Cardiac muscle (also called heart muscle or myocardium ) is one of three types of vertebrate muscle tissues , the others being skeletal muscle and smooth muscle . It is an involuntary, striated muscle that constitutes the main tissue of the wall of the heart . The cardiac muscle (myocardium) forms a thick middle layer between the outer layer of the heart wall (the pericardium ) and the inner layer (the endocardium ), with blood supplied via the coronary circulation . It is composed of individual cardiac muscle cells joined by intercalated discs , and encased by collagen fibers and other substances that form the extracellular matrix .
123-635: 6517 20528 ENSG00000181856 ENSG00000288174 ENSMUSG00000018566 P14672 P14142 NM_001042 NM_009204 NM_001359114 NP_001033 NP_033230 NP_001346043 Glucose transporter type 4 ( GLUT4 ), also known as solute carrier family 2, facilitated glucose transporter member 4 , is a protein encoded, in humans, by the SLC2A4 gene . GLUT4 is the insulin -regulated glucose transporter found primarily in adipose tissues and striated muscle (skeletal and cardiac). The first evidence for this distinct glucose transport protein
246-520: A carboxyl group, and a variable side chain are bonded . Only proline differs from this basic structure as it contains an unusual ring to the N-end amine group, which forces the CO–NH amide moiety into a fixed conformation. The side chains of the standard amino acids, detailed in the list of standard amino acids , have a great variety of chemical structures and properties; it is the combined effect of all of
369-470: A gene may be duplicated before it can mutate freely. However, this can also lead to complete loss of gene function and thus pseudo-genes . More commonly, single amino acid changes have limited consequences although some can change protein function substantially, especially in enzymes . For instance, many enzymes can change their substrate specificity by one or a few mutations. Changes in substrate specificity are facilitated by substrate promiscuity , i.e.
492-422: A signal cascade is initiated inside the cell that results in insulin stored in vesicles in these cells being released into the blood stream. Increased insulin levels cause the uptake of glucose into the cells. GLUT4 is stored in the cell in transport vesicles , and is quickly incorporated into the plasma membrane of the cell when insulin binds to membrane receptors . Under conditions of low insulin, most GLUT4
615-552: A combination of sequence, structure and function, and they can be combined in many different ways. In an early study of 170,000 proteins, about two-thirds were assigned at least one domain, with larger proteins containing more domains (e.g. proteins larger than 600 amino acids having an average of more than 5 domains). Most proteins consist of linear polymers built from series of up to 20 different L -α- amino acids. All proteinogenic amino acids possess common structural features, including an α-carbon to which an amino group,
738-403: A defined conformation . Proteins can interact with many types of molecules, including with other proteins , with lipids , with carbohydrates , and with DNA . It has been estimated that average-sized bacteria contain about 2 million proteins per cell (e.g. E. coli and Staphylococcus aureus ). Smaller bacteria, such as Mycoplasma or spirochetes contain fewer molecules, on
861-851: A detailed review of the vegetable proteins at the Connecticut Agricultural Experiment Station . Then, working with Lafayette Mendel and applying Liebig's law of the minimum , which states that growth is limited by the scarcest resource, to the feeding of laboratory rats, the nutritionally essential amino acids were established. The work was continued and communicated by William Cumming Rose . The difficulty in purifying proteins in large quantities made them very difficult for early protein biochemists to study. Hence, early studies focused on proteins that could be purified in large quantities, including those of blood, egg whites, and various toxins, as well as digestive and metabolic enzymes obtained from slaughterhouses. In
984-478: A little ambiguous and can overlap in meaning. Protein is generally used to refer to the complete biological molecule in a stable conformation , whereas peptide is generally reserved for a short amino acid oligomers often lacking a stable 3D structure. But the boundary between the two is not well defined and usually lies near 20–30 residues. Polypeptide can refer to any single linear chain of amino acids, usually regardless of length, but often implies an absence of
1107-566: A myocardial infarction. A healthy adult cardiomyocyte has a cylindrical shape that is approximately 100μm long and 10–25μm in diameter. Cardiomyocyte hypertrophy occurs through sarcomerogenesis, the creation of new sarcomere units in the cell. During heart volume overload, cardiomyocytes grow through eccentric hypertrophy. The cardiomyocytes extend lengthwise but have the same diameter, resulting in ventricular dilation. During heart pressure overload, cardiomyocytes grow through concentric hypertrophy. The cardiomyocytes grow larger in diameter but have
1230-404: A normal blood supply. The heart muscle may become inflamed in a condition called myocarditis , most commonly caused by a viral infection but sometimes caused by the body's own immune system . Heart muscle can also be damaged by drugs such as alcohol, long standing high blood pressure or hypertension , or persistent abnormal heart racing . Many of these conditions, if severe enough, can damage
1353-410: A particular cell or cell type is known as its proteome . The chief characteristic of proteins that also allows their diverse set of functions is their ability to bind other molecules specifically and tightly. The region of the protein responsible for binding another molecule is known as the binding site and is often a depression or "pocket" on the molecular surface. This binding ability is mediated by
SECTION 10
#17327878052571476-500: A protein carries out its function: for example, enzyme kinetics studies explore the chemical mechanism of an enzyme's catalytic activity and its relative affinity for various possible substrate molecules. By contrast, in vivo experiments can provide information about the physiological role of a protein in the context of a cell or even a whole organism . In silico studies use computational methods to study proteins. Proteins may be purified from other cellular components using
1599-411: A protein is defined by the sequence of a gene, which is encoded in the genetic code . In general, the genetic code specifies 20 standard amino acids; but in certain organisms the genetic code can include selenocysteine and—in certain archaea — pyrrolysine . Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification , which alters
1722-542: A protein that fold into distinct structural units. Domains usually also have specific functions, such as enzymatic activities (e.g. kinase ) or they serve as binding modules (e.g. the SH3 domain binds to proline-rich sequences in other proteins). Short amino acid sequences within proteins often act as recognition sites for other proteins. For instance, SH3 domains typically bind to short PxxP motifs (i.e. 2 prolines [P], separated by two unspecified amino acids [x], although
