Misplaced Pages

Satellite navigation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning . A satellite navigation system with global coverage is termed global navigation satellite system ( GNSS ). As of 2024, four global systems are operational: the United States 's Global Positioning System (GPS), Russia 's Global Navigation Satellite System ( GLONASS ), China 's BeiDou Navigation Satellite System (BDS), and the European Union's Galileo .

#508491

57-708: Satellite-based augmentation systems (SBAS), designed to enhance the accuracy of GNSS, include Japan's Quasi-Zenith Satellite System (QZSS), India's GAGAN and the European EGNOS , all of them based on GPS. Previous iterations of the BeiDou navigation system and the present Indian Regional Navigation Satellite System (IRNSS), operationally known as NavIC, are examples of stand-alone operating regional navigation satellite systems ( RNSS ). Satellite navigation devices determine their location ( longitude , latitude , and altitude / elevation ) to high precision (within

114-604: A 200 ft (61 m) decision height and can be upgraded to a 100 ft (30 m) Cat. 2 with real-time monitoring of ionospheric conditions through SBAS, while the more precise Cat. 3 SLS-5000 is waiting for compatible airliners. The first installations were approved in EWR in 2012 and Houston / IAH in 2013. The Port Authority recommends a GBAS for New York JFK and LaGuardia (LGA) to alleviate congestion. Newark and Houston GBAS were upgraded to Cat. 2, Seattle-Tacoma , San Francisco SFO , JFK and LGA are expected next. Among

171-494: A constellation of 7 navigational satellites. Three of the satellites are placed in geostationary orbit (GEO) and the remaining 4 in geosynchronous orbit (GSO) to have a larger signal footprint and lower number of satellites to map the region. It is intended to provide an all-weather absolute position accuracy of better than 7.6 metres (25 ft) throughout India and within a region extending approximately 1,500 km (930 mi) around it. An Extended Service Area lies between

228-592: A few centimeters to meters) using time signals transmitted along a line of sight by radio from satellites. The system can be used for providing position, navigation or for tracking the position of something fitted with a receiver (satellite tracking). The signals also allow the electronic receiver to calculate the current local time to a high precision, which allows time synchronisation. These uses are collectively known as Positioning, Navigation and Timing (PNT). Satnav systems operate independently of any telephonic or internet reception, though these technologies can enhance

285-458: A radio pulse from a known "master" location, followed by a pulse repeated from a number of "slave" stations. The delay between the reception of the master signal and the slave signals allowed the receiver to deduce the distance to each of the slaves, providing a fix . The first satellite navigation system was Transit , a system deployed by the US military in the 1960s. Transit's operation was based on

342-466: A signal that contains orbital data (from which the position of the satellite can be calculated) and the precise time the signal was transmitted. Orbital data include a rough almanac for all satellites to aid in finding them, and a precise ephemeris for this satellite. The orbital ephemeris is transmitted in a data message that is superimposed on a code that serves as a timing reference. The satellite uses an atomic clock to maintain synchronization of all

399-413: A viewpoint shared by Delta Air Lines . Some ICAO members vetter GBAS Approach Service Types-D (GAST-D) supporting Cat. 2/3 approach and landing. There are stricter Safety requirements on GBAS systems relative to SBAS systems since GBAS is intended mainly for the landing phase where real-time accuracy and signal integrity control is critical, especially when weather deteriorates to the extent that there

456-630: Is a book with tables that gives the trajectory of naturally occurring astronomical objects and artificial satellites in the sky , i.e., the position (and possibly velocity ) over time . Historically, positions were given as printed tables of values, given at regular intervals of date and time. The calculation of these tables was one of the first applications of mechanical computers . Modern ephemerides are often provided in electronic form. However, printed ephemerides are still produced, as they are useful when computational devices are not available. The astronomical position calculated from an ephemeris

513-525: Is no visibility (CAT-I/II/III conditions) for which SBAS is not intended or suitable. The US Nationwide Differential GPS System (NDGPS) was an augmentation system for users on U.S. land and waterways. It was replaced by NASA's Global Differential GPS (GDGPS) system, which supports a wide range of GNSS networks beyond GPS. The same GDGPS system underlies WAAS and A-GNSS implementation in the US. Ground stations may also be used to accumulate continuous GNSS observations to achieve post-hoc correction of data to

