Saybolt universal viscosity ( SUV ), and the related Saybolt FUROL viscosity ( SFV ), are specific standardised tests producing measures of kinematic viscosity . FUROL is an acronym for fuel and road oil . Saybolt universal viscosity is specified by the ASTM D2161. Both tests are considered obsolete to other measures of kinematic viscosity, but their results are quoted widely in technical literature.
104-410: In both tests, the time taken for 60 ml of the liquid, held at a specific temperature, to flow through a calibrated tube, is measured, using a Saybolt viscometer . The Saybolt universal viscosity test occurs at 100 °F (38 °C), or more recently, 40 °C (104 °F). The Saybolt FUROL viscosity test occurs at 120 °F (49 °C), or more recently, 50 °C (122 °F), and uses
208-416: A B x , a B y , a B z ) {\displaystyle \mathbf {a} _{B}=\left(a_{B_{x}},a_{B_{y}},a_{B_{z}}\right)} then the acceleration of point C relative to point B is the difference between their components: a C / B = a C − a B = (
312-460: A C x − a B x , a C y − a B y , a C z − a B z ) {\displaystyle \mathbf {a} _{C/B}=\mathbf {a} _{C}-\mathbf {a} _{B}=\left(a_{C_{x}}-a_{B_{x}},a_{C_{y}}-a_{B_{y}},a_{C_{z}}-a_{B_{z}}\right)} Alternatively, this same result could be obtained by computing
416-432: A {\displaystyle F=ma} , is valid. Non-inertial reference frames accelerate in relation to another inertial frame. A body rotating with respect to an inertial frame is not an inertial frame. When viewed from an inertial frame, particles in the non-inertial frame appear to move in ways not explained by forces from existing fields in the reference frame. Hence, it appears that there are other forces that enter
520-443: A | = | v ˙ | = d v d t . {\displaystyle |\mathbf {a} |=|{\dot {\mathbf {v} }}|={\frac {{\text{d}}v}{{\text{d}}t}}.} A relative position vector is a vector that defines the position of one point relative to another. It is the difference in position of the two points. The position of one point A relative to another point B
624-541: A τ ) d τ = r 0 + v 0 t + 1 2 a t 2 . {\displaystyle \mathbf {r} (t)=\mathbf {r} _{0}+\int _{0}^{t}\mathbf {v} (\tau )\,{\text{d}}\tau =\mathbf {r} _{0}+\int _{0}^{t}\left(\mathbf {v} _{0}+\mathbf {a} \tau \right){\text{d}}\tau =\mathbf {r} _{0}+\mathbf {v} _{0}t+{\tfrac {1}{2}}\mathbf {a} t^{2}.} Additional relations between displacement, velocity, acceleration, and time can be derived. Since
728-439: A x x ^ + a y y ^ + a z z ^ . {\displaystyle \mathbf {a} =\lim _{(\Delta t)^{2}\to 0}{\frac {\Delta \mathbf {r} }{(\Delta t)^{2}}}={\frac {{\text{d}}^{2}\mathbf {r} }{{\text{d}}t^{2}}}=a_{x}{\hat {\mathbf {x} }}+a_{y}{\hat {\mathbf {y} }}+a_{z}{\hat {\mathbf {z} }}.} Thus, acceleration
832-616: A y y ^ + a z z ^ . {\displaystyle \mathbf {a} =\lim _{\Delta t\to 0}{\frac {\Delta \mathbf {v} }{\Delta t}}={\frac {{\text{d}}\mathbf {v} }{{\text{d}}t}}=a_{x}{\hat {\mathbf {x} }}+a_{y}{\hat {\mathbf {y} }}+a_{z}{\hat {\mathbf {z} }}.} Alternatively, a = lim ( Δ t ) 2 → 0 Δ r ( Δ t ) 2 = d 2 r d t 2 =
936-638: A ¯ x x ^ + a ¯ y y ^ + a ¯ z z ^ {\displaystyle \mathbf {\bar {a}} ={\frac {\Delta \mathbf {\bar {v}} }{\Delta t}}={\frac {\Delta {\bar {v}}_{x}}{\Delta t}}{\hat {\mathbf {x} }}+{\frac {\Delta {\bar {v}}_{y}}{\Delta t}}{\hat {\mathbf {y} }}+{\frac {\Delta {\bar {v}}_{z}}{\Delta t}}{\hat {\mathbf {z} }}={\bar {a}}_{x}{\hat {\mathbf {x} }}+{\bar {a}}_{y}{\hat {\mathbf {y} }}+{\bar {a}}_{z}{\hat {\mathbf {z} }}\,} where Δ v
1040-564: A + v ω ) θ ^ + a z z ^ . {\displaystyle \mathbf {a} _{P}={\frac {\text{d}}{{\text{d}}t}}\left(v{\hat {\mathbf {r} }}+v{\hat {\mathbf {\theta } }}+v_{z}{\hat {\mathbf {z} }}\right)=(a-v\theta ){\hat {\mathbf {r} }}+(a+v\omega ){\hat {\mathbf {\theta } }}+a_{z}{\hat {\mathbf {z} }}.} The term − v θ r ^ {\displaystyle -v\theta {\hat {\mathbf {r} }}} acts toward
1144-486: A t t = 1 2 a t 2 = a t 2 2 {\textstyle A={\frac {1}{2}}BH={\frac {1}{2}}att={\frac {1}{2}}at^{2}={\frac {at^{2}}{2}}} . Adding v 0 t {\displaystyle v_{0}t} and a t 2 2 {\textstyle {\frac {at^{2}}{2}}} results in the equation Δ r {\displaystyle \Delta r} results in
SECTION 10
#17327733499401248-413: A Legendre transformation on the generalized coordinates, velocities and momenta; therefore, both contain the same information for describing the dynamics of a system. There are other formulations such as Hamilton–Jacobi theory , Routhian mechanics , and Appell's equation of motion . All equations of motion for particles and fields, in any formalism, can be derived from the widely applicable result called
1352-514: A baseball can spin while it is moving. However, the results for point particles can be used to study such objects by treating them as composite objects, made of a large number of collectively acting point particles. The center of mass of a composite object behaves like a point particle. Classical mechanics assumes that matter and energy have definite, knowable attributes such as location in space and speed. Non-relativistic mechanics also assumes that forces act instantaneously (see also Action at
1456-412: A configuration space M {\textstyle M} and a smooth function L {\textstyle L} within that space called a Lagrangian. For many systems, L = T − V , {\textstyle L=T-V,} where T {\textstyle T} and V {\displaystyle V} are the kinetic and potential energy of
