Misplaced Pages

String (computer science)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In computer programming , a string is traditionally a sequence of characters , either as a literal constant or as some kind of variable . The latter may allow its elements to be mutated and the length changed, or it may be fixed (after creation). A string is generally considered as a data type and is often implemented as an array data structure of bytes (or words ) that stores a sequence of elements, typically characters, using some character encoding . String may also denote more general arrays or other sequence (or list ) data types and structures.

#228771

126-491: Depending on the programming language and precise data type used, a variable declared to be a string may either cause storage in memory to be statically allocated for a predetermined maximum length or employ dynamic allocation to allow it to hold a variable number of elements. When a string appears literally in source code , it is known as a string literal or an anonymous string. In formal languages , which are used in mathematical logic and theoretical computer science ,

252-426: A value ; or in simpler terms, a variable is a named container for a particular set of bits or type of data (like integer , float , string , etc...). A variable can eventually be associated with or identified by a memory address . The variable name is the usual way to reference the stored value, in addition to referring to the variable itself, depending on the context. This separation of name and content allows

378-560: A closure . Unless the programming language features garbage collection , a variable whose extent permanently outlasts its scope can result in a memory leak , whereby the memory allocated for the variable can never be freed since the variable which would be used to reference it for deallocation purposes is no longer accessible. However, it can be permissible for a variable binding to extend beyond its scope, as occurs in Lisp closures and C static local variables ; when execution passes back into

504-529: A shift function (like in ITA2 ), which would allow more than 64 codes to be represented by a six-bit code . In a shifted code, some character codes determine choices between options for the following character codes. It allows compact encoding, but is less reliable for data transmission , as an error in transmitting the shift code typically makes a long part of the transmission unreadable. The standards committee decided against shifting, and so ASCII required at least

630-430: A "array of characters" which may be stored in the same array but is often not null terminated. Using C string handling functions on such an array of characters often seems to work, but later leads to security problems . There are many algorithms for processing strings, each with various trade-offs. Competing algorithms can be analyzed with respect to run time, storage requirements, and so forth. The name stringology

756-414: A 10-byte buffer , along with its ASCII (or more modern UTF-8 ) representation as 8-bit hexadecimal numbers is: The length of the string in the above example, " FRANK ", is 5 characters, but it occupies 6 bytes. Characters after the terminator do not form part of the representation; they may be either part of other data or just garbage. (Strings of this form are sometimes called ASCIZ strings , after

882-522: A BS (backspace). Instead, there was a key marked RUB OUT that sent code 127 (DEL). The purpose of this key was to erase mistakes in a manually-input paper tape: the operator had to push a button on the tape punch to back it up, then type the rubout, which punched all holes and replaced the mistake with a character that was intended to be ignored. Teletypes were commonly used with the less-expensive computers from Digital Equipment Corporation (DEC); these systems had to use what keys were available, and thus

1008-453: A byte value in the ASCII range will represent only that ASCII character, making the encoding safe for systems that use those characters as field separators. Other encodings such as ISO-2022 and Shift-JIS do not make such guarantees, making matching on byte codes unsafe. These encodings also were not "self-synchronizing", so that locating character boundaries required backing up to the start of

1134-532: A certain function/ subroutine , or more finely within a block of expressions/statements (accordingly with function scope or block scope ); this is static resolution, performable at parse-time or compile-time. Alternatively, a variable with dynamic scope is resolved at run-time, based on a global binding stack that depends on the specific control flow . Variables only accessible within a certain functions are termed " local variables ". A " global variable ", or one with indefinite scope, may be referred to anywhere in

1260-458: A character count followed by the characters of the line and which used EBCDIC rather than ASCII encoding. The Telnet protocol defined an ASCII "Network Virtual Terminal" (NVT), so that connections between hosts with different line-ending conventions and character sets could be supported by transmitting a standard text format over the network. Telnet used ASCII along with CR-LF line endings, and software using other conventions would translate between

1386-462: A consequence, some people call such a string a Pascal string or P-string . Storing the string length as byte limits the maximum string length to 255. To avoid such limitations, improved implementations of P-strings use 16-, 32-, or 64-bit words to store the string length. When the length field covers the address space , strings are limited only by the available memory . If the length is bounded, then it can be encoded in constant space, typically