570-456: Is often given in the spherical polar coordinate system of right ascension and declination , together with the distance from the origin if applicable. Some of the astronomical phenomena of interest to astronomers are eclipses , apparent retrograde motion /planetary stations, planetary ingresses , sidereal time , positions for the mean and true nodes of the moon , the phases of the Moon , and

627-727: Is standard on the Boeing 747-8, 787 and 777 while GLS Cat. 1 is optional on the 737NG/MAX and GLS Cat. 2/3 will be offered from 2020. Airbus offers GLS Cat. 1 with autoland on the A320, A330, A350 and A380. The FAA's NextGen promotes GBAS and GLS to increase airport capacity and to lower noise and weather delays. Boeing prefers FAA support than funding while the National Air Traffic Controllers Association argues rigid approaches will lower traffic management flexibility, losing throughput and capacity,

SECTION 10

#1732794558509

684-607: Is the world's most utilized satellite navigation system. First launch year: 1982 The formerly Soviet , and now Russian , Glo bal'naya Na vigatsionnaya S putnikovaya S istema , (GLObal NAvigation Satellite System or GLONASS), is a space-based satellite navigation system that provides a civilian radionavigation-satellite service and is also used by the Russian Aerospace Defence Forces. GLONASS has full global coverage since 1995 and with 24 active satellites. First launch year: 2000 BeiDou started as

741-750: Is – according to Article 1.45 of the International Telecommunication Union's (ITU) Radio Regulations (RR) – defined as « A radionavigation-satellite service in which earth stations are located on board ships .» ITU Radio Regulations (article 1) classifies radiocommunication services as: The allocation of radio frequencies is provided according to Article 5 of the ITU Radio Regulations (edition 2012). To improve harmonisation in spectrum utilisation, most service allocations are incorporated in national Tables of Frequency Allocations and Utilisations within

798-459: The Doppler effect : the satellites travelled on well-known paths and broadcast their signals on a well-known radio frequency . The received frequency will differ slightly from the broadcast frequency because of the movement of the satellite with respect to the receiver. By monitoring this frequency shift over a short time interval, the receiver can determine its location to one side or the other of

855-670: The Multi-functional Satellite Augmentation System , Differential GPS , GPS-aided GEO augmented navigation (GAGAN) and inertial navigation systems . The Quasi-Zenith Satellite System (QZSS) is a four-satellite regional time transfer system and enhancement for GPS covering Japan and the Asia-Oceania regions. QZSS services were available on a trial basis as of January 12, 2018, and were started in November 2018. The first satellite

912-617: The Port Authority of New York and New Jersey invested $ 2.5 million to install a GBAS at Newark Airport (EWR) with Continental (now United ) equipping 15 aircraft for $ 1.1 million while the FAA committed $ 2.5 million to assess the technology. Honeywell ’s SLS-4000 GBAS design was approved by the FAA in September 2009 and is still the only one. It offers Cat. 1 instrument landings with

969-491: The planets , their natural satellites , stars , and galaxies . Scientific ephemerides for sky observers mostly contain the positions of celestial bodies in right ascension and declination , because these coordinates are the most frequently used on star maps and telescopes. The equinox of the coordinate system must be given. It is, in nearly all cases, either the actual equinox (the equinox valid for that moment, often referred to as "of date" or "current"), or that of one of

1026-476: The "standard" equinoxes, typically J2000.0 , B1950.0 , or J1900. Star maps almost always use one of the standard equinoxes. Scientific ephemerides often contain further useful data about the moon, planet, asteroid, or comet beyond the pure coordinates in the sky, such as elongation to the Sun, brightness, distance, velocity, apparent diameter in the sky, phase angle, times of rise, transit, and set, etc. Ephemerides of