1845-399: A restricted blood supply to the muscle such as angina , and myocardial infarction . Cardiac muscle tissue or myocardium forms the bulk of the heart. The heart wall is a three-layered structure with a thick layer of myocardium sandwiched between the inner endocardium and the outer epicardium (also known as the visceral pericardium). The inner endocardium lines the cardiac chambers, covers
1968-486: A role in biological recognition phenomena involving cells and proteins. Receptors and hormones are highly specific binding proteins. Transmembrane proteins can also serve as ligand transport proteins that alter the permeability of the cell membrane to small molecules and ions. The membrane alone has a hydrophobic core through which polar or charged molecules cannot diffuse . Membrane proteins contain internal channels that allow such molecules to enter and exit
2091-406: A series of purification steps may be necessary to obtain protein sufficiently pure for laboratory applications. To simplify this process, genetic engineering is often used to add chemical features to proteins that make them easier to purify without affecting their structure or activity. Here, a "tag" consisting of a specific amino acid sequence, often a series of histidine residues (a " His-tag "),
2214-514: A similar manner to skeletal muscle , although with some important differences. Electrical stimulation in the form of a cardiac action potential triggers the release of calcium from the cell's internal calcium store, the sarcoplasmic reticulum . The rise in calcium causes the cell's myofilaments to slide past each other in a process called excitation-contraction coupling . Diseases of the heart muscle known as cardiomyopathies are of major importance. These include ischemic conditions caused by
2337-432: A solution known as a crude lysate . The resulting mixture can be purified using ultracentrifugation , which fractionates the various cellular components into fractions containing soluble proteins; membrane lipids and proteins; cellular organelles , and nucleic acids . Precipitation by a method known as salting out can concentrate the proteins from this lysate. Various types of chromatography are then used to isolate
2460-451: A specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide . A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides . The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in
2583-441: A variety of techniques such as ultracentrifugation , precipitation , electrophoresis , and chromatography ; the advent of genetic engineering has made possible a number of methods to facilitate purification. To perform in vitro analysis, a protein must be purified away from other cellular components. This process usually begins with cell lysis , in which a cell's membrane is disrupted and its internal contents released into
SECTION 20
#17327878052572706-432: A vast array of functions within organisms, including catalysing metabolic reactions , DNA replication , responding to stimuli , providing structure to cells and organisms , and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes , and which usually results in protein folding into
2829-430: Is attached to one terminus of the protein. As a result, when the lysate is passed over a chromatography column containing nickel , the histidine residues ligate the nickel and attach to the column while the untagged components of the lysate pass unimpeded. A number of different tags have been developed to help researchers purify specific proteins from complex mixtures. Cardiac muscle Cardiac muscle contracts in
2952-549: Is especially true in cardiac muscle, where continuous contraction increases the rate of GLUT4 translocation; but is observed to a lesser extent in increased skeletal muscle contraction. In skeletal muscle, muscle contractions increase GLUT4 translocation severalfold, and this is likely regulated by RAC1 and AMP-activated protein kinase . Muscle stretching also stimulates GLUT4 translocation and glucose uptake in rodent muscle via RAC1 . GLUT4 has been shown to interact with death-associated protein 6 , also known as Daxx. Daxx, which
3075-538: Is expended, and the rest is stored as glycogen (primarily in the liver, muscle cells), or as triglyceride in adipose tissue. An imbalance in glucose intake and energy expenditure has been shown to lead to both adipose cell hypertrophy and hyperplasia , which lead to obesity. In addition, mutations in GLUT4 genes in adipocytes can also lead to increased GLUT4 expression in adipose cells, which allows for increased glucose uptake and therefore more fat stored. If GLUT4
3198-628: Is found in hard or filamentous structures such as hair , nails , feathers , hooves , and some animal shells . Some globular proteins can also play structural functions, for example, actin and tubulin are globular and soluble as monomers, but polymerize to form long, stiff fibers that make up the cytoskeleton , which allows the cell to maintain its shape and size. Other proteins that serve structural functions are motor proteins such as myosin , kinesin , and dynein , which are capable of generating mechanical forces. These proteins are crucial for cellular motility of single celled organisms and
3321-469: Is higher in prokaryotes than eukaryotes and can reach up to 20 amino acids per second. The process of synthesizing a protein from an mRNA template is known as translation . The mRNA is loaded onto the ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule, which carries the amino acid corresponding to the codon it recognizes. The enzyme aminoacyl tRNA synthetase "charges"
3444-461: Is inefficient for polypeptides longer than about 300 amino acids, and the synthesized proteins may not readily assume their native tertiary structure . Most chemical synthesis methods proceed from C-terminus to N-terminus, opposite the biological reaction. Most proteins fold into unique 3D structures. The shape into which a protein naturally folds is known as its native conformation . Although many proteins can fold unassisted, simply through
3567-404: Is often enormous—as much as 10 -fold increase in rate over the uncatalysed reaction in the case of orotate decarboxylase (78 million years without the enzyme, 18 milliseconds with the enzyme). The molecules bound and acted upon by enzymes are called substrates . Although enzymes can consist of hundreds of amino acids, it is usually only a small fraction of the residues that come in contact with
3690-412: Is over-expressed, it can actually alter nutrient distribution and send excess glucose into adipose tissue, leading to increased adipose tissue mass. Insulin is released from the pancreas and into the bloodstream in response to increased glucose concentration in the blood. Insulin is stored in beta cells in the pancreas. When glucose in the blood binds to glucose receptors on the beta cell membrane,
3813-493: Is polymerized into glycogen. Glucose-6-phosphate cannot diffuse back out of cells, which also serves to maintain the concentration gradient for glucose to passively enter cells. Like all proteins, the unique amino acid arrangement in the primary sequence of GLUT4 is what allows it to transport glucose across the plasma membrane. In addition to the phenylalanine on the N-terminus, two Leucine residues and acidic motifs on