1560-581: A mechanical system or mechanism. The term kinematic is the English version of A.M. Ampère 's cinématique , which he constructed from the Greek κίνημα kinema ("movement, motion"), itself derived from κινεῖν kinein ("to move"). Kinematic and cinématique are related to the French word cinéma, but neither are directly derived from it. However, they do share a root word in common, as cinéma came from
1664-997: A close relationship with geometry (notably, symplectic geometry and Poisson structures ) and serves as a link between classical and quantum mechanics . In this formalism, the dynamics of a system are governed by Hamilton's equations, which express the time derivatives of position and momentum variables in terms of partial derivatives of a function called the Hamiltonian: d q d t = ∂ H ∂ p , d p d t = − ∂ H ∂ q . {\displaystyle {\frac {\mathrm {d} {\boldsymbol {q}}}{\mathrm {d} t}}={\frac {\partial {\mathcal {H}}}{\partial {\boldsymbol {p}}}},\quad {\frac {\mathrm {d} {\boldsymbol {p}}}{\mathrm {d} t}}=-{\frac {\partial {\mathcal {H}}}{\partial {\boldsymbol {q}}}}.} The Hamiltonian
1768-628: A convenient form. Recall that the trajectory of a particle P is defined by its coordinate vector r measured in a fixed reference frame F . As the particle moves, its coordinate vector r ( t ) traces its trajectory, which is a curve in space, given by: r ( t ) = x ( t ) x ^ + y ( t ) y ^ + z ( t ) z ^ , {\displaystyle \mathbf {r} (t)=x(t){\hat {\mathbf {x} }}+y(t){\hat {\mathbf {y} }}+z(t){\hat {\mathbf {z} }},} where x̂ , ŷ , and ẑ are
1872-416: A decrease in the magnitude of velocity " v " is referred to as deceleration , but generally any change in the velocity over time, including deceleration, is referred to as acceleration. While the position, velocity and acceleration of a particle can be described with respect to any observer in any state of motion, classical mechanics assumes the existence of a special family of reference frames in which
1976-447: A distance ). The position of a point particle is defined in relation to a coordinate system centered on an arbitrary fixed reference point in space called the origin O . A simple coordinate system might describe the position of a particle P with a vector notated by an arrow labeled r that points from the origin O to point P . In general, the point particle does not need to be stationary relative to O . In cases where P
2080-428: A fictitious centrifugal force and Coriolis force . A force in physics is any action that causes an object's velocity to change; that is, to accelerate. A force originates from within a field , such as an electro-static field (caused by static electrical charges), electro-magnetic field (caused by moving charges), or gravitational field (caused by mass), among others. Newton was the first to mathematically express
2184-425: A field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within
SECTION 20
#17327733499402288-459: A larger calibrated tube. This provides for the testing of more viscous fluids, with the result being approximately 1 ⁄ 10 of the universal viscosity. The test results are specified in seconds (s), more often than not referencing the test: Saybolt universal seconds (SUS); seconds, Saybolt universal (SSU); seconds, Saybolt universal viscosity (SSUV); and Saybolt FUROL seconds (SFS); seconds, Saybolt FUROL (SSF). The precise temperature at which
2392-954: A particle trajectory on a circular cylinder occurs when there is no movement along the z axis: r ( t ) = r r ^ + z z ^ , {\displaystyle \mathbf {r} (t)=r{\hat {\mathbf {r} }}+z{\hat {\mathbf {z} }},} where r and z 0 are constants. In this case, the velocity v P is given by: v P = d d t ( r r ^ + z z ^ ) = r ω θ ^ = v θ ^ , {\displaystyle \mathbf {v} _{P}={\frac {\text{d}}{{\text{d}}t}}\left(r{\hat {\mathbf {r} }}+z{\hat {\mathbf {z} }}\right)=r\omega {\hat {\mathbf {\theta } }}=v{\hat {\mathbf {\theta } }},} where ω {\displaystyle \omega }
2496-632: A particle's velocity is the time rate of change of its position. Furthermore, this velocity is tangent to the particle's trajectory at every position along its path. In a non-rotating frame of reference, the derivatives of the coordinate directions are not considered as their directions and magnitudes are constants. The speed of an object is the magnitude of its velocity. It is a scalar quantity: v = | v | = d s d t , {\displaystyle v=|\mathbf {v} |={\frac {{\text{d}}s}{{\text{d}}t}},} where s {\displaystyle s}
2600-729: A particular formalism based on Newton's laws of motion . Newtonian mechanics in this sense emphasizes force as a vector quantity. In contrast, analytical mechanics uses scalar properties of motion representing the system as a whole—usually its kinetic energy and potential energy . The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation . Two dominant branches of analytical mechanics are Lagrangian mechanics , which uses generalized coordinates and corresponding generalized velocities in configuration space , and Hamiltonian mechanics , which uses coordinates and corresponding momenta in phase space . Both formulations are equivalent by