1083-1067: The 20 Honeywell GBAS installations worldwide, the other U.S. installations are: Honeywell's test facility in Johnson County , Kansas; the FAA Technical Center at Atlantic City International Airport , New Jersey; Boeing's test facility in Grant County , Washington; the B787 plant in Charleston International , South Carolina; and Anoka County–Blaine Airport near Minneapolis. Airports equipped in Europe are Bremen , Frankfurt , Málaga and Zurich . in Asia-Pacific, airport with installations are Chennai , Kuala Lumpur , Melbourne , Seoul-Gimpo , Shanghai-Pudong and Sydney . Other locations are St. Helena in

1140-855: The GNSS and are not necessarily subject to the same sources of error or interference. A system such as this is referred to as an aircraft-based augmentation system (ABAS) by the ICAO. The most widely used form of ABAS is receiver autonomous integrity monitoring (RAIM), which uses redundant GPS signals to ensure the integrity of the position solution, and to detect faulty signals. Additional sensors may include: Ephemeris In astronomy and celestial navigation , an ephemeris ( / ɪ ˈ f ɛ m ər ɪ s / ; pl.   ephemerides / ˌ ɛ f ə ˈ m ɛr ɪ ˌ d iː z / ; from Latin ephemeris  'diary', from Ancient Greek ἐφημερίς ( ephēmerís )  'diary, journal')

1197-468: The GNSS sensor receives the external information. Some systems transmit additional information about sources of error (such as clock drift , ephemeris , or ionospheric delay ), others provide direct measurements of how much the signal was off in the past, while a third group provides additional vehicle information to be integrated in the calculation process. Satellite-based augmentation systems ( SBAS ) support wide-area or regional augmentation through

SECTION 20

#1732794558509

1254-1096: The Internet. One main use of the system is in aviation . According to specifications, horizontal position accuracy when using EGNOS-provided corrections should be better than seven metres. In practice, the horizontal position accuracy is at the metre level. Similar service is provided in North America by the Wide Area Augmentation System (WAAS), in Russia by the System for Differential Corrections and Monitoring (SDCM), and in Asia, by Japan's Multi-functional Satellite Augmentation System (MSAS) and India's GPS-aided GEO augmented navigation (GAGAN). 27 operational + 3 spares Currently: 26 in orbit 24 operational 2 inactive 6 to be launched Using multiple GNSS systems for user positioning increases

1311-901: The South Atlantic, Punta Cana in the Dominican Republic and Rio de Janeiro–Galeão . There are around 100 Cat. 1 GBAS landing systems (GLS) installations in Russia with Russian-specific technology. In the US, GBAS was previously known as the Local-area augmentation system while a SBAS with a ground references network providing GPS corrections is called WAAS . In the US, there were more WAAS LPV approaches reaching 200 ft (61 m) than Cat. 1 ILS approaches by March 2018. 1 GBAS costs $ 3–4 million; and $ 700,000 more for Cat. 2. By Spring 2018, Boeing delivered 3,500 GLS-capable airliners, with 5,000 on order: GLS Cat. 2/3

1368-452: The accuracy of positions to centimetric precision (and to millimetric precision for altimetric application and also allows monitoring very tiny seasonal changes of Earth rotation and deformations), in order to build a much more precise geodesic reference system. The two current operational low Earth orbit (LEO) satellite phone networks are able to track transceiver units with accuracy of a few kilometres using doppler shift calculations from

1425-603: The centimeter level. Two example systems are the US Continuously Operating Reference Stations (CORS) and the International GNSS Service (IGS). The augmentation may also take the form of additional information from navigation sensors being blended into the position calculation, or internal algorithms that improve the navigation performance. Many times the additional avionics operate via separate principles from

1482-493: The delivery of weapons to targets, greatly increasing their lethality whilst reducing inadvertent casualties from mis-directed weapons. (See Guided bomb ). Satellite navigation also allows forces to be directed and to locate themselves more easily, reducing the fog of war . Now a global navigation satellite system, such as Galileo , is used to determine users location and the location of other people or objects at any given moment. The range of application of satellite navigation in