GLUT4 - Misplaced Pages Continue
3936-479: Is sequestered in intracellular vesicles in muscle and fat cells. As the vesicles fuse with the plasma membrane, GLUT4 transporters are inserted and become available for transporting glucose, and glucose absorption increases. The genetically engineered muscle insulin receptor knock‐out (MIRKO) mouse was designed to be insensitive to glucose uptake caused by insulin, meaning that GLUT4 is absent. Mice with diabetes or fasting hyperglycemia, however, were found to be immune to
4059-413: Is slightly different from skeletal muscle. At rest, they prefer to utilize fatty acids as their main energy source. As activity increases and it begins to pump faster, the cardiac muscles begin to oxidize glucose at a higher rate. An analysis of mRNA levels of GLUT1 and GLUT4 in cardiac muscles show that GLUT1 plays a larger role in cardiac muscles than it does in skeletal muscles. GLUT4, however,
4182-414: Is still believed to be the primary transporter for glucose. Much like in other tissues, GLUT4 also responds to insulin signaling, and is transported into the plasma membrane to facilitate the diffusion of glucose into the cell. Adipose tissue , commonly known as fat, is a depository for energy in order to conserve metabolic homeostasis . As the body takes in energy in the form of glucose, some
4305-535: Is the code for methionine . Because DNA contains four nucleotides, the total number of possible codons is 64; hence, there is some redundancy in the genetic code, with some amino acids specified by more than one codon. Genes encoded in DNA are first transcribed into pre- messenger RNA (mRNA) by proteins such as RNA polymerase . Most organisms then process the pre-mRNA (also known as a primary transcript ) using various forms of post-transcriptional modification to form
4428-449: Is the direct result of a membrane which allows sodium ions to slowly enter the cell until the threshold is reached for depolarization. Calcium ions follow and extend the depolarization even further. Once calcium stops moving inward, potassium ions move out slowly to produce repolarization. The very slow repolarization of the CMC membrane is responsible for the long refractory period. However,
4551-450: Is used to regulate apoptosis , has been shown to associate with GLUT4 in the cytoplasm. UBX-domains, such as the one found in GLUT4, have been shown to associate with apoptotic signaling. So this interaction aids in the translocation of Daxx within the cell. In addition, recent reports demonstrated the presence of GLUT4 gene in central nervous system such as the hippocampus . Moreover, impairment in insulin-stimulated trafficking of GLUT4 in
4674-524: The L-type calcium channels triggers a much larger release of calcium from the sarcoplasmic reticulum in a phenomenon known as calcium-induced calcium release . In contrast, in skeletal muscle, minimal calcium flows into the cell during action potential and instead the sarcoplasmic reticulum in these cells is directly coupled to the surface membrane. This difference can be illustrated by the observation that cardiac muscle fibers require calcium to be present in
4797-492: The amino acid leucine for which he found a (nearly correct) molecular weight of 131 Da . Early nutritional scientists such as the German Carl von Voit believed that protein was the most important nutrient for maintaining the structure of the body, because it was generally believed that "flesh makes flesh." Around 1862, Karl Heinrich Ritthausen isolated the amino acid glutamic acid . Thomas Burr Osborne compiled
4920-425: The cardiac valves , and joins with the endothelium that lines the blood vessels that connect to the heart. On the outer aspect of the myocardium is the epicardium which forms part of the pericardial sac that surrounds, protects, and lubricates the heart. Within the myocardium, there are several sheets of cardiac muscle cells or cardiomyocytes. The sheets of muscle that wrap around the left ventricle closest to
5043-644: The muscle sarcomere , with a molecular mass of almost 3,000 kDa and a total length of almost 27,000 amino acids. Short proteins can also be synthesized chemically by a family of methods known as peptide synthesis , which rely on organic synthesis techniques such as chemical ligation to produce peptides in high yield. Chemical synthesis allows for the introduction of non-natural amino acids into polypeptide chains, such as attachment of fluorescent probes to amino acid side chains. These methods are useful in laboratory biochemistry and cell biology , though generally not for commercial applications. Chemical synthesis
GLUT4 - Misplaced Pages Continue
5166-580: The sinoatrial node (the primary pacemaker) positioned on the wall of the right atrium , near the entrance of the superior vena cava . Other pacemaker cells are found in the atrioventricular node (secondary pacemaker). Pacemaker cells carry the impulses that are responsible for the beating of the heart. They are distributed throughout the heart and are responsible for several functions. First, they are responsible for being able to spontaneously generate and send out electrical impulses . They also must be able to receive and respond to electrical impulses from
5289-645: The sperm of many multicellular organisms which reproduce sexually . They also generate the forces exerted by contracting muscles and play essential roles in intracellular transport. A key question in molecular biology is how proteins evolve, i.e. how can mutations (or rather changes in amino acid sequence) lead to new structures and functions? Most amino acids in a protein can be changed without disrupting activity or function, as can be seen from numerous homologous proteins across species (as collected in specialized databases for protein families , e.g. PFAM ). In order to prevent dramatic consequences of mutations,
5412-497: The 1700s by Antoine Fourcroy and others, who often collectively called them " albumins ", or "albuminous materials" ( Eiweisskörper , in German). Gluten , for example, was first separated from wheat in published research around 1747, and later determined to exist in many plants. In 1789, Antoine Fourcroy recognized three distinct varieties of animal proteins: albumin , fibrin , and gelatin . Vegetable (plant) proteins studied in
5535-572: The 1950s, the Armour Hot Dog Company purified 1 kg of pure bovine pancreatic ribonuclease A and made it freely available to scientists; this gesture helped ribonuclease A become a major target for biochemical study for the following decades. The understanding of proteins as polypeptides , or chains of amino acids, came through the work of Franz Hofmeister and Hermann Emil Fischer in 1902. The central role of proteins as enzymes in living organisms that catalyzed reactions
