Misplaced Pages

Silex

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Faujasite (FAU-type zeolite) is a mineral group in the zeolite family of silicate minerals . The group consists of faujasite-Na, faujasite-Mg and faujasite-Ca. They all share the same basic formula (Na 2 ,Ca,Mg) 3.5 [Al 7 Si 17 O 48 ]·32(H 2 O) by varying the amounts of sodium, magnesium and calcium. Faujasite occurs as a rare mineral in several locations worldwide.

#958041

42-414: Silex is any of various forms of ground stone. In modern contexts the word refers to a finely ground, nearly pure form of silica or silicate . In the late 16th century, it meant powdered or ground up " flints " (i.e. stones, generally meaning the class of "hard rocks") It was later used in 1787 when describing experiments in a published paper by Antoine Lavoisier where such earths are mentioned as

84-496: A basic environment such as sodium hydroxide aqueous solution and crystallized at 70 to 300 °C (usually at 100 °C). After crystallization the faujasite is in its sodium form and must be ion exchanged with ammonium to improve stability. The ammonium ion is removed later by calcination which renders the zeolite in its acid form. Depending on the silica-to-alumina ratio of their framework, synthetic faujasite zeolites are divided into X and Y zeolites. In X zeolites that ratio

126-409: A carrier gas at 200–500 °C. Silicon dioxide is a relatively inert material (hence its widespread occurrence as a mineral). Silica is often used as inert containers for chemical reactions. At high temperatures, it is converted to silicon by reduction with carbon. Faujasite Faujasite materials are widely synthesized industrially. The relatively low-silica (Si/Al<2) synthetic faujasite

168-407: A glass with no true melting point, can be used as a glass fibre for fibreglass. Silicon dioxide is mostly obtained by mining, including sand mining and purification of quartz . Quartz is suitable for many purposes, while chemical processing is required to make a purer or otherwise more suitable (e.g. more reactive or fine-grained) product. Precipitated silica or amorphous silica is produced by

210-494: A heat capacity minimum. Its density decreases from 2.08 g/cm at 1950 °C to 2.03 g/cm at 2200 °C. The molecular SiO 2 has a linear structure like CO 2 . It has been produced by combining silicon monoxide (SiO) with oxygen in an argon matrix. The dimeric silicon dioxide, (SiO 2 ) 2 has been obtained by reacting O 2 with matrix isolated dimeric silicon monoxide, (Si 2 O 2 ). In dimeric silicon dioxide there are two oxygen atoms bridging between

252-450: A low value of 140° in α-tridymite, up to 180° in β-tridymite. In α-quartz, the Si–O–Si angle is 144°. Alpha quartz is the most stable form of solid SiO 2 at room temperature. The high-temperature minerals, cristobalite and tridymite, have both lower densities and indices of refraction than quartz. The transformation from α-quartz to beta-quartz takes place abruptly at 573 °C. Since

294-410: A silicon wafer enables it to overcome the surface states that otherwise prevent electricity from reaching the semiconducting layer. The process of silicon surface passivation by thermal oxidation (silicon dioxide) is critical to the semiconductor industry . It is commonly used to manufacture metal–oxide–semiconductor field-effect transistors (MOSFETs) and silicon integrated circuit chips (with

336-477: A very shallow layer of about 1 nm or 10 Å of so-called native oxide. Higher temperatures and alternative environments are used to grow well-controlled layers of silicon dioxide on silicon, for example at temperatures between 600 and 1200 °C, using so-called dry oxidation with O 2 or wet oxidation with H 2 O. The native oxide layer is beneficial in microelectronics , where it acts as electric insulator with high chemical stability. It can protect

378-524: A white powder with extremely low bulk density (0.03-0.15 g/cm ) and thus high surface area. The particles act as a thixotropic thickening agent, or as an anti-caking agent, and can be treated to make them hydrophilic or hydrophobic for either water or organic liquid applications. Silica fume is an ultrafine powder collected as a by-product of the silicon and ferrosilicon alloy production. It consists of amorphous (non-crystalline) spherical particles with an average particle diameter of 150 nm, without

420-435: Is a common fundamental constituent of glass . In the majority of silicon dioxides, the silicon atom shows tetrahedral coordination , with four oxygen atoms surrounding a central Si atom ( see 3-D Unit Cell ). Thus, SiO 2 forms 3-dimensional network solids in which each silicon atom is covalently bonded in a tetrahedral manner to 4 oxygen atoms. In contrast, CO 2 is a linear molecule. The starkly different structures of