SECTION 10

#1732779698229

1512-458: A datatype may be associated only with the current value, allowing a single variable to store anything supported by the programming language. Variables are the containers for storing the values. Variables and scope: An identifier referencing a variable can be used to access the variable in order to read out the value, or alter the value, or edit other attributes of the variable, such as access permission, locks , semaphores , etc. For instance,

1638-533: A dedicated string datatype at all, instead adopting the convention of representing strings as lists of character codes. Even in programming languages having a dedicated string type, string can usually be iterated as a sequence character codes, like lists of integers or other values. Representations of strings depend heavily on the choice of character repertoire and the method of character encoding. Older string implementations were designed to work with repertoire and encoding defined by ASCII, or more recent extensions like

1764-414: A fixed length. A few languages such as Haskell implement them as linked lists instead. A lot of high-level languages provide strings as a primitive data type, such as JavaScript and PHP , while most others provide them as a composite data type, some with special language support in writing literals, for example, Java and C# . Some languages, such as C , Prolog and Erlang , avoid implementing

1890-397: A function named length may determine the length of a list. Such a length function may be parametric polymorphic by including a type variable in its type signature , since the number of elements in the list is independent of the elements' types. The formal parameters (or formal arguments ) of functions are also referred to as variables. For instance, in this Python code segment,

2016-418: A given program. The scope of a variable is the portion of the program's text for which the variable's name has meaning and for which the variable is said to be "visible". Entrance into that scope typically begins a variable's lifetime (as it comes into context) and exit from that scope typically ends its lifetime (as it goes out of context). For instance, a variable with " lexical scope " is meaningful only within

2142-462: A length code are limited to the maximum value of the length code. Both of these limitations can be overcome by clever programming. It is possible to create data structures and functions that manipulate them that do not have the problems associated with character termination and can in principle overcome length code bounds. It is also possible to optimize the string represented using techniques from run length encoding (replacing repeated characters by

2268-498: A line terminator. The tty driver would handle the LF to CRLF conversion on output so files can be directly printed to terminal, and NL (newline) is often used to refer to CRLF in UNIX documents. Unix and Unix-like systems, and Amiga systems, adopted this convention from Multics. On the other hand, the original Macintosh OS , Apple DOS , and ProDOS used carriage return (CR) alone as

2394-605: A line terminator; however, since Apple later replaced these obsolete operating systems with their Unix-based macOS (formerly named OS X) operating system, they now use line feed (LF) as well. The Radio Shack TRS-80 also used a lone CR to terminate lines. Computers attached to the ARPANET included machines running operating systems such as TOPS-10 and TENEX using CR-LF line endings; machines running operating systems such as Multics using LF line endings; and machines running operating systems such as OS/360 that represented lines as

2520-449: A machine word, thus leading to an implicit data structure , taking n + k space, where k is the number of characters in a word (8 for 8-bit ASCII on a 64-bit machine, 1 for 32-bit UTF-32/UCS-4 on a 32-bit machine, etc.). If the length is not bounded, encoding a length n takes log( n ) space (see fixed-length code ), so length-prefixed strings are a succinct data structure , encoding a string of length n in log( n ) + n space. In

2646-468: A one 8-bit byte per-character encoding) for reasonable representation. The normal solutions involved keeping single-byte representations for ASCII and using two-byte representations for CJK ideographs . Use of these with existing code led to problems with matching and cutting of strings, the severity of which depended on how the character encoding was designed. Some encodings such as the EUC family guarantee that

SECTION 20

#1732779698229

2772-478: A physical object such as storage location. The value of a computing variable is not necessarily part of an equation or formula as in mathematics. Variables in computer programming are frequently given long names to make them relatively descriptive of their use, whereas variables in mathematics often have terse, one- or two-character names for brevity in transcription and manipulation. A variable's storage location may be referenced by several different identifiers,