5658-583: The 1960s, and ultimately confirmed in native cardiac tissue with the help of optogenetic techniques. Other potential roles for fibroblasts include electrical insulation of the cardiac conduction system , and the ability to transform into other cell types including cardiomyocytes and adipocytes . The extracellular matrix (ECM) surrounds the cardiomyocyte and fibroblasts. The ECM is composed of proteins including collagen and elastin along with polysaccharides (sugar chains) known as glycosaminoglycans . Together, these substances give support and strength to
5781-498: The 20,000 or so proteins encoded by the human genome, only 6,000 are detected in lymphoblastoid cells. Proteins are assembled from amino acids using information encoded in genes. Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein. The genetic code is a set of three-nucleotide sets called codons and each three-nucleotide combination designates an amino acid, for example AUG ( adenine – uracil – guanine )
5904-515: The COOH-terminus are believed to play a key role in the kinetics of endocytosis and exocytosis . There are 14 total GLUT proteins separated into 3 classes based on sequence similarities. Class 1 consists of GLUT 1-4 and 14, class 2 contains GLUT 5, 7, 9 and 11, and class 3 has GLUT 6, 8, 10, 12 and 13. Although there are some sequence differences between all GLUT proteins, they all have some basic structural components. For example, both
6027-519: The EC number system provides a functional classification scheme. Similarly, the gene ontology classifies both genes and proteins by their biological and biochemical function, but also by their intracellular location. Sequence similarity is used to classify proteins both in terms of evolutionary and functional similarity. This may use either whole proteins or protein domains , especially in multi-domain proteins . Protein domains allow protein classification by
6150-700: The GTPase-activating domain leaves proteins next in the cascade in their active form, and stimulates GLUT4 to be expressed on the plasma membrane. RAC1 is a GTPase also activated by insulin. Rac1 stimulates reorganization of the cortical Actin cytoskeleton which allows for the GLUT4 vesicles to be inserted into the plasma membrane. A RAC1 Knockout mouse has reduced glucose uptake in muscle tissue. Knockout mice that are heterozygous for GLUT4 develop insulin resistance in their muscles as well as diabetes . Muscle contraction stimulates muscle cells to translocate GLUT4 receptors to their surfaces. This
6273-486: The N and C termini in GLUT proteins are exposed to the cytoplasm of the cell, and they all have 12 transmembrane segments. In striated skeletal muscle cells, GLUT4 concentration in the plasma membrane can increase as a result of either exercise or muscle contraction. During exercise, the body needs to convert glucose to ATP to be used as energy. As G-6-P concentrations decrease, hexokinase becomes less inhibited, and
SECTION 50
#17327878052576396-709: The ability of many enzymes to bind and process multiple substrates . When mutations occur, the specificity of an enzyme can increase (or decrease) and thus its enzymatic activity. Thus, bacteria (or other organisms) can adapt to different food sources, including unnatural substrates such as plastic. Methods commonly used to study protein structure and function include immunohistochemistry , site-directed mutagenesis , X-ray crystallography , nuclear magnetic resonance and mass spectrometry . The activities and structures of proteins may be examined in vitro , in vivo , and in silico . In vitro studies of purified proteins in controlled environments are useful for learning how
6519-537: The actin filament anchoring fascia adherens junctions , the intermediate filament anchoring desmosomes , and gap junctions . They allow action potentials to spread between cardiac cells by permitting the passage of ions between cells, producing depolarization of the heart muscle. The three types of junction act together as a single area composita . Under light microscopy , intercalated discs appear as thin, typically dark-staining lines dividing adjacent cardiac muscle cells. The intercalated discs run perpendicular to
6642-405: The addition of a single methyl group to a binding partner can sometimes suffice to nearly eliminate binding; for example, the aminoacyl tRNA synthetase specific to the amino acid valine discriminates against the very similar side chain of the amino acid isoleucine . Proteins can bind to other proteins as well as to small-molecule substrates. When proteins bind specifically to other copies of
6765-607: The alpha carbons are roughly coplanar . The other two dihedral angles in the peptide bond determine the local shape assumed by the protein backbone. The end with a free amino group is known as the N-terminus or amino terminus, whereas the end of the protein with a free carboxyl group is known as the C-terminus or carboxy terminus (the sequence of the protein is written from N-terminus to C-terminus, from left to right). The words protein , polypeptide, and peptide are
6888-531: The amino acid side chains in a protein that ultimately determines its three-dimensional structure and its chemical reactivity. The amino acids in a polypeptide chain are linked by peptide bonds . Once linked in the protein chain, an individual amino acid is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as the main chain or protein backbone. The peptide bond has two resonance forms that contribute some double-bond character and inhibit rotation around its axis, so that
7011-574: The binding of a substrate molecule to an enzyme's active site , or the physical region of the protein that participates in chemical catalysis. In solution, proteins also undergo variation in structure through thermal vibration and the collision with other molecules. Proteins can be informally divided into three main classes, which correlate with typical tertiary structures: globular proteins , fibrous proteins , and membrane proteins . Almost all globular proteins are soluble and many are enzymes. Fibrous proteins are often structural, such as collagen ,
7134-507: The blockage is not relieved promptly by medication , percutaneous coronary intervention , or surgery , then a heart muscle region may become permanently scarred and damaged. Specific cardiomyopathies include: increased left ventricular mass ( hypertrophic cardiomyopathy ), abnormally large ( dilated cardiomyopathy ), or abnormally stiff ( restrictive cardiomyopathy ). Some of these conditions are caused by genetic mutations and can be inherited. Heart muscle can also become damaged despite
7257-570: The body of a multicellular organism. These proteins must have a high binding affinity when their ligand is present in high concentrations, but must also release the ligand when it is present at low concentrations in the target tissues. The canonical example of a ligand-binding protein is haemoglobin , which transports oxygen from the lungs to other organs and tissues in all vertebrates and has close homologs in every biological kingdom . Lectins are sugar-binding proteins which are highly specific for their sugar moieties. Lectins typically play
7380-518: The brain. Lastly, they must be able to transfer electrical impulses from cell to cell. Pacemaker cells in the sinoatrial node, and atrioventricular node are smaller and conduct at a relatively slow rate between the cells. Specialized conductive cells in the bundle of His , and the Purkinje fibers are larger in diameter and conduct signals at a fast rate. The Purkinje fibers rapidly conduct electrical signals; coronary arteries to bring nutrients to