462-439: Is also the primary component of rice husk ash , which is used, for example, in filtration and as supplementary cementitious material (SCM) in cement and concrete manufacturing. Silicification in and by cells has been common in the biological world and it occurs in bacteria, protists, plants, and animals (invertebrates and vertebrates). Prominent examples include: About 95% of the commercial use of silicon dioxide (sand)

SECTION 10

#1732772758959

504-450: Is between 2 and 3, while in Y zeolites it is 3 or higher. The negative charges of the framework are balanced by the positive charges of cations (usually either sodium from the NaOH solution, or ammonium or H after exchanges) in non-framework positions. Such zeolites have ion-exchange, catalytic and adsorptive properties. The stability of the zeolite increases with the silica-to-alumina ratio of

546-565: Is called Zeolite X and the high-silica (Si/Al>2) one is called Zeolite Y . In addition, the aluminum component in zeolite Y can be removed by acid-treatment and/or steam-treatment, and the resulting faujasite is called USY (Ultrastable zeolite Y). USY is used in fluid catalytic cracking process as a catalyst. Faujasite was first described in 1842 from an occurrence in the Limberg Quarries, Sasbach , Kaiserstuhl , Baden-Württemberg , Germany . The sodium modifier faujasite-Na

588-465: Is in the construction industry, e.g. in the production of concrete ( Portland cement concrete ). Certain deposits of silica sand, with desirable particle size and shape and desirable clay and other mineral content, were important for sand casting of metallic products. The high melting point of silica enables it to be used in such applications such as iron casting; modern sand casting sometimes uses other minerals for other reasons. Crystalline silica

630-651: Is obtained by the dealumination of a low-sodium, ultra-stable Y zeolite with combined acid and thermal treatment. The resulting product contains over 99% silica, and has high crystallinity and specific surface area (over 800 m /g). Faujasite-silica has very high thermal and acid stability. For example, it maintains a high degree of long-range molecular order or crystallinity even after boiling in concentrated hydrochloric acid . Molten silica exhibits several peculiar physical characteristics that are similar to those observed in liquid water : negative temperature expansion, density maximum at temperatures ~5000 °C, and

672-421: Is rapidly cooled, it does not crystallize, but solidifies as a glass. Because of this, most ceramic glazes have silica as the main ingredient. The structural geometry of silicon and oxygen in glass is similar to that in quartz and most other crystalline forms of silicon and oxygen, with silicon surrounded by regular tetrahedra of oxygen centres. The difference between the glass and crystalline forms arises from

714-426: Is the major constituent of sand . Even though it is poorly soluble, silica occurs in many plants such as rice . Plant materials with high silica phytolith content appear to be of importance to grazing animals, from chewing insects to ungulates . Silica accelerates tooth wear, and high levels of silica in plants frequently eaten by herbivores may have developed as a defense mechanism against predation. Silica

756-457: Is the only polymorph of silica stable at the Earth's surface. Metastable occurrences of the high-pressure forms coesite and stishovite have been found around impact structures and associated with eclogites formed during ultra-high-pressure metamorphism . The high-temperature forms of tridymite and cristobalite are known from silica-rich volcanic rocks . In many parts of the world, silica

798-504: Is the process by which a semiconductor surface is rendered inert, and does not change semiconductor properties as a result of interaction with air or other materials in contact with the surface or edge of the crystal. The formation of a thermally grown silicon dioxide layer greatly reduces the concentration of electronic states at the silicon surface . SiO 2 films preserve the electrical characteristics of p–n junctions and prevent these electrical characteristics from deteriorating by

840-547: Is used above all as a catalyst in fluid catalytic cracking to convert high-boiling fractions of petroleum crude to more valuable gasoline, diesel and other products. Zeolite Y has superseded zeolite X in this use because it is both more active and more stable at high temperatures due to the higher Si/Al ratio. It is also used in the hydrocracking units as a platinum/palladium support to increase aromatic content of reformulated refinery products. Type X zeolite can be used to selectively adsorb CO 2 from gas streams and

882-436: Is used as a fining agent for wine, beer, and juice, with the E number reference E551 . In cosmetics, silica is useful for its light-diffusing properties and natural absorbency. Diatomaceous earth , a mined product, has been used in food and cosmetics for centuries. It consists of the silica shells of microscopic diatoms ; in a less processed form it was sold as "tooth powder". Manufactured or mined hydrated silica