2898-452: A precise naming scheme. Shorter names are faster to type but are less descriptive; longer names often make programs easier to read and the purpose of variables easier to understand. However, extreme verbosity in variable names can also lead to less comprehensible code. We can classify variables based on their lifetime. The different types of variables are static, stack-dynamic, explicit heap-dynamic, and implicit heap-dynamic. A static variable

3024-562: A program do not accidentally interact with each other by modifying each other's variables. Doing so also prevents action at a distance . Common techniques for doing so are to have different sections of a program use different name spaces , or to make individual variables "private" through either dynamic variable scoping or lexical variable scoping . Many programming languages employ a reserved value (often named null or nil ) to indicate an invalid or uninitialized variable. In statically typed languages such as C , C++ , Java or C# ,

3150-542: A program treated specially (such as period and space and comma) were in the same place in all the encodings a program would encounter. These character sets were typically based on ASCII or EBCDIC . If text in one encoding was displayed on a system using a different encoding, text was often mangled , though often somewhat readable and some computer users learned to read the mangled text. Logographic languages such as Chinese , Japanese , and Korean (known collectively as CJK ) need far more than 256 characters (the limit of

3276-548: A reserved device control (DC0), synchronous idle (SYNC), and acknowledge (ACK). These were positioned to maximize the Hamming distance between their bit patterns. ASCII-code order is also called ASCIIbetical order. Collation of data is sometimes done in this order rather than "standard" alphabetical order ( collating sequence ). The main deviations in ASCII order are: An intermediate order converts uppercase letters to lowercase before comparing ASCII values. ASCII reserves

3402-541: A reserved meaning. Over time this interpretation has been co-opted and has eventually been changed. In modern usage, an ESC sent to the terminal usually indicates the start of a command sequence, which can be used to address the cursor, scroll a region, set/query various terminal properties, and more. They are usually in the form of a so-called " ANSI escape code " (often starting with a " Control Sequence Introducer ", "CSI", " ESC [ ") from ECMA-48 (1972) and its successors. Some escape sequences do not have introducers, like

3528-478: A separate integer (which may put another artificial limit on the length) or implicitly through a termination character, usually a character value with all bits zero such as in C programming language. See also " Null-terminated " below. String datatypes have historically allocated one byte per character, and, although the exact character set varied by region, character encodings were similar enough that programmers could often get away with ignoring this, since characters

3654-423: A sequence of data or computer records other than characters — like a "string of bits " — but when used without qualification it refers to strings of characters. Use of the word "string" to mean any items arranged in a line, series or succession dates back centuries. In 19th-Century typesetting, compositors used the term "string" to denote a length of type printed on paper; the string would be measured to determine

3780-404: A seven-bit code. The committee considered an eight-bit code, since eight bits ( octets ) would allow two four-bit patterns to efficiently encode two digits with binary-coded decimal . However, it would require all data transmission to send eight bits when seven could suffice. The committee voted to use a seven-bit code to minimize costs associated with data transmission. Since perforated tape at

3906-414: A single identifier, that identifier can simply be called the name of the variable ; otherwise, we can speak of it as one of the names of the variable . For instance, in the previous example the identifier " total_count " is the name of the variable in question, and " r " is another name of the same variable. The scope of a variable describes where in a program's text the variable may be used, while

String (computer science) - Misplaced Pages Continue

4032-404: A single long consecutive array of characters, a typical text editor instead uses an alternative representation as its sequence data structure—a gap buffer , a linked list of lines, a piece table , or a rope —which makes certain string operations, such as insertions, deletions, and undoing previous edits, more efficient. The differing memory layout and storage requirements of strings can affect

4158-422: A single value during their entire lifetime due to the requirements of referential transparency . In imperative languages, the same behavior is exhibited by (named) constants (symbolic constants), which are typically contrasted with (normal) variables. Depending on the type system of a programming language, variables may only be able to store a specified data type (e.g. integer or string ). Alternatively,

4284-597: A situation known as aliasing . Assigning a value to the variable using one of the identifiers will change the value that can be accessed through the other identifiers. Compilers have to replace variables' symbolic names with the actual locations of the data. While a variable's name, type, and location often remain fixed, the data stored in the location may be changed during program execution. In imperative programming languages , values can generally be accessed or changed at any time. In pure functional and logic languages , variables are bound to expressions and keep