2704-487: A reformulation of Lagrangian mechanics . Introduced by Sir William Rowan Hamilton , Hamiltonian mechanics replaces (generalized) velocities q ˙ i {\displaystyle {\dot {q}}^{i}} used in Lagrangian mechanics with (generalized) momenta . Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has
2808-411: A solid body into a collection of points.) In reality, the kind of objects that classical mechanics can describe always have a non-zero size. (The behavior of very small particles, such as the electron , is more accurately described by quantum mechanics .) Objects with non-zero size have more complicated behavior than hypothetical point particles, because of the additional degrees of freedom , e.g.,
2912-551: A time interval is defined as the ratio. a ¯ = Δ v ¯ Δ t = Δ v ¯ x Δ t x ^ + Δ v ¯ y Δ t y ^ + Δ v ¯ z Δ t z ^ =
3016-464: Is a limiting case of the Poincaré group used in special relativity . The limiting case applies when the velocity u is very small compared to c , the speed of light . The transformations have the following consequences: For some problems, it is convenient to use rotating coordinates (reference frames). Thereby one can either keep a mapping to a convenient inertial frame, or introduce additionally
3120-408: Is based on the choice of mathematical formalism. Classical mechanics can be mathematically presented in multiple different ways. The physical content of these different formulations is the same, but they provide different insights and facilitate different types of calculations. While the term "Newtonian mechanics" is sometimes used as a synonym for non-relativistic classical physics, it can also refer to
3224-401: Is called the equation of motion . As an example, assume that friction is the only force acting on the particle, and that it may be modeled as a function of the velocity of the particle, for example: where λ is a positive constant, the negative sign states that the force is opposite the sense of the velocity. Then the equation of motion is This can be integrated to obtain where v 0
Saybolt universal viscosity - Misplaced Pages Continue
3328-412: Is equal to the change in kinetic energy E k of the particle: Conservative forces can be expressed as the gradient of a scalar function, known as the potential energy and denoted E p : If all the forces acting on a particle are conservative, and E p is the total potential energy (which is defined as a work of involved forces to rearrange mutual positions of bodies), obtained by summing
3432-426: Is moving relative to O , r is defined as a function of t , time . In pre-Einstein relativity (known as Galilean relativity ), time is considered an absolute, i.e., the time interval that is observed to elapse between any given pair of events is the same for all observers. In addition to relying on absolute time , classical mechanics assumes Euclidean geometry for the structure of space. The velocity , or
3536-422: Is non-conservative. The kinetic energy E k of a particle of mass m travelling at speed v is given by For extended objects composed of many particles, the kinetic energy of the composite body is the sum of the kinetic energies of the particles. The work–energy theorem states that for a particle of constant mass m , the total work W done on the particle as it moves from position r 1 to r 2
3640-602: Is simply the difference between their positions which is the difference between the components of their position vectors. If point A has position components r A = ( x A , y A , z A ) {\displaystyle \mathbf {r} _{A}=\left(x_{A},y_{A},z_{A}\right)} and point B has position components r B = ( x B , y B , z B ) {\displaystyle \mathbf {r} _{B}=\left(x_{B},y_{B},z_{B}\right)} then
3744-882: Is simply the difference between their velocities v A / B = v A − v B {\displaystyle \mathbf {v} _{A/B}=\mathbf {v} _{A}-\mathbf {v} _{B}} which is the difference between the components of their velocities. If point A has velocity components v A = ( v A x , v A y , v A z ) {\displaystyle \mathbf {v} _{A}=\left(v_{A_{x}},v_{A_{y}},v_{A_{z}}\right)} and point B has velocity components v B = ( v B x , v B y , v B z ) {\displaystyle \mathbf {v} _{B}=\left(v_{B_{x}},v_{B_{y}},v_{B_{z}}\right)} then
3848-486: Is the Legendre transform of the Lagrangian, and in many situations of physical interest it is equal to the total energy of the system. Kinematics Kinematics is a subfield of physics and mathematics , developed in classical mechanics , that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as
3952-594: Is the angular velocity of the unit vector θ around the z axis of the cylinder. The acceleration a P of the particle P is now given by: a P = d ( v θ ^ ) d t = a θ ^ − v θ r ^ . {\displaystyle \mathbf {a} _{P}={\frac {{\text{d}}(v{\hat {\mathbf {\theta } }})}{{\text{d}}t}}=a{\hat {\mathbf {\theta } }}-v\theta {\hat {\mathbf {r} }}.} The components
4056-417: Is the arc-length measured along the trajectory of the particle. This arc-length must always increase as the particle moves. Hence, d s / d t {\displaystyle {\text{d}}s/{\text{d}}t} is non-negative, which implies that speed is also non-negative. The velocity vector can change in magnitude and in direction or both at once. Hence, the acceleration accounts for both
4160-411: Is the area under a velocity–time graph. We can take Δ r {\displaystyle \Delta r} by adding the top area and the bottom area. The bottom area is a rectangle, and the area of a rectangle is the A ⋅ B {\displaystyle A\cdot B} where A {\displaystyle A} is the width and B {\displaystyle B}