7503-452: The cell in a process known as excitation-contraction coupling . They are also involved in mechano-electric feedback, as evident from cell contraction induced T-tubular content exchange (advection-assisted diffusion), which was confirmed by confocal and 3D electron tomography observations. The cardiac syncytium is a network of cardiomyocytes connected by intercalated discs that enable the rapid transmission of electrical impulses through
SECTION 60
#17327878052577626-558: The cell is as enzymes , which catalyse chemical reactions. Enzymes are usually highly specific and accelerate only one or a few chemical reactions. Enzymes carry out most of the reactions involved in metabolism , as well as manipulating DNA in processes such as DNA replication , DNA repair , and transcription . Some enzymes act on other proteins to add or remove chemical groups in a process known as posttranslational modification. About 4,000 reactions are known to be catalysed by enzymes. The rate acceleration conferred by enzymatic catalysis
7749-436: The cell surface and an effector domain within the cell, which may have enzymatic activity or may undergo a conformational change detected by other proteins within the cell. Antibodies are protein components of an adaptive immune system whose main function is to bind antigens , or foreign substances in the body, and target them for destruction. Antibodies can be secreted into the extracellular environment or anchored in
7872-434: The cell surface to deep within the cell. They are continuous with the cell membrane, are composed of the same phospholipid bilayer , and are open at the cell surface to the extracellular fluid that surrounds the cell. T-tubules in cardiac muscle are bigger and wider than those in skeletal muscle , but fewer in number. In the centre of the cell they join, running into and along the cell as a transverse-axial network. Inside
7995-476: The cell surface to the cell's interior which help to improve the efficiency of contraction. The majority of these cells contain only one nucleus (some may have two central nuclei), unlike skeletal muscle cells which contain many nuclei . Cardiac muscle cells contain many mitochondria which provide the energy needed for the cell in the form of adenosine triphosphate (ATP), making them highly resistant to fatigue. T-tubules are microscopic tubes that run from
8118-433: The cell they lie close to the cell's internal calcium store, the sarcoplasmic reticulum . Here, a single tubule pairs with part of the sarcoplasmic reticulum called a terminal cisterna in a combination known as a diad . The functions of T-tubules include rapidly transmitting electrical impulses known as action potentials from the cell surface to the cell's core, and helping to regulate the concentration of calcium within
8241-752: The cell's machinery through the process of protein turnover . A protein's lifespan is measured in terms of its half-life and covers a wide range. They can exist for minutes or years with an average lifespan of 1–2 days in mammalian cells. Abnormal or misfolded proteins are degraded more rapidly either due to being targeted for destruction or due to being unstable. Like other biological macromolecules such as polysaccharides and nucleic acids , proteins are essential parts of organisms and participate in virtually every process within cells . Many proteins are enzymes that catalyse biochemical reactions and are vital to metabolism . Proteins also have structural or mechanical functions, such as actin and myosin in muscle and
8364-450: The cell. Many ion channel proteins are specialized to select for only a particular ion; for example, potassium and sodium channels often discriminate for only one of the two ions. Structural proteins confer stiffness and rigidity to otherwise-fluid biological components. Most structural proteins are fibrous proteins ; for example, collagen and elastin are critical components of connective tissue such as cartilage , and keratin
8487-621: The chemical properties of their amino acids, others require the aid of molecular chaperones to fold into their native states. Biochemists often refer to four distinct aspects of a protein's structure: Proteins are not entirely rigid molecules. In addition to these levels of structure, proteins may shift between several related structures while they perform their functions. In the context of these functional rearrangements, these tertiary or quaternary structures are usually referred to as " conformations ", and transitions between them are called conformational changes. Such changes are often induced by
8610-441: The chief actors within the cell, said to be carrying out the duties specified by the information encoded in genes. With the exception of certain types of RNA , most other biological molecules are relatively inert elements upon which proteins act. Proteins make up half the dry weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA make up only 3% and 20%, respectively. The set of proteins expressed in
8733-478: The concentration of calcium within the cytosol. The cardiac cycle is the performance of the human heart from the beginning of one heartbeat to the beginning of the next. It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole , following a period of robust contraction and pumping of blood, dubbed systole . After emptying, the heart immediately relaxes and expands to receive another influx of blood returning from
8856-704: The concentration of calcium within the cell falls, troponin and tropomyosin once again cover the binding sites on actin, causing the cell to relax. It was commonly believed that cardiac muscle cells could not be regenerated. However, this was contradicted by a report published in 2009. Olaf Bergmann and his colleagues at the Karolinska Institute in Stockholm tested samples of heart muscle from people born before 1955 who had very little cardiac muscle around their heart, many showing with disabilities from this abnormality. By using DNA samples from many hearts,
8979-490: The construction of enormously complex signaling networks. As interactions between proteins are reversible, and depend heavily on the availability of different groups of partner proteins to form aggregates that are capable to carry out discrete sets of function, study of the interactions between specific proteins is a key to understand important aspects of cellular function, and ultimately the properties that distinguish particular cell types. The best-known role of proteins in
9102-413: The contractile myocytes of the cardiac muscle. The cells are surrounded by an extracellular matrix produced by supporting fibroblast cells. Specialised modified cardiomyocytes known as pacemaker cells , set the rhythm of the heart contractions. The pacemaker cells are only weakly contractile without sarcomeres, and are connected to neighboring contractile cells via gap junctions . They are located in