4410-437: A string datatype; such a meta-string is called a literal or string literal . Although formal strings can have an arbitrary finite length, the length of strings in real languages is often constrained to an artificial maximum. In general, there are two types of string datatypes: fixed-length strings , which have a fixed maximum length to be determined at compile time and which use the same amount of memory whether this maximum

4536-500: A string is a finite sequence of symbols that are chosen from a set called an alphabet . A primary purpose of strings is to store human-readable text, like words and sentences. Strings are used to communicate information from a computer program to the user of the program. A program may also accept string input from its user. Further, strings may store data expressed as characters yet not intended for human reading. Example strings and their purposes: The term string may also designate

4662-402: A string, and pasting two strings together could result in corruption of the second string. Unicode has simplified the picture somewhat. Most programming languages now have a datatype for Unicode strings. Unicode's preferred byte stream format UTF-8 is designed not to have the problems described above for older multibyte encodings. UTF-8, UTF-16 and UTF-32 require the programmer to know that

4788-404: A string-specific datatype, depending on the needs of the application, the desire of the programmer, and the capabilities of the programming language being used. If the programming language's string implementation is not 8-bit clean , data corruption may ensue. C programmers draw a sharp distinction between a "string", aka a "string of characters", which by definition is always null terminated, vs.

4914-399: A terminal. Some operating systems such as CP/M tracked file length only in units of disk blocks, and used control-Z to mark the end of the actual text in the file. For these reasons, EOF, or end-of-file , was used colloquially and conventionally as a three-letter acronym for control-Z instead of SUBstitute. The end-of-text character ( ETX ), also known as control-C , was inappropriate for

5040-497: A termination value. Most string implementations are very similar to variable-length arrays with the entries storing the character codes of corresponding characters. The principal difference is that, with certain encodings, a single logical character may take up more than one entry in the array. This happens for example with UTF-8, where single codes ( UCS code points) can take anywhere from one to four bytes, and single characters can take an arbitrary number of codes. In these cases,

5166-477: A text file that is both human-readable and intended for consumption by a machine. This is needed in, for example, source code of programming languages, or in configuration files. In this case, the NUL character does not work well as a terminator since it is normally invisible (non-printable) and is difficult to input via a keyboard. Storing the string length would also be inconvenient as manual computation and tracking of

String (computer science) - Misplaced Pages Continue

5292-415: A variable also has a type , meaning that only certain kinds of values can be stored in it. For example, a variable of type " integer " is prohibited from storing text values. In dynamically typed languages such as Python , a variable's type is inferred by its value, and can change according to its value. In Common Lisp , both situations exist simultaneously: A variable is given a type (if undeclared, it

5418-408: A variable might be referenced by the identifier " total_count " and the variable can contain the number 1956. If the same variable is referenced by the identifier " r " as well, and if using this identifier " r ", the value of the variable is altered to 2009, then reading the value using the identifier " total_count " will yield a result of 2009 and not 1956. If a variable is only referenced by

5544-449: A variety of reasons, while using control-Z as the control character to end a file is analogous to the letter Z's position at the end of the alphabet, and serves as a very convenient mnemonic aid . A historically common and still prevalent convention uses the ETX character convention to interrupt and halt a program via an input data stream, usually from a keyboard. The Unix terminal driver uses

5670-737: Is 0101 in binary). Many of the non-alphanumeric characters were positioned to correspond to their shifted position on typewriters; an important subtlety is that these were based on mechanical typewriters, not electric typewriters. Mechanical typewriters followed the de facto standard set by the Remington No. 2 (1878), the first typewriter with a shift key, and the shifted values of 23456789- were "#$ %_&'()  – early typewriters omitted 0 and 1 , using O (capital letter o ) and l (lowercase letter L ) instead, but 1! and 0) pairs became standard once 0 and 1 became common. Thus, in ASCII !"#$ % were placed in

5796-400: Is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment , and other devices. ASCII has just 128 code points , of which only 95 are printable characters , which severely limit its scope. The set of available punctuation had significant impact on the syntax of computer languages and text markup. ASCII hugely influenced