4264-441: Is the average velocity and Δ t is the time interval. The acceleration of the particle is the limit of the average acceleration as the time interval approaches zero, which is the time derivative, a = lim Δ t → 0 Δ v Δ t = d v d t = a x x ^ +
Saybolt universal viscosity - Misplaced Pages Continue
4368-948: Is the displacement vector during the time interval Δ t {\displaystyle \Delta t} . In the limit that the time interval Δ t {\displaystyle \Delta t} approaches zero, the average velocity approaches the instantaneous velocity, defined as the time derivative of the position vector, v = lim Δ t → 0 Δ r Δ t = d r d t = v x x ^ + v y y ^ + v z z ^ . {\displaystyle \mathbf {v} =\lim _{\Delta t\to 0}{\frac {\Delta \mathbf {r} }{\Delta t}}={\frac {{\text{d}}\mathbf {r} }{{\text{d}}t}}=v_{x}{\hat {\mathbf {x} }}+v_{y}{\hat {\mathbf {y} }}+v_{z}{\hat {\mathbf {z} }}.} Thus,
4472-406: Is the first derivative of the velocity vector and the second derivative of the position vector of that particle. In a non-rotating frame of reference, the derivatives of the coordinate directions are not considered as their directions and magnitudes are constants. The magnitude of the acceleration of an object is the magnitude | a | of its acceleration vector. It is a scalar quantity: |
4576-423: Is the height. In this case A = t {\displaystyle A=t} and B = v 0 {\displaystyle B=v_{0}} (the A {\displaystyle A} here is different from the acceleration a {\displaystyle a} ). This means that the bottom area is t v 0 {\displaystyle tv_{0}} . Now let's find
4680-416: Is the initial velocity. This means that the velocity of this particle decays exponentially to zero as time progresses. In this case, an equivalent viewpoint is that the kinetic energy of the particle is absorbed by friction (which converts it to heat energy in accordance with the conservation of energy ), and the particle is slowing down. This expression can be further integrated to obtain the position r of
4784-401: Is the process of measuring the kinematic quantities used to describe motion. In engineering, for instance, kinematic analysis may be used to find the range of movement for a given mechanism and, working in reverse, using kinematic synthesis to design a mechanism for a desired range of motion. In addition, kinematics applies algebraic geometry to the study of the mechanical advantage of
4888-515: Is thus equal to the rate of change of the momentum of the particle with time. Since the definition of acceleration is a = d v /d t , the second law can be written in the simplified and more familiar form: So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle. Once independent relations for each force acting on a particle are available, they can be substituted into Newton's second law to obtain an ordinary differential equation , which
4992-411: Is used to describe the motion of systems composed of joined parts (multi-link systems) such as an engine , a robotic arm or the human skeleton . Geometric transformations, also called rigid transformations , are used to describe the movement of components in a mechanical system , simplifying the derivation of the equations of motion. They are also central to dynamic analysis . Kinematic analysis
5096-602: The Cartesian coordinates and x ^ {\displaystyle {\hat {\mathbf {x} }}} , y ^ {\displaystyle {\hat {\mathbf {y} }}} and z ^ {\displaystyle {\hat {\mathbf {z} }}} are the unit vectors along the x {\displaystyle x} , y {\displaystyle y} , and z {\displaystyle z} coordinate axes, respectively. The magnitude of
5200-473: The dot product , which is appropriate as the products are scalars rather than vectors. 2 ( r − r 0 ) ⋅ a = | v | 2 − | v 0 | 2 . {\displaystyle 2\left(\mathbf {r} -\mathbf {r} _{0}\right)\cdot \mathbf {a} =|\mathbf {v} |^{2}-|\mathbf {v} _{0}|^{2}.} The dot product can be replaced by
5304-511: The forces applied to it. Classical mechanics also describes the more complex motions of extended non-pointlike objects. Euler's laws provide extensions to Newton's laws in this area. The concepts of angular momentum rely on the same calculus used to describe one-dimensional motion. The rocket equation extends the notion of rate of change of an object's momentum to include the effects of an object "losing mass". (These generalizations/extensions are derived from Newton's laws, say, by decomposing
SECTION 50
#17327733499405408-429: The forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics . Dynamics goes beyond merely describing objects' behavior and also considers the forces which explain it. Some authors (for example, Taylor (2005) and Greenwood (1997) ) include special relativity within classical dynamics. Another division
5512-451: The principle of least action . One result is Noether's theorem , a statement which connects conservation laws to their associated symmetries . Alternatively, a division can be made by region of application: For simplicity, classical mechanics often models real-world objects as point particles , that is, objects with negligible size. The motion of a point particle is determined by a small number of parameters : its position, mass , and