9225-408: The derivative unit kilodalton (kDa). The average size of a protein increases from Archaea to Bacteria to Eukaryote (283, 311, 438 residues and 31, 34, 49 kDa respectively) due to a bigger number of protein domains constituting proteins in higher organisms. For instance, yeast proteins are on average 466 amino acids long and 53 kDa in mass. The largest known proteins are the titins , a component of
9348-606: The direction of muscle fibers. Under electron microscopy, an intercalated disc's path appears more complex. At low magnification, this may appear as a convoluted electron dense structure overlying the location of the obscured Z-line. At high magnification, the intercalated disc's path appears even more convoluted, with both longitudinal and transverse areas appearing in longitudinal section. Cardiac fibroblasts are vital supporting cells within cardiac muscle. They are unable to provide forceful contractions like cardiomyocytes , but instead are largely responsible for creating and maintaining
9471-400: The edges of the injured area together. Fibroblasts are smaller but more numerous than cardiomyocytes, and several fibroblasts can be attached to a cardiomyocyte at once. When attached to a cardiomyocyte they can influence the electrical currents passing across the muscle cell's surface membrane, and in the context are referred to as being electrically coupled, as originally shown in vitro in
9594-429: The endocardium are oriented perpendicularly to those closest to the epicardium. When these sheets contract in a coordinated manner they allow the ventricle to squeeze in several directions simultaneously – longitudinally (becoming shorter from apex to base), radially (becoming narrower from side to side), and with a twisting motion (similar to wringing out a damp cloth) to squeeze the maximum possible amount of blood out of
9717-492: The enzyme PI-3 kinase. PI-3 kinase converts the membrane lipid PIP2 to PIP3 . PIP3 is specifically recognized by PKB ( protein kinase B ) and by PDK1, which can phosphorylate and activate PKB. Once phosphorylated, PKB is in its active form and phosphorylates TBC1D4 , which inhibits the GTPase-activating domain associated with TBC1D4, allowing for Rab protein to change from its GDP to GTP bound state. Inhibition of
9840-451: The erroneous conclusion that they might be composed of a single type of (very large) molecule. The term "protein" to describe these molecules was proposed by Mulder's associate Berzelius; protein is derived from the Greek word πρώτειος ( proteios ), meaning "primary", "in the lead", or "standing in front", + -in . Mulder went on to identify the products of protein degradation such as
9963-490: The extracellular matrix which surrounds the cardiomyocytes. Fibroblasts play a crucial role in responding to injury, such as a myocardial infarction . Following injury, fibroblasts can become activated and turn into myofibroblasts – cells which exhibit behaviour somewhere between a fibroblast (generating extracellular matrix) and a smooth muscle cell (ability to contract). In this capacity, fibroblasts can repair an injury by creating collagen while gently contracting to pull
10086-433: The formation of atherosclerotic plaques . If these narrowings become severe enough to partially restrict blood flow, the syndrome of angina pectoris may occur. This typically causes chest pain during exertion that is relieved by rest. If a coronary artery suddenly becomes very narrowed or completely blocked, interrupting or severely reducing blood flow through the vessel, a myocardial infarction or heart attack occurs. If
10209-493: The fundamental contractile units of muscle cells. The regular organization of myofibrils into sarcomeres gives cardiac muscle cells a striped or striated appearance when looked at through a microscope, similar to skeletal muscle. These striations are caused by lighter I bands composed mainly of actin, and darker A bands composed mainly of myosin. Cardiomyocytes contain T-tubules , pouches of cell membrane that run from
10332-410: The glycolytic and oxidative pathways that make ATP are able to proceed. This also means that muscle cells are able to take in more glucose as its intracellular concentrations decrease. In order to increase glucose levels in the cell, GLUT4 is the primary transporter used in this facilitated diffusion . Although muscle contractions function in a similar way and also induce the translocation of GLUT4 into
10455-444: The heart grows larger during childhood development. Evidence suggests that cardiomyocytes are slowly turned over during aging, but less than 50% of the cardiomyocytes present at birth are replaced during a normal life span. The growth of individual cardiomyocytes not only occurs during normal heart development, it also occurs in response to extensive exercise ( athletic heart syndrome ), heart disease, or heart muscle injury such as after
10578-494: The heart may not pump at all, such as may occur during abnormal heart rhythms such as ventricular fibrillation . Viewed through a microscope, cardiac muscle cells are roughly rectangular, measuring 100–150μm by 30–40μm. Individual cardiac muscle cells are joined at their ends by intercalated discs to form long fibers. Each cell contains myofibrils , specialized protein contractile fibers of actin and myosin that slide past each other. These are organized into sarcomeres ,
10701-464: The heart with each heartbeat. Contracting heart muscle uses a lot of energy, and therefore requires a constant flow of blood to provide oxygen and nutrients. Blood is brought to the myocardium by the coronary arteries . These originate from the aortic root and lie on the outer or epicardial surface of the heart. Blood is then drained away by the coronary veins into the right atrium . Cardiac muscle cells (also called cardiomyocytes ) are
10824-460: The hippocampus result in decreased metabolic activities and plasticity of hippocampal neurons, which leads to depressive like behaviour and cognitive dysfunction. Click on genes, proteins and metabolites below to link to respective articles. Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues . Proteins perform
10947-534: The late 1700s and early 1800s included gluten , plant albumin , gliadin , and legumin . Proteins were first described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838. Mulder carried out elemental analysis of common proteins and found that nearly all proteins had the same empirical formula , C 400 H 620 N 100 O 120 P 1 S 1 . He came to
11070-447: The lungs and other systems of the body, before again contracting to pump blood to the lungs and those systems. A normally performing heart must be fully expanded before it can efficiently pump again. The rest phase is considered polarized. The resting potential during this phase of the beat separates the ions such as sodium, potassium, and calcium. Myocardial cells possess the property of automaticity or spontaneous depolarization . This
11193-478: The major component of connective tissue, or keratin , the protein component of hair and nails. Membrane proteins often serve as receptors or provide channels for polar or charged molecules to pass through the cell membrane . A special case of intramolecular hydrogen bonds within proteins, poorly shielded from water attack and hence promoting their own dehydration , are called dehydrons . Many proteins are composed of several protein domains , i.e. segments of