5922-402: Is a property of the program, and varies by point in the program's text or execution—see scope: an overview . Further, object lifetime may coincide with variable lifetime, but in many cases is not tied to it. Scope is an important part of the name resolution of a variable. Most languages define a specific scope for each variable (as well as any other named entity), which may differ within

6048-583: Is also known as global variable, it is bound to a memory cell before execution begins and remains to the same memory cell until termination. A typical example is the static variables in C and C++. A Stack-dynamic variable is known as local variable, which is bound when the declaration statement is executed, and it is deallocated when the procedure returns. The main examples are local variables in C subprograms and Java methods. Explicit Heap-Dynamic variables are nameless (abstract) memory cells that are allocated and deallocated by explicit run-time instructions specified by

6174-446: Is an abstraction, an idea; in implementation, a value is represented by some data object , which is stored somewhere in computer memory. The program, or the runtime environment , must set aside memory for each data object and, since memory is finite, ensure that this memory is yielded for reuse when the object is no longer needed to represent some variable's value. Objects allocated from the heap must be reclaimed—especially when

6300-446: Is assumed to be T , the universal supertype ) which exists at compile time. Values also have types, which can be checked and queried at runtime. Typing of variables also allows polymorphisms to be resolved at compile time. However, this is different from the polymorphism used in object-oriented function calls (referred to as virtual functions in C++ ) which resolves the call based on

6426-417: Is commonly referred to as a C string . This representation of an n -character string takes n + 1 space (1 for the terminator), and is thus an implicit data structure . In terminated strings, the terminating code is not an allowable character in any string. Strings with length field do not have this limitation and can also store arbitrary binary data . An example of a null-terminated string stored in

SECTION 50

#1732779698229

6552-425: Is needed or not, and variable-length strings , whose length is not arbitrarily fixed and which can use varying amounts of memory depending on the actual requirements at run time (see Memory management ). Most strings in modern programming languages are variable-length strings. Of course, even variable-length strings are limited in length – by the size of available computer memory . The string length can be stored as

6678-427: Is replaced by a second control-S to resume output. The 33 ASR also could be configured to employ control-R (DC2) and control-T (DC4) to start and stop the tape punch; on some units equipped with this function, the corresponding control character lettering on the keycap above the letter was TAPE and TAPE respectively. The Teletype could not move its typehead backwards, so it did not have a key on its keyboard to send

6804-404: Is the newline problem on various operating systems . Teletype machines required that a line of text be terminated with both "carriage return" (which moves the printhead to the beginning of the line) and "line feed" (which advances the paper one line without moving the printhead). The name "carriage return" comes from the fact that on a manual typewriter the carriage holding the paper moves while

6930-503: The Comité Consultatif International Téléphonique et Télégraphique (CCITT) International Telegraph Alphabet No. 2 (ITA2) standard of 1932, FIELDATA (1956 ), and early EBCDIC (1963), more than 64 codes were required for ASCII. ITA2 was in turn based on Baudot code , the 5-bit telegraph code Émile Baudot invented in 1870 and patented in 1874. The committee debated the possibility of

7056-512: The ISO 8859 series. Modern implementations often use the extensive repertoire defined by Unicode along with a variety of complex encodings such as UTF-8 and UTF-16. The term byte string usually indicates a general-purpose string of bytes, rather than strings of only (readable) characters, strings of bits, or such. Byte strings often imply that bytes can take any value and any data can be stored as-is, meaning that there should be no value interpreted as

7182-510: The SNOBOL language of the early 1960s. A string datatype is a datatype modeled on the idea of a formal string. Strings are such an important and useful datatype that they are implemented in nearly every programming language . In some languages they are available as primitive types and in others as composite types . The syntax of most high-level programming languages allows for a string, usually quoted in some way, to represent an instance of

7308-636: The Teletype Model 33 , which used the left-shifted layout corresponding to ASCII, differently from traditional mechanical typewriters. Electric typewriters, notably the IBM Selectric (1961), used a somewhat different layout that has become de facto standard on computers – following the IBM PC (1981), especially Model M (1984) – and thus shift values for symbols on modern keyboards do not correspond as closely to