5616-413: The rate of change of displacement with time, is defined as the derivative of the position with respect to time: In classical mechanics, velocities are directly additive and subtractive. For example, if one car travels east at 60 km/h and passes another car traveling in the same direction at 50 km/h, the slower car perceives the faster car as traveling east at 60 − 50 = 10 km/h . However, from
5720-463: The speed of light . With objects about the size of an atom's diameter, it becomes necessary to use quantum mechanics . To describe velocities approaching the speed of light, special relativity is needed. In cases where objects become extremely massive, general relativity becomes applicable. Some modern sources include relativistic mechanics in classical physics, as representing the field in its most developed and accurate form. Classical mechanics
5824-565: The stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique . Lagrangian mechanics describes a mechanical system as a pair ( M , L ) {\textstyle (M,L)} consisting of
5928-842: The unit vectors along the x , y and z axes of the reference frame F , respectively. Consider a particle P that moves only on the surface of a circular cylinder r ( t ) = constant, it is possible to align the z axis of the fixed frame F with the axis of the cylinder. Then, the angle θ around this axis in the x – y plane can be used to define the trajectory as, r ( t ) = r cos ( θ ( t ) ) x ^ + r sin ( θ ( t ) ) y ^ + z ( t ) z ^ , {\displaystyle \mathbf {r} (t)=r\cos(\theta (t)){\hat {\mathbf {x} }}+r\sin(\theta (t)){\hat {\mathbf {y} }}+z(t){\hat {\mathbf {z} }},} where
6032-539: The 18th and 19th centuries, extended beyond earlier works; they are, with some modification, used in all areas of modern physics. If the present state of an object that obeys the laws of classical mechanics is known, it is possible to determine how it will move in the future , and how it has moved in the past. Chaos theory shows that the long term predictions of classical mechanics are not reliable. Classical mechanics provides accurate results when studying objects that are not extremely massive and have speeds not approaching
6136-424: The acceleration a P , which is the time derivative of the velocity v P , is given by: a P = d d t ( v r ^ + v θ ^ + v z z ^ ) = ( a − v θ ) r ^ + (
6240-729: The acceleration is constant, a = Δ v Δ t = v − v 0 t {\displaystyle \mathbf {a} ={\frac {\Delta \mathbf {v} }{\Delta t}}={\frac {\mathbf {v} -\mathbf {v} _{0}}{t}}} can be substituted into the above equation to give: r ( t ) = r 0 + ( v + v 0 2 ) t . {\displaystyle \mathbf {r} (t)=\mathbf {r} _{0}+\left({\frac {\mathbf {v} +\mathbf {v} _{0}}{2}}\right)t.} A relationship between velocity, position and acceleration without explicit time dependence can be had by solving
6344-739: The average acceleration for time and substituting and simplifying t = v − v 0 a {\displaystyle t={\frac {\mathbf {v} -\mathbf {v} _{0}}{\mathbf {a} }}} ( r − r 0 ) ⋅ a = ( v − v 0 ) ⋅ v + v 0 2 , {\displaystyle \left(\mathbf {r} -\mathbf {r} _{0}\right)\cdot \mathbf {a} =\left(\mathbf {v} -\mathbf {v} _{0}\right)\cdot {\frac {\mathbf {v} +\mathbf {v} _{0}}{2}}\ ,} where ⋅ {\displaystyle \cdot } denotes
SECTION 60
#17327733499406448-635: The case of acceleration always in the direction of the motion and the direction of motion should be in positive or negative, the angle between the vectors ( α ) is 0, so cos 0 = 1 {\displaystyle \cos 0=1} , and | v | 2 = | v 0 | 2 + 2 | a | | r − r 0 | . {\displaystyle |\mathbf {v} |^{2}=|\mathbf {v} _{0}|^{2}+2\left|\mathbf {a} \right|\left|\mathbf {r} -\mathbf {r} _{0}\right|.} This can be simplified using
6552-460: The center of curvature of the path at that point on the path, is commonly called the centripetal acceleration . The term v ω θ ^ {\displaystyle v\omega {\hat {\mathbf {\theta } }}} is called the Coriolis acceleration . If the trajectory of the particle is constrained to lie on a cylinder, then the radius r is constant and
6656-412: The components of their accelerations. If point C has acceleration components a C = ( a C x , a C y , a C z ) {\displaystyle \mathbf {a} _{C}=\left(a_{C_{x}},a_{C_{y}},a_{C_{z}}\right)} and point B has acceleration components a B = (
6760-2770: The constant distance from the center is denoted as r , and θ ( t ) is a function of time. The cylindrical coordinates for r ( t ) can be simplified by introducing the radial and tangential unit vectors, r ^ = cos ( θ ( t ) ) x ^ + sin ( θ ( t ) ) y ^ , θ ^ = − sin ( θ ( t ) ) x ^ + cos ( θ ( t ) ) y ^ . {\displaystyle {\hat {\mathbf {r} }}=\cos(\theta (t)){\hat {\mathbf {x} }}+\sin(\theta (t)){\hat {\mathbf {y} }},\quad {\hat {\mathbf {\theta } }}=-\sin(\theta (t)){\hat {\mathbf {x} }}+\cos(\theta (t)){\hat {\mathbf {y} }}.} and their time derivatives from elementary calculus: d r ^ d t = ω θ ^ . {\displaystyle {\frac {{\text{d}}{\hat {\mathbf {r} }}}{{\text{d}}t}}=\omega {\hat {\mathbf {\theta } }}.} d 2 r ^ d t 2 = d ( ω θ ^ ) d t = α θ ^ − ω r ^ . {\displaystyle {\frac {{\text{d}}^{2}{\hat {\mathbf {r} }}}{{\text{d}}t^{2}}}={\frac {{\text{d}}(\omega {\hat {\mathbf {\theta } }})}{{\text{d}}t}}=\alpha {\hat {\mathbf {\theta } }}-\omega {\hat {\mathbf {r} }}.} d θ ^ d t = − θ r ^ . {\displaystyle {\frac {{\text{d}}{\hat {\mathbf {\theta } }}}{{\text{d}}t}}=-\theta {\hat {\mathbf {r} }}.} d 2 θ ^ d t 2 = d ( − θ r ^ ) d t = − α r ^ − ω 2 θ ^ . {\displaystyle {\frac {{\text{d}}^{2}{\hat {\mathbf {\theta } }}}{{\text{d}}t^{2}}}={\frac {{\text{d}}(-\theta {\hat {\mathbf {r} }})}{{\text{d}}t}}=-\alpha {\hat {\mathbf {r} }}-\omega ^{2}{\hat {\mathbf {\theta } }}.} Using this notation, r ( t ) takes