SECTION 20

#1732772758959

924-489: Is used as the hard abrasive in toothpaste . Silicon dioxide is widely used in the semiconductor technology: Because silicon dioxide is a native oxide of silicon it is more widely used compared to other semiconductors like gallium arsenide or indium phosphide . Silicon dioxide could be grown on a silicon semiconductor surface. Silicon oxide layers could protect silicon surfaces during diffusion processes , and could be used for diffusion masking. Surface passivation

966-418: Is used in hydraulic fracturing of formations which contain tight oil and shale gas . Silica is the primary ingredient in the production of most glass . As other minerals are melted with silica, the principle of freezing point depression lowers the melting point of the mixture and increases fluidity. The glass transition temperature of pure SiO 2 is about 1475 K. When molten silicon dioxide SiO 2

1008-538: Is used to produce elemental silicon . The process involves carbothermic reduction in an electric arc furnace : Fumed silica , also known as pyrogenic silica, is prepared by burning SiCl 4 in an oxygen-rich hydrogen flame to produce a "smoke" of SiO 2 . It can also be produced by vaporizing quartz sand in a 3000 °C electric arc. Both processes result in microscopic droplets of amorphous silica fused into branched, chainlike, three-dimensional secondary particles which then agglomerate into tertiary particles,

1050-555: The planar process ). Hydrophobic silica is used as a defoamer component . In its capacity as a refractory , it is useful in fiber form as a high-temperature thermal protection fabric. Silica is used in the extraction of DNA and RNA due to its ability to bind to the nucleic acids under the presence of chaotropes . Silica aerogel was used in the Stardust spacecraft to collect extraterrestrial particles. Pure silica (silicon dioxide), when cooled as fused quartz into

1092-496: The acidification of solutions of sodium silicate . The gelatinous precipitate or silica gel , is first washed and then dehydrated to produce colorless microporous silica. The idealized equation involving a trisilicate and sulfuric acid is: Approximately one billion kilograms/year (1999) of silica were produced in this manner, mainly for use for polymer composites – tires and shoe soles. Thin films of silica grow spontaneously on silicon wafers via thermal oxidation , producing

1134-552: The branching of the pyrogenic product. The main use is as pozzolanic material for high performance concrete. Fumed silica nanoparticles can be successfully used as an anti-aging agent in asphalt binders. Silica, either colloidal, precipitated, or pyrogenic fumed, is a common additive in food production. It is used primarily as a flow or anti- caking agent in powdered foods such as spices and non-dairy coffee creamer, or powders to be formed into pharmaceutical tablets. It can adsorb water in hygroscopic applications. Colloidal silica

1176-527: The code FAU by the International Zeolite Association. It consists of sodalite cages which are connected through hexagonal prisms . The pore, which is formed by a 12-membered ring, has a relatively large diameter of 7.4 Å. The inner cavity has a diameter of 12 Å and is surrounded by 10 sodalite cages. The unit cell is cubic; Pearson symbol cF576, symmetry F d 3 m, No. 227 , lattice constant 24.7 Å. Of

1218-509: The connectivity of the tetrahedral units: Although there is no long-range periodicity in the glassy network, ordering remains at length scales well beyond the SiO bond length. One example of this ordering is the preference to form rings of 6-tetrahedra. The majority of optical fibers for telecommunications are also made from silica. It is a primary raw material for many ceramics such as earthenware , stoneware , and porcelain . Silicon dioxide

1260-488: The densest of the low-pressure forms, which has a density of 2.648 g/cm . The difference in density can be ascribed to the increase in coordination as the six shortest Si–O bond lengths in stishovite (four Si–O bond lengths of 176 pm and two others of 181 pm) are greater than the Si–O bond length (161 pm) in α-quartz. The change in the coordination increases the ionicity of the Si–O bond. Faujasite silica, another polymorph,

1302-459: The dioxides of carbon and silicon are a manifestation of the double bond rule . Based on the crystal structural differences, silicon dioxide can be divided into two categories: crystalline and non-crystalline (amorphous). In crystalline form, this substance can be found naturally occurring as quartz , tridymite (high-temperature form), cristobalite (high-temperature form), stishovite (high-pressure form), and coesite (high-pressure form). On