7434-730: The United States Federal Government support ASCII, stating: I have also approved recommendations of the Secretary of Commerce [ Luther H. Hodges ] regarding standards for recording the Standard Code for Information Interchange on magnetic tapes and paper tapes when they are used in computer operations. All computers and related equipment configurations brought into the Federal Government inventory on and after July 1, 1969, must have

7560-667: The carriage return , line feed , and tab codes. For example, lowercase i would be represented in the ASCII encoding by binary 1101001 = hexadecimal 69 ( i is the ninth letter) = decimal 105. Despite being an American standard, ASCII does not have a code point for the cent (¢). It also does not support English terms with diacritical marks such as résumé and jalapeño , or proper nouns with diacritical marks such as Beyoncé (although on certain devices characters could be combined with punctuation such as Tilde (~) and Backtick (`) to approximate such characters.) The American Standard Code for Information Interchange (ASCII)

7686-399: The extent (also called lifetime ) of a variable describes when in a program's execution the variable has a (meaningful) value. The scope of a variable affects its extent. The scope of a variable is actually a property of the name of the variable, and the extent is a property of the storage location of the variable. These should not be confused with context (also called environment ), which

SECTION 60

#1732779698229

7812-645: The "Reset to Initial State", "RIS" command " ESC c ". In contrast, an ESC read from the terminal is most often used as an out-of-band character used to terminate an operation or special mode, as in the TECO and vi text editors . In graphical user interface (GUI) and windowing systems, ESC generally causes an application to abort its current operation or to exit (terminate) altogether. The inherent ambiguity of many control characters, combined with their historical usage, created problems when transferring "plain text" files between systems. The best example of this

7938-582: The "help" prefix command in GNU Emacs . Many more of the control characters have been assigned meanings quite different from their original ones. The "escape" character (ESC, code 27), for example, was intended originally to allow sending of other control characters as literals instead of invoking their meaning, an "escape sequence". This is the same meaning of "escape" encountered in URL encodings, C language strings, and other systems where certain characters have

8064-401: The "line feed" function (which causes a printer to advance its paper), and character 8 represents " backspace ". RFC   2822 refers to control characters that do not include carriage return, line feed or white space as non-whitespace control characters. Except for the control characters that prescribe elementary line-oriented formatting, ASCII does not define any mechanism for describing

8190-419: The ASCII chart in this article. Ninety-five of the encoded characters are printable: these include the digits 0 to 9 , lowercase letters a to z , uppercase letters A to Z , and punctuation symbols . In addition, the original ASCII specification included 33 non-printing control codes which originated with Teletype models ; most of these are now obsolete, although a few are still commonly used, such as

8316-679: The ASCII table as earlier keyboards did. The /? pair also dates to the No. 2, and the ,< .> pairs were used on some keyboards (others, including the No. 2, did not shift , (comma) or . (full stop) so they could be used in uppercase without unshifting). However, ASCII split the ;: pair (dating to No. 2), and rearranged mathematical symbols (varied conventions, commonly -* =+ ) to :* ;+ -= . Some then-common typewriter characters were not included, notably ½ ¼ ¢ , while ^ ` ~ were included as diacritics for international use, and < > for mathematical use, together with

8442-470: The DEL character was assigned to erase the previous character. Because of this, DEC video terminals (by default) sent the DEL character for the key marked "Backspace" while the separate key marked "Delete" sent an escape sequence ; many other competing terminals sent a BS character for the backspace key. The early Unix tty drivers, unlike some modern implementations, allowed only one character to be set to erase

8568-469: The Teletype Model 33 machine assignments for codes 17 (control-Q, DC1, also known as XON), 19 (control-S, DC3, also known as XOFF), and 127 ( delete ) became de facto standards. The Model 33 was also notable for taking the description of control-G (code 7, BEL, meaning audibly alert the operator) literally, as the unit contained an actual bell which it rang when it received a BEL character. Because