6864-590: The constant tangential acceleration is applied along that path , so v 2 = v 0 2 + 2 a Δ r . {\displaystyle v^{2}=v_{0}^{2}+2a\Delta r.} This reduces the parametric equations of motion of the particle to a Cartesian relationship of speed versus position. This relation is useful when time is unknown. We also know that Δ r = ∫ v d t {\textstyle \Delta r=\int v\,{\text{d}}t} or Δ r {\displaystyle \Delta r}
6968-419: The coordinate frame is centered at your home, such that east is in the direction of the x -axis and north is in the direction of the y -axis, then the coordinate vector to the base of the tower is r = (0 m, −50 m, 0 m). If the tower is 50 m high, and this height is measured along the z -axis, then the coordinate vector to the top of the tower is r = (0 m, −50 m, 50 m). In
7072-574: The cosine of the angle α between the vectors (see Geometric interpretation of the dot product for more details) and the vectors by their magnitudes, in which case: 2 | r − r 0 | | a | cos α = | v | 2 − | v 0 | 2 . {\displaystyle 2\left|\mathbf {r} -\mathbf {r} _{0}\right|\left|\mathbf {a} \right|\cos \alpha =|\mathbf {v} |^{2}-|\mathbf {v} _{0}|^{2}.} In
7176-449: The equation Δ r = v 0 t + a t 2 2 {\textstyle \Delta r=v_{0}t+{\frac {at^{2}}{2}}} . This equation is applicable when the final velocity v is unknown. It is often convenient to formulate the trajectory of a particle r ( t ) = ( x ( t ), y ( t ), z ( t )) using polar coordinates in the X – Y plane. In this case, its velocity and acceleration take
7280-402: The equations of motion solely as a result of the relative acceleration. These forces are referred to as fictitious forces , inertia forces, or pseudo-forces. Consider two reference frames S and S' . For observers in each of the reference frames an event has space-time coordinates of ( x , y , z , t ) in frame S and ( x' , y' , z' , t' ) in frame S' . Assuming time is measured
7384-780: The form, r ( t ) = r r ^ + z ( t ) z ^ . {\displaystyle \mathbf {r} (t)=r{\hat {\mathbf {r} }}+z(t){\hat {\mathbf {z} }}.} In general, the trajectory r ( t ) is not constrained to lie on a circular cylinder, so the radius R varies with time and the trajectory of the particle in cylindrical-polar coordinates becomes: r ( t ) = r ( t ) r ^ + z ( t ) z ^ . {\displaystyle \mathbf {r} (t)=r(t){\hat {\mathbf {r} }}+z(t){\hat {\mathbf {z} }}.} Where r , θ , and z might be continuously differentiable functions of time and
7488-972: The function notation is dropped for simplicity. The velocity vector v P is the time derivative of the trajectory r ( t ), which yields: v P = d d t ( r r ^ + z z ^ ) = v r ^ + r ω θ ^ + v z z ^ = v ( r ^ + θ ^ ) + v z z ^ . {\displaystyle \mathbf {v} _{P}={\frac {\text{d}}{{\text{d}}t}}\left(r{\hat {\mathbf {r} }}+z{\hat {\mathbf {z} }}\right)=v{\hat {\mathbf {r} }}+r\mathbf {\omega } {\hat {\mathbf {\theta } }}+v_{z}{\hat {\mathbf {z} }}=v({\hat {\mathbf {r} }}+{\hat {\mathbf {\theta } }})+v_{z}{\hat {\mathbf {z} }}.} Similarly,
7592-407: The line connecting A and B , while the weak form does not. Illustrations of the weak form of Newton's third law are often found for magnetic forces. If a constant force F is applied to a particle that makes a displacement Δ r , the work done by the force is defined as the scalar product of the force and displacement vectors: More generally, if the force varies as a function of position as
7696-449: The mathematical methods invented by Newton, Gottfried Wilhelm Leibniz , Leonhard Euler and others to describe the motion of bodies under the influence of forces . Later, methods based on energy were developed by Euler, Joseph-Louis Lagrange , William Rowan Hamilton and others, leading to the development of analytical mechanics (which includes Lagrangian mechanics and Hamiltonian mechanics ). These advances, made predominantly in
7800-405: The mechanical laws of nature take a comparatively simple form. These special reference frames are called inertial frames . An inertial frame is an idealized frame of reference within which an object with zero net force acting upon it moves with a constant velocity; that is, it is either at rest or moving uniformly in a straight line. In an inertial frame Newton's law of motion, F = m
7904-453: The methods and philosophy of physics. The qualifier classical distinguishes this type of mechanics from physics developed after the revolutions in physics of the early 20th century , all of which revealed limitations in classical mechanics. The earliest formulation of classical mechanics is often referred to as Newtonian mechanics . It consists of the physical concepts based on the 17th century foundational works of Sir Isaac Newton , and
8008-423: The most general case, a three-dimensional coordinate system is used to define the position of a particle. However, if the particle is constrained to move within a plane, a two-dimensional coordinate system is sufficient. All observations in physics are incomplete without being described with respect to a reference frame. The position vector of a particle is a vector drawn from the origin of the reference frame to