Silex - Misplaced Pages Continue

1344-511: The framework ( Lowenstein's rule ). It is also affected by the type and amount of cations located in non-framework positions. For catalytic cracking , the Y zeolite is often used in a rare earth-hydrogen exchanged form. By using thermal, hydrothermal or chemical methods, some of the alumina can be removed from the Y zeolite framework, resulting in high-silica Y zeolites . Such zeolites are used in cracking and hydrocracking catalysts. Complete dealumination results in faujasite-silica. Faujasite

1386-411: The gaseous ambient environment. Silicon oxide layers could be used to electrically stabilize silicon surfaces. The surface passivation process is an important method of semiconductor device fabrication that involves coating a silicon wafer with an insulating layer of silicon oxide so that electricity could reliably penetrate to the conducting silicon below. Growing a layer of silicon dioxide on top of

1428-400: The other hand, amorphous silica can be found in nature as opal and diatomaceous earth . Quartz glass is a form of intermediate state between these structures. All of these distinct crystalline forms always have the same local structure around Si and O. In α-quartz the Si–O bond length is 161 pm, whereas in α-tridymite it is in the range 154–171 pm. The Si–O–Si angle also varies between

1470-401: The silicon atoms with an Si–O–Si angle of 94° and bond length of 164.6 pm and the terminal Si–O bond length is 150.2 pm. The Si–O bond length is 148.3 pm, which compares with the length of 161 pm in α-quartz. The bond energy is estimated at 621.7 kJ/mol. SiO 2 is most commonly encountered in nature as quartz , which comprises more than 10% by mass of the Earth's crust. Quartz

1512-418: The silicon, store charge, block current, and even act as a controlled pathway to limit current flow. Many routes to silicon dioxide start with an organosilicon compound, e.g., HMDSO, TEOS. Synthesis of silica is illustrated below using tetraethyl orthosilicate (TEOS). Simply heating TEOS at 680–730 °C results in the oxide: Similarly TEOS combusts around 400 °C: TEOS undergoes hydrolysis via

1554-492: The so-called sol-gel process . The course of the reaction and nature of the product are affected by catalysts, but the idealized equation is: Being highly stable, silicon dioxide arises from many methods. Conceptually simple, but of little practical value, combustion of silane gives silicon dioxide. This reaction is analogous to the combustion of methane: However the chemical vapor deposition of silicon dioxide onto crystal surface from silane had been used using nitrogen as

1596-432: The source of his isolation of the element silicon . Silex is now most commonly used to describe finely ground silicates used as pigments in paint . This material -related article is a stub . You can help Misplaced Pages by expanding it . Silica Silicon dioxide , also known as silica , is an oxide of silicon with the chemical formula SiO 2 , commonly found in nature as quartz . In many parts of

1638-446: The transformation is accompanied by a significant change in volume, it can easily induce fracturing of ceramics or rocks passing through this temperature limit. The high-pressure minerals, seifertite , stishovite, and coesite, though, have higher densities and indices of refraction than quartz. Stishovite has a rutile -like structure where silicon is 6-coordinate. The density of stishovite is 4.287 g/cm , which compares to α-quartz,

1680-473: The two types (X and Y) of zeolites coded with FAU, zeolite Y, which is the one with the higher range of silica-to-alumina content, has a void fraction of 48% and a Si/Al ratio of 2.43. It thermally decomposes at 793 °C. Faujasite is synthesized, as are other zeolites, from alumina sources such as sodium aluminate and silica sources such as sodium silicate . Other aluminosilicates such as kaolin are used as well. The ingredients are dissolved in

1722-482: The world, silica is the major constituent of sand . Silica is one of the most complex and abundant families of materials , existing as a compound of several minerals and as a synthetic product. Examples include fused quartz , fumed silica , opal , and aerogels . It is used in structural materials , microelectronics , and as components in the food and pharmaceutical industries. All forms are white or colorless, although impure samples can be colored. Silicon dioxide

Silex - Misplaced Pages Continue

1764-428: Was added following the discovery of the magnesium and calcium rich phases in the 1990s. It was named for Barthélemy Faujas de Saint-Fond (1741–1819), French geologist and volcanologist. Faujasite occurs in vesicles within basalt and phonolite lava and tuff as an alteration or authigenic mineral. It occurs with other zeolites, olivine , augite and nepheline . The faujasite framework has been attributed

#958041