1539-610: The four major global satellite navigation systems consisting of MEO satellites, the SISRE of the BDS-3 MEO satellites was slightly inferior to 0.4 m of Galileo, slightly superior to 0.59 m of GPS, and remarkably superior to 2.33 m of GLONASS. The SISRE of BDS-3 IGSO was 0.90 m, which was on par with the 0.92 m of QZSS IGSO. However, as the BDS-3 GEO satellites were newly launched and not completely functioning in orbit, their average SISRE

1596-772: The future is enormous, including both the public and private sectors across numerous market segments such as science, transport, agriculture, insurance, energy, etc. The ability to supply satellite navigation signals is also the ability to deny their availability. The operator of a satellite navigation system potentially has the ability to degrade or eliminate satellite navigation services over any territory it desires. In order of first launch year: First launch year: 1978 The United States' Global Positioning System (GPS) consists of up to 32 medium Earth orbit satellites in six different orbital planes . The exact number of satellites varies as older satellites are retired and replaced. Operational since 1978 and globally available since 1994, GPS

1653-518: The future version 3.0. EGNOS consists of 40 Ranging Integrity Monitoring Stations, 2 Mission Control Centres, 6 Navigation Land Earth Stations, the EGNOS Wide Area Network (EWAN), and 3 geostationary satellites . Ground stations determine the accuracy of the satellite navigation systems data and transfer it to the geostationary satellites; users may freely obtain this data from those satellites using an EGNOS-enabled receiver, or over

1710-551: The global public. The first two generations of China's BeiDou navigation system were designed to provide regional coverage. GNSS augmentation is a method of improving a navigation system's attributes, such as accuracy, reliability, and availability, through the integration of external information into the calculation process, for example, the Wide Area Augmentation System , the European Geostationary Navigation Overlay Service ,

1767-473: The ionosphere, and this slowing varies with the receiver's angle to the satellite, because that changes the distance through the ionosphere. The basic computation thus attempts to find the shortest directed line tangent to four oblate spherical shells centred on four satellites. Satellite navigation receivers reduce errors by using combinations of signals from multiple satellites and multiple correlators, and then using techniques such as Kalman filtering to combine

Satellite navigation - Misplaced Pages Continue

1824-773: The last of which was launched in December 2021. The main modulation used in Galileo Open Service signal is the Composite Binary Offset Carrier (CBOC) modulation. The NavIC (acronym for Navigation with Indian Constellation ) is an autonomous regional satellite navigation system developed by the Indian Space Research Organisation (ISRO). The Indian government approved the project in May 2006. It consists of

1881-678: The modern Nautical Almanac or Air Almanac . An ephemeris is usually only correct for a particular location on the Earth. In many cases, the differences are too small to matter. However, for nearby asteroids or the Moon , they can be quite important. Other modern ephemerides recently created are the EPM (Ephemerides of Planets and the Moon), from the Russian Institute for Applied Astronomy of

1938-524: The navigation system, systems can be classified as: As many of the global GNSS systems (and augmentation systems) use similar frequencies and signals around L1, many "Multi-GNSS" receivers capable of using multiple systems have been produced. While some systems strive to interoperate with GPS as well as possible by providing the same clock, others do not. Ground-based radio navigation is decades old. The DECCA , LORAN , GEE and Omega systems used terrestrial longwave radio transmitters which broadcast

1995-439: The noisy, partial, and constantly changing data into a single estimate for position, time, and velocity. Einstein 's theory of general relativity is applied to GPS time correction, the net result is that time on a GPS satellite clock advances faster than a clock on the ground by about 38 microseconds per day. The original motivation for satellite navigation was for military applications. Satellite navigation allows precision in

2052-454: The now-decommissioned Beidou-1, an Asia-Pacific local network on the geostationary orbits. The second generation of the system BeiDou-2 became operational in China in December 2011. The BeiDou-3 system is proposed to consist of 30 MEO satellites and five geostationary satellites (IGSO). A 16-satellite regional version (covering Asia and Pacific area) was completed by December 2012. Global service

2109-464: The number of visible satellites, improves precise point positioning (PPP) and shortens the average convergence time. The signal-in-space ranging error (SISRE) in November 2019 were 1.6 cm for Galileo, 2.3 cm for GPS, 5.2 cm for GLONASS and 5.5 cm for BeiDou when using real-time corrections for satellite orbits and clocks. The average SISREs of the BDS-3 MEO, IGSO, and GEO satellites were 0.52 m, 0.90 m and 1.15 m, respectively. Compared to