8112-438: The notation for the magnitudes of the vectors | a | = a , | v | = v , | r − r 0 | = Δ r {\displaystyle |\mathbf {a} |=a,|\mathbf {v} |=v,|\mathbf {r} -\mathbf {r} _{0}|=\Delta r} where Δ r {\displaystyle \Delta r} can be any curvaceous path taken as
8216-526: The particle as a function of time. Important forces include the gravitational force and the Lorentz force for electromagnetism . In addition, Newton's third law can sometimes be used to deduce the forces acting on a particle: if it is known that particle A exerts a force F on another particle B , it follows that B must exert an equal and opposite reaction force , − F , on A . The strong form of Newton's third law requires that F and − F act along
8320-409: The particle moves from r 1 to r 2 along a path C , the work done on the particle is given by the line integral If the work done in moving the particle from r 1 to r 2 is the same no matter what path is taken, the force is said to be conservative . Gravity is a conservative force, as is the force due to an idealized spring , as given by Hooke's law . The force due to friction
8424-410: The particle's position as a function of time. The velocity of a particle is a vector quantity that describes the direction as well as the magnitude of motion of the particle. More mathematically, the rate of change of the position vector of a point with respect to time is the velocity of the point. Consider the ratio formed by dividing the difference of two positions of a particle ( displacement ) by
8528-700: The particle. It expresses both the distance of the point from the origin and its direction from the origin. In three dimensions, the position vector r {\displaystyle {\bf {r}}} can be expressed as r = ( x , y , z ) = x x ^ + y y ^ + z z ^ , {\displaystyle \mathbf {r} =(x,y,z)=x{\hat {\mathbf {x} }}+y{\hat {\mathbf {y} }}+z{\hat {\mathbf {z} }},} where x {\displaystyle x} , y {\displaystyle y} , and z {\displaystyle z} are
8632-406: The perspective of the faster car, the slower car is moving 10 km/h to the west, often denoted as −10 km/h where the sign implies opposite direction. Velocities are directly additive as vector quantities ; they must be dealt with using vector analysis . Mathematically, if the velocity of the first object in the previous discussion is denoted by the vector u = u d and the velocity of
8736-558: The position of point A relative to point B is the difference between their components: r A / B = r A − r B = ( x A − x B , y A − y B , z A − z B ) {\displaystyle \mathbf {r} _{A/B}=\mathbf {r} _{A}-\mathbf {r} _{B}=\left(x_{A}-x_{B},y_{A}-y_{B},z_{A}-z_{B}\right)} The velocity of one point relative to another
8840-439: The position vector | r | {\displaystyle \left|\mathbf {r} \right|} gives the distance between the point r {\displaystyle \mathbf {r} } and the origin. | r | = x 2 + y 2 + z 2 . {\displaystyle |\mathbf {r} |={\sqrt {x^{2}+y^{2}+z^{2}}}.} The direction cosines of
8944-993: The position vector provide a quantitative measure of direction. In general, an object's position vector will depend on the frame of reference; different frames will lead to different values for the position vector. The trajectory of a particle is a vector function of time, r ( t ) {\displaystyle \mathbf {r} (t)} , which defines the curve traced by the moving particle, given by r ( t ) = x ( t ) x ^ + y ( t ) y ^ + z ( t ) z ^ , {\displaystyle \mathbf {r} (t)=x(t){\hat {\mathbf {x} }}+y(t){\hat {\mathbf {y} }}+z(t){\hat {\mathbf {z} }},} where x ( t ) {\displaystyle x(t)} , y ( t ) {\displaystyle y(t)} , and z ( t ) {\displaystyle z(t)} describe each coordinate of
9048-401: The potential energies corresponding to each force The decrease in the potential energy is equal to the increase in the kinetic energy This result is known as conservation of energy and states that the total energy , is constant in time. It is often useful, because many commonly encountered forces are conservative. Lagrangian mechanics is a formulation of classical mechanics founded on
9152-399: The rate of change of the magnitude of the velocity vector and the rate of change of direction of that vector. The same reasoning used with respect to the position of a particle to define velocity, can be applied to the velocity to define acceleration. The acceleration of a particle is the vector defined by the rate of change of the velocity vector. The average acceleration of a particle over
9256-406: The relationship between force and momentum . Some physicists interpret Newton's second law of motion as a definition of force and mass, while others consider it a fundamental postulate, a law of nature. Either interpretation has the same mathematical consequences, historically known as "Newton's Second Law": The quantity m v is called the ( canonical ) momentum . The net force on a particle
9360-440: The same direction, this equation can be simplified to: Or, by ignoring direction, the difference can be given in terms of speed only: The acceleration , or rate of change of velocity, is the derivative of the velocity with respect to time (the second derivative of the position with respect to time): Acceleration represents the velocity's change over time. Velocity can change in magnitude, direction, or both. Occasionally,