11316-443: The mature mRNA, which is then used as a template for protein synthesis by the ribosome . In prokaryotes the mRNA may either be used as soon as it is produced, or be bound by a ribosome after having moved away from the nucleoid . In contrast, eukaryotes make mRNA in the cell nucleus and then translocate it across the nuclear membrane into the cytoplasm , where protein synthesis then takes place. The rate of protein synthesis
11439-436: The mechanism by which calcium concentrations within the cytosol rise differ between skeletal and cardiac muscle. In cardiac muscle, the action potential comprises an inward flow of both sodium and calcium ions. The flow of sodium ions is rapid but very short-lived, while the flow of calcium is sustained and gives the plateau phase characteristic of cardiac muscle action potentials. The comparatively small flow of calcium through
11562-405: The membranes of specialized B cells known as plasma cells . Whereas enzymes are limited in their binding affinity for their substrates by the necessity of conducting their reaction, antibodies have no such constraints. An antibody's binding affinity to its target is extraordinarily high. Many ligand transport proteins bind particular small biomolecules and transport them to other locations in
11685-416: The muscle cells, and veins and a capillary network to take away waste products. Cardiac muscle cells are the contracting cells that allow the heart to pump. Each cardiomyocyte needs to contract in coordination with its neighboring cells - known as a functional syncytium - working to efficiently pump blood from the heart, and if this coordination breaks down then – despite individual cells contracting –
11808-478: The muscle cells, create elasticity in cardiac muscle, and keep the muscle cells hydrated by binding water molecules. The matrix in immediate contact with the muscle cells is referred to as the basement membrane , mainly composed of type IV collagen and laminin . Cardiomyocytes are linked to the basement membrane via specialised glycoproteins called integrins . Humans are born with a set number of heart muscle cells, or cardiomyocytes, which increase in size as
11931-531: The myocardium also differ between cardiac chambers. Ventricular cardiomyocytes are longer and wider, with a denser T-tubule network. Although the fundamental mechanisms of calcium handling are similar between ventricular and atrial cardiomyocytes, the calcium transient is smaller and decays more rapidly in atrial myocytes, with a corresponding increase in calcium buffering capacity. The complement of ion channels differs between chambers, leading to longer action potential durations and effective refractory periods in
12054-486: The negative effects of the insensitivity. The mechanism for GLUT4 is an example of a cascade effect, where binding of a ligand to a membrane receptor amplifies the signal and causes a cellular response. In this case, insulin binds to the insulin receptor in its dimeric form and activates the receptor's tyrosine-kinase domain. The receptor then recruits Insulin Receptor Substrate, or IRS-1 , which binds
12177-441: The network, enabling the syncytium to act in a coordinated contraction of the myocardium. There is an atrial syncytium and a ventricular syncytium that are connected by cardiac connection fibres. Electrical resistance through intercalated discs is very low, thus allowing free diffusion of ions. The ease of ion movement along cardiac muscle fibers axes is such that action potentials are able to travel from one cardiac muscle cell to
12300-481: The next, facing only slight resistance. Each syncytium obeys the all or none law . Intercalated discs are complex adhering structures that connect the single cardiomyocytes to an electrochemical syncytium (in contrast to the skeletal muscle, which becomes a multicellular syncytium during embryonic development ). The discs are responsible mainly for force transmission during muscle contraction. Intercalated discs consist of three different types of cell-cell junctions:
12423-496: The nobel prize in 1972, solidified the thermodynamic hypothesis of protein folding, according to which the folded form of a protein represents its free energy minimum. With the development of X-ray crystallography , it became possible to determine protein structures as well as their sequences. The first protein structures to be solved were hemoglobin by Max Perutz and myoglobin by John Kendrew , in 1958. The use of computers and increasing computing power also supported
12546-500: The order of 50,000 to 1 million. By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. Not all genes coding proteins are expressed in most cells and their number depends on, for example, cell type and external stimuli. For instance, of
12669-402: The original studies were later retracted for scientific fraud. Cardiac muscle forms both the atria and the ventricles of the heart. Although this muscle tissue is very similar between cardiac chambers, some differences exist. The myocardium found in the ventricles is thick to allow forceful contractions, while the myocardium in the atria is much thinner. The individual myocytes that make up
12792-440: The physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors . Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes . Once formed, proteins only exist for a certain period and are then degraded and recycled by
12915-407: The plasma membrane, the two skeletal muscle processes obtain different forms of intracellular GLUT4. The GLUT4 carrier vesicles are either transferrin positive or negative, and are recruited by different stimuli. Transferrin-positive GLUT4 vesicles are utilized during muscle contraction while the transferrin-negative vesicles are activated by insulin stimulation as well as by exercise. Cardiac muscle
13038-424: The process of cell signaling and signal transduction . Some proteins, such as insulin , are extracellular proteins that transmit a signal from the cell in which they were synthesized to other cells in distant tissues . Others are membrane proteins that act as receptors whose main function is to bind a signaling molecule and induce a biochemical response in the cell. Many receptors have a binding site exposed on
13161-534: The protein or proteins of interest based on properties such as molecular weight, net charge and binding affinity. The level of purification can be monitored using various types of gel electrophoresis if the desired protein's molecular weight and isoelectric point are known, by spectroscopy if the protein has distinguishable spectroscopic features, or by enzyme assays if the protein has enzymatic activity. Additionally, proteins can be isolated according to their charge using electrofocusing . For natural proteins,
13284-421: The proteins actin , troponin and tropomyosin . As the thick and thin filaments slide past each other the cell becomes shorter and fatter. In a mechanism known as cross-bridge cycling , calcium ions bind to the protein troponin, which along with tropomyosin then uncover key binding sites on actin. Myosin, in the thick filament, can then bind to actin, pulling the thick filaments along the thin filaments. When