2166-417: The planet Saturn also sometimes contain the apparent inclination of its ring. Celestial navigation serves as a backup to Satellite navigation . Software is widely available to assist with this form of navigation; some of this software has a self-contained ephemeris. When software is used that does not contain an ephemeris, or if no software is used, position data for celestial objects may be obtained from

2223-448: The positions of minor celestial bodies such as Chiron . Ephemerides are used in celestial navigation and astronomy. They are also used by astrologers . GPS signals include ephemeris data used to calculate the position of satellites in orbit. For scientific uses, a modern planetary ephemeris comprises software that generates positions of planets and often of their satellites, asteroids , or comets , at virtually any time desired by

2280-463: The positions of planets are caused by the perturbations of numerous asteroids , most of whose masses and orbits are poorly known, rendering their effect uncertain. Reflecting the continuing influx of new data and observations, NASA 's Jet Propulsion Laboratory ( JPL ) has revised its published ephemerides nearly every year since 1981. Solar System ephemerides are essential for the navigation of spacecraft and for all kinds of space observations of

2337-458: The primary service area and a rectangle area enclosed by the 30th parallel south to the 50th parallel north and the 30th meridian east to the 130th meridian east , 1,500–6,000 km beyond borders. A goal of complete Indian control has been stated, with the space segment , ground segment and user receivers all being built in India. The constellation was in orbit as of 2018, and the system

Satellite navigation - Misplaced Pages Continue

2394-570: The purpose of radionavigation . This service may also include feeder links necessary for its operation". RNSS is regarded as a safety-of-life service and an essential part of navigation which must be protected from interferences . Aeronautical radionavigation-satellite ( ARNSS ) is – according to Article 1.47 of the International Telecommunication Union's (ITU) Radio Regulations (RR) – defined as « A radionavigation service in which earth stations are located on board aircraft .» Maritime radionavigation-satellite service ( MRNSS )

2451-473: The responsibility of the appropriate national administration. Allocations are: Satellite-based augmentation system Augmentation of a global navigation satellite system (GNSS) is a method of improving the navigation system's attributes, such as precision, reliability, and availability, through the integration of external information into the calculation process. There are many such systems in place, and they are generally named or described based on how

2508-552: The satellite, and several such measurements combined with a precise knowledge of the satellite's orbit can fix a particular position. Satellite orbital position errors are caused by radio-wave refraction , gravity field changes (as the Earth's gravitational field is not uniform), and other phenomena. A team, led by Harold L Jury of Pan Am Aerospace Division in Florida from 1970 to 1973, found solutions and/or corrections for many error sources. Using real-time data and recursive estimation,

2565-405: The satellite. The coordinates are sent back to the transceiver unit where they can be read using AT commands or a graphical user interface . This can also be used by the gateway to enforce restrictions on geographically bound calling plans. The International Telecommunication Union (ITU) defines a radionavigation-satellite service ( RNSS ) as "a radiodetermination-satellite service used for

2622-524: The satellites in the constellation. The receiver compares the time of broadcast encoded in the transmission of three (at sea level) or four (which allows an altitude calculation also) different satellites, measuring the time-of-flight to each satellite. Several such measurements can be made at the same time to different satellites, allowing a continual fix to be generated in real time using an adapted version of trilateration : see GNSS positioning calculation for details. Each distance measurement, regardless of

2679-407: The system being used, places the receiver on a spherical shell at the measured distance from the broadcaster. By taking several such measurements and then looking for a point where they meet, a fix is generated. However, in the case of fast-moving receivers, the position of the signal moves as signals are received from several satellites. In addition, the radio signals slow slightly as they pass through

2736-459: The system of 30 MEO satellites was originally scheduled to be operational in 2010. The original year to become operational was 2014. The first experimental satellite was launched on 28 December 2005. Galileo is expected to be compatible with the modernized GPS system. The receivers will be able to combine the signals from both Galileo and GPS satellites to greatly increase the accuracy. The full Galileo constellation consists of 24 active satellites,