9464-471: The same in all reference frames, if we require x = x' when t = 0 , then the relation between the space-time coordinates of the same event observed from the reference frames S' and S , which are moving at a relative velocity u in the x direction, is: This set of formulas defines a group transformation known as the Galilean transformation (informally, the Galilean transform ). This group
9568-400: The second object by the vector v = v e , where u is the speed of the first object, v is the speed of the second object, and d and e are unit vectors in the directions of motion of each object respectively, then the velocity of the first object as seen by the second object is: Similarly, the first object sees the velocity of the second object as: When both objects are moving in
9672-403: The second time derivative of the relative position vector r B/A . Assuming that the initial conditions of the position, r 0 {\displaystyle \mathbf {r} _{0}} , and velocity v 0 {\displaystyle \mathbf {v} _{0}} at time t = 0 {\displaystyle t=0} are known, the first integration yields
9776-478: The shortened form of cinématographe, "motion picture projector and camera", once again from the Greek word for movement and from the Greek γρᾰ́φω grapho ("to write"). Particle kinematics is the study of the trajectory of particles. The position of a particle is defined as the coordinate vector from the origin of a coordinate frame to the particle. For example, consider a tower 50 m south from your home, where
9880-436: The system, respectively. The stationary action principle requires that the action functional of the system derived from L {\textstyle L} must remain at a stationary point (a maximum , minimum , or saddle ) throughout the time evolution of the system. This constraint allows the calculation of the equations of motion of the system using Lagrange's equations. Hamiltonian mechanics emerged in 1833 as
9984-458: The system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics , not kinematics. For further details, see analytical dynamics . Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engineering , robotics , and biomechanics , kinematics
10088-480: The test is performed is often specified as well. This classical mechanics –related article is a stub . You can help Misplaced Pages by expanding it . Classical mechanics This is an accepted version of this page Classical mechanics is a physical theory describing the motion of objects such as projectiles , parts of machinery , spacecraft , planets , stars , and galaxies . The development of classical mechanics involved substantial change in
10192-404: The time derivative of the relative position vector r B/A . The acceleration of one point C relative to another point B is simply the difference between their accelerations. a C / B = a C − a B {\displaystyle \mathbf {a} _{C/B}=\mathbf {a} _{C}-\mathbf {a} _{B}} which is the difference between
10296-1152: The time interval. This ratio is called the average velocity over that time interval and is defined as v ¯ = Δ r Δ t = Δ x Δ t x ^ + Δ y Δ t y ^ + Δ z Δ t z ^ = v ¯ x x ^ + v ¯ y y ^ + v ¯ z z ^ {\displaystyle \mathbf {\bar {v}} ={\frac {\Delta \mathbf {r} }{\Delta t}}={\frac {\Delta x}{\Delta t}}{\hat {\mathbf {x} }}+{\frac {\Delta y}{\Delta t}}{\hat {\mathbf {y} }}+{\frac {\Delta z}{\Delta t}}{\hat {\mathbf {z} }}={\bar {v}}_{x}{\hat {\mathbf {x} }}+{\bar {v}}_{y}{\hat {\mathbf {y} }}+{\bar {v}}_{z}{\hat {\mathbf {z} }}\,} where Δ r {\displaystyle \Delta \mathbf {r} }
10400-471: The top area (a triangle). The area of a triangle is 1 2 B H {\textstyle {\frac {1}{2}}BH} where B {\displaystyle B} is the base and H {\displaystyle H} is the height. In this case, B = t {\displaystyle B=t} and H = a t {\displaystyle H=at} or A = 1 2 B H = 1 2
10504-803: The velocity and acceleration vectors simplify. The velocity of v P is the time derivative of the trajectory r ( t ), v P = d d t ( r r ^ + z z ^ ) = r ω θ ^ + v z z ^ = v θ ^ + v z z ^ . {\displaystyle \mathbf {v} _{P}={\frac {\text{d}}{{\text{d}}t}}\left(r{\hat {\mathbf {r} }}+z{\hat {\mathbf {z} }}\right)=r\omega {\hat {\mathbf {\theta } }}+v_{z}{\hat {\mathbf {z} }}=v{\hat {\mathbf {\theta } }}+v_{z}{\hat {\mathbf {z} }}.} A special case of
10608-676: The velocity of point A relative to point B is the difference between their components: v A / B = v A − v B = ( v A x − v B x , v A y − v B y , v A z − v B z ) {\displaystyle \mathbf {v} _{A/B}=\mathbf {v} _{A}-\mathbf {v} _{B}=\left(v_{A_{x}}-v_{B_{x}},v_{A_{y}}-v_{B_{y}},v_{A_{z}}-v_{B_{z}}\right)} Alternatively, this same result could be obtained by computing
10712-683: The velocity of the particle as a function of time. v ( t ) = v 0 + ∫ 0 t a d τ = v 0 + a t . {\displaystyle \mathbf {v} (t)=\mathbf {v} _{0}+\int _{0}^{t}\mathbf {a} \,{\text{d}}\tau =\mathbf {v} _{0}+\mathbf {a} t.} A second integration yields its path (trajectory), r ( t ) = r 0 + ∫ 0 t v ( τ ) d τ = r 0 + ∫ 0 t ( v 0 +
10816-413: Was traditionally divided into three main branches. Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in equilibrium with its environment. Kinematics describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering
#939060