {h}{v}}\\\sin \theta &={\frac {h}{R}}\end{aligned}}} , and using small angle approximation (paraxial approximation) and eliminating i , r , and θ , n 2 v + n 1 u = n 2 − n 1 R . {\displaystyle {\frac {n_{2}}{v}}+{\frac {n_{1}}{u}}={\frac {n_{2}-n_{1}}{R}}\,.} The (effective) focal length f {\displaystyle f} of

11872-418: The two surfaces. A negative meniscus lens has a steeper concave surface (with a shorter radius than the convex surface) and is thinner at the centre than at the periphery. Conversely, a positive meniscus lens has a steeper convex surface (with a shorter radius than the concave surface) and is thicker at the centre than at the periphery. An ideal thin lens with two surfaces of equal curvature (also equal in

11984-467: The use of a corrective lens when he mentions that Nero was said to watch the gladiatorial games using an emerald (presumably concave to correct for nearsightedness , though the reference is vague). Both Pliny and Seneca the Younger (3 BC–65 AD) described the magnifying effect of a glass globe filled with water. Ptolemy (2nd century) wrote a book on Optics , which however survives only in

12096-465: The vibration, producing a strong IR absorption band. Conversely, relatively neutral bonds (e.g. C-C , C-H , C=C) suffer large changes in polarizability during a vibration. However, the dipole moment is not similarly affected such that while vibrations involving predominantly this type of bond are strong Raman scatterers, they are weak in the IR. A third vibrational spectroscopy technique, inelastic incoherent neutron scattering (IINS), can be used to determine

12208-413: The vibrational coordinate corresponding to the rovibronic state. The intensity of the Raman scattering is proportional to this polarizability change. Therefore, the Raman spectrum (scattering intensity as a function of the frequency shifts) depends on the rovibronic states of the molecule. The Raman effect is based on the interaction between the electron cloud of a sample and the external electric field of

12320-427: The vibrational mode involved in the Raman scattering process is totally symmetric then the polarization of the Raman scattering will be the same as that of the incoming laser beam. In the case that the vibrational mode is not totally symmetric then the polarization will be lost (scrambled) partially or totally, which is referred to as depolarization. Hence polarized Raman spectroscopy can provide detailed information as to

12432-494: The ω dependence of Raman scattering intensity), leading to long acquisition times. On the other hand, resonance Raman imaging of single-cell algae at 532 nm (green) can specifically probe the carotenoid distribution within a cell by a using low laser power of ~5 μW and only 100 ms acquisition time. Raman scattering, specifically tip-enhanced Raman spectroscopy, produces high resolution hyperspectral images of single molecules, atoms, and DNA. Raman scattering

12544-430: Was developed by Czechoslovak physicist George Placzek between 1930 and 1934. The mercury arc became the principal light source, first with photographic detection and then with spectrophotometric detection. In the years following its discovery, Raman spectroscopy was used to provide the first catalog of molecular vibrational frequencies. Typically, the sample was held in a long tube and illuminated along its length with

#163836