2793-640: The systematic and residual errors were narrowed down to accuracy sufficient for navigation. Part of an orbiting satellite's broadcast includes its precise orbital data. Originally, the US Naval Observatory (USNO) continuously observed the precise orbits of these satellites. As a satellite's orbit deviated, the USNO sent the updated information to the satellite. Subsequent broadcasts from an updated satellite would contain its most recent ephemeris . Modern systems are more direct. The satellite broadcasts

2850-403: The tens of thousands of terms. Ephemeride Lunaire Parisienne and VSOP are examples. Typically, such ephemerides cover several centuries, past and future; the future ones can be covered because the field of celestial mechanics has developed several accurate theories. Nevertheless, there are secular phenomena which cannot adequately be considered by ephemerides. The greatest uncertainties in

2907-1065: The use of additional satellite-broadcast messages. Using measurements from the ground stations, correction messages are created and sent to one or more satellites for broadcast to end users as differential signal. SBAS is sometimes synonymous with WADGPS, wide-area differential GPS . The SBAS that have been implemented or proposed include: Ground-based augmentation system ( GBAS ) provides Differential GPS (DGPS) corrections and integrity verification near an airport, providing approaches e.g. for runways that do not have ILSs . Reference receivers in surveyed positions measure GPS deviations and calculate corrections emitted at 2 Hz through VHF data broadcast (VDB) within 23 nmi (43 km). One GBAS supports up to 48 approaches and covers many runway ends with more installation flexibility than an ILS with localizer and glideslope antennas at each end. A GBAS can provide multiple approaches to reduce wake turbulence and improve resilience , maintaining availability and operations continuity. In December 2008,

SECTION 50

#1732794558509

2964-555: The usefulness of the positioning information generated. Global coverage for each system is generally achieved by a satellite constellation of 18–30 medium Earth orbit (MEO) satellites spread between several orbital planes . The actual systems vary, but all use orbital inclinations of >50° and orbital periods of roughly twelve hours (at an altitude of about 20,000 kilometres or 12,000 miles). GNSS systems that provide enhanced accuracy and integrity monitoring usable for civil navigation are classified as follows: By their roles in

3021-440: The user. After introduction of electronic computers in the 1950s it became feasible to use numerical integration to compute ephemerides. The Jet Propulsion Laboratory Development Ephemeris is a prime example. Conventional so-called analytical ephemerides that utilize series expansions for the coordinates have also been developed, but of much increased size and accuracy as compared to the past, by making use of computers to manage

3078-499: Was available for public use in early 2018. NavIC provides two levels of service, the "standard positioning service", which will be open for civilian use, and a "restricted service" (an encrypted one) for authorized users (including military). There are plans to expand NavIC system by increasing constellation size from 7 to 11. India plans to make the NavIC global by adding 24 more MEO satellites. The Global NavIC will be free to use for

3135-749: Was completed by December 2018. On 23 June 2020, the BDS-3 constellation deployment is fully completed after the last satellite was successfully launched at the Xichang Satellite Launch Center . First launch year: 2011 The European Union and European Space Agency agreed in March 2002 to introduce their own alternative to GPS, called the Galileo positioning system . Galileo became operational on 15 December 2016 (global Early Operational Capability, EOC). At an estimated cost of €10 billion,

3192-653: Was launched in September 2010. An independent satellite navigation system (from GPS) with 7 satellites is planned for 2023. The European Geostationary Navigation Overlay Service (EGNOS) is a satellite-based augmentation system (SBAS) developed by the European Space Agency and EUROCONTROL on behalf of the European Commission . Currently, it supplements GPS by reporting on the reliability and accuracy of their positioning data and sending out corrections. The system will supplement Galileo in

3249-555: Was marginally worse than the 0.91 m of the QZSS GEO satellites. Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) is a French precision navigation system. Unlike other GNSS systems, it is based on static emitting stations around the world, the receivers being on satellites, in order to precisely determine their orbital position. The system may be used also for mobile receivers on land with more limited usage and coverage. Used with traditional GNSS systems, it pushes

#508491