13407-427: The proteins in the cytoskeleton , which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses , cell adhesion , and the cell cycle . In animals, proteins are needed in the diet to provide the essential amino acids that cannot be synthesized . Digestion breaks the proteins down for metabolic use. Proteins have been studied and recognized since
13530-684: The researchers estimated that a 4-year-old renews about 20% of heart muscle cells per year, and about 69% of the heart muscle cells of a 50-year-old were generated after they were born. One way that cardiomyocyte regeneration occurs is through the division of pre-existing cardiomyocytes during the normal aging process. In the 2000s, the discovery of adult endogenous cardiac stem cells was reported, and studies were published that claimed that various stem cell lineages, including bone marrow stem cells were able to differentiate into cardiomyocytes, and could be used to treat heart failure . However, other teams were unable to replicate these findings, and many of
13653-426: The same length, resulting in heart wall thickening. The physiology of cardiac muscle shares many similarities with that of skeletal muscle . The primary function of both muscle types is to contract, and in both cases, a contraction begins with a characteristic flow of ions across the cell membrane known as an action potential . The cardiac action potential subsequently triggers muscle contraction by increasing
13776-582: The same molecule, they can oligomerize to form fibrils; this process occurs often in structural proteins that consist of globular monomers that self-associate to form rigid fibers. Protein–protein interactions also regulate enzymatic activity, control progression through the cell cycle , and allow the assembly of large protein complexes that carry out many closely related reactions with a common biological function. Proteins can also bind to, or even be integrated into, cell membranes. The ability of binding partners to induce conformational changes in proteins allows
13899-581: The sample, allowing scientists to obtain more information and analyze larger structures. Computational protein structure prediction of small protein structural domains has also helped researchers to approach atomic-level resolution of protein structures. As of April 2024 , the Protein Data Bank contains 181,018 X-ray, 19,809 EM and 12,697 NMR protein structures. Proteins are primarily classified by sequence and structure, although other classifications are commonly used. Especially for enzymes
14022-430: The sequencing of complex proteins. In 1999, Roger Kornberg succeeded in sequencing the highly complex structure of RNA polymerase using high intensity X-rays from synchrotrons . Since then, cryo-electron microscopy (cryo-EM) of large macromolecular assemblies has been developed. Cryo-EM uses protein samples that are frozen rather than crystals, and beams of electrons rather than X-rays. It causes less damage to
14145-429: The solution surrounding the cell to contract, while skeletal muscle fibers will contract without extracellular calcium. During contraction of a cardiac muscle cell, the long protein myofilaments oriented along the length of the cell slide over each other in what is known as the sliding filament theory . There are two kinds of myofilaments, thick filaments composed of the protein myosin , and thin filaments composed of
14268-405: The substrate, and an even smaller fraction—three to four residues on average—that are directly involved in catalysis. The region of the enzyme that binds the substrate and contains the catalytic residues is known as the active site . Dirigent proteins are members of a class of proteins that dictate the stereochemistry of a compound synthesized by other enzymes. Many proteins are involved in
14391-716: The surrounding amino acids may determine the exact binding specificity). Many such motifs has been collected in the Eukaryotic Linear Motif (ELM) database. Topology of a protein describes the entanglement of the backbone and the arrangement of contacts within the folded chain. Two theoretical frameworks of knot theory and Circuit topology have been applied to characterise protein topology. Being able to describe protein topology opens up new pathways for protein engineering and pharmaceutical development, and adds to our understanding of protein misfolding diseases such as neuromuscular disorders and cancer. Proteins are
14514-400: The tRNA molecules with the correct amino acids. The growing polypeptide is often termed the nascent chain . Proteins are always biosynthesized from N-terminus to C-terminus . The size of a synthesized protein can be measured by the number of amino acids it contains and by its total molecular mass , which is normally reported in units of daltons (synonymous with atomic mass units ), or
14637-472: The tertiary structure of the protein, which defines the binding site pocket, and by the chemical properties of the surrounding amino acids' side chains. Protein binding can be extraordinarily tight and specific; for example, the ribonuclease inhibitor protein binds to human angiogenin with a sub-femtomolar dissociation constant (<10 M) but does not bind at all to its amphibian homolog onconase (> 1 M). Extremely minor chemical changes such as
14760-453: The ventricles. Certain ion currents such as I K(UR) are highly specific to atrial cardiomyocytes, making them a potential target for treatments for atrial fibrillation . Diseases affecting cardiac muscle, known as cardiomyopathies , are the leading cause of death in developed countries . The most common condition is coronary artery disease , in which the blood supply to the heart is reduced . The coronary arteries become narrowed by
14883-472: Was insulin , by Frederick Sanger , in 1949. Sanger correctly determined the amino acid sequence of insulin, thus conclusively demonstrating that proteins consisted of linear polymers of amino acids rather than branched chains, colloids , or cyclols . He won the Nobel Prize for this achievement in 1958. Christian Anfinsen 's studies of the oxidative folding process of ribonuclease A, for which he won
15006-581: Was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was in fact a protein. Linus Pauling is credited with the successful prediction of regular protein secondary structures based on hydrogen bonding , an idea first put forth by William Astbury in 1933. Later work by Walter Kauzmann on denaturation , based partly on previous studies by Kaj Linderstrøm-Lang , contributed an understanding of protein folding and structure mediated by hydrophobic interactions . The first protein to have its amino acid chain sequenced
15129-427: Was provided by David James in 1988. The gene that encodes GLUT4 was cloned and mapped in 1989. At the cell surface, GLUT4 permits the facilitated diffusion of circulating glucose down its concentration gradient into muscle and fat cells. Once within cells, glucose is rapidly phosphorylated by glucokinase in the liver and hexokinase in other tissues to form glucose-6-phosphate , which then enters glycolysis or
#256743