8694-701: The Teletype Model 35 as a seven- bit teleprinter code promoted by Bell data services. Work on the ASCII standard began in May 1961, with the first meeting of the American Standards Association's (ASA) (now the American National Standards Institute or ANSI) X3.2 subcommittee. The first edition of the standard was published in 1963, underwent a major revision during 1967, and experienced its most recent update during 1986. Compared to earlier telegraph codes,

8820-442: The address of some particular block (contiguous sequence) of bytes in memory, and operations on the variable manipulate that block. Referencing is more common for variables whose values have large or unknown sizes when the code is compiled. Such variables reference the location of the value instead of storing the value itself, which is allocated from a pool of memory called the heap . Bound variables have values. A value, however,

8946-432: The assignment of the seventh bit to (for example) handle ASCII codes. Early microcomputer software relied upon the fact that ASCII codes do not use the high-order bit, and set it to indicate the end of a string. It must be reset to 0 prior to output. The length of a string can also be stored explicitly, for example by prefixing the string with the length as a byte value. This convention is used in many Pascal dialects; as

9072-615: The basic restrictions imposed by a language, the naming of variables is largely a matter of style. At the machine code level, variable names are not used, so the exact names chosen do not matter to the computer. Thus names of variables identify them, for the rest they are just a tool for programmers to make programs easier to write and understand. Using poorly chosen variable names can make code more difficult to review than non-descriptive names, so names that are clear are often encouraged. Programmers often create and adhere to code style guidelines that offer guidance on naming variables or impose

9198-585: The change into its draft standard. The X3.2.4 task group voted its approval for the change to ASCII at its May 1963 meeting. Locating the lowercase letters in sticks 6 and 7 caused the characters to differ in bit pattern from the upper case by a single bit, which simplified case-insensitive character matching and the construction of keyboards and printers. The X3 committee made other changes, including other new characters (the brace and vertical bar characters), renaming some control characters (SOM became start of header (SOH)) and moving or removing others (RU

9324-434: The character value and a length) and Hamming encoding . While these representations are common, others are possible. Using ropes makes certain string operations, such as insertions, deletions, and concatenations more efficient. The core data structure in a text editor is the one that manages the string (sequence of characters) that represents the current state of the file being edited. While that state could be stored in

9450-423: The compositor's pay. Use of the word "string" to mean "a sequence of symbols or linguistic elements in a definite order" emerged from mathematics, symbolic logic , and linguistic theory to speak about the formal behavior of symbolic systems, setting aside the symbols' meaning. For example, logician C. I. Lewis wrote in 1918: A mathematical system is any set of strings of recognisable marks in which some of

9576-493: The concept of "carriage return" was meaningless. IBM's PC DOS (also marketed as MS-DOS by Microsoft) inherited the convention by virtue of being loosely based on CP/M, and Windows in turn inherited it from MS-DOS. Requiring two characters to mark the end of a line introduces unnecessary complexity and ambiguity as to how to interpret each character when encountered by itself. To simplify matters, plain text data streams, including files, on Multics used line feed (LF) alone as

9702-527: The convention was so well established that backward compatibility necessitated continuing to follow it. When Gary Kildall created CP/M , he was inspired by some of the command line interface conventions used in DEC's RT-11 operating system. Until the introduction of PC DOS in 1981, IBM had no influence in this because their 1970s operating systems used EBCDIC encoding instead of ASCII, and they were oriented toward punch-card input and line printer output on which

9828-476: The design of character sets used by modern computers, including Unicode which has over a million code points, but the first 128 of these are the same as ASCII. The Internet Assigned Numbers Authority (IANA) prefers the name US-ASCII for this character encoding. ASCII is one of the IEEE milestones . ASCII was developed in part from telegraph code . Its first commercial use was in the Teletype Model 33 and

9954-663: The earlier five-bit ITA2 , which was also used by the competing Telex teleprinter system. Bob Bemer introduced features such as the escape sequence . His British colleague Hugh McGregor Ross helped to popularize this work – according to Bemer, "so much so that the code that was to become ASCII was first called the Bemer–Ross Code in Europe". Because of his extensive work on ASCII, Bemer has been called "the father of ASCII". On March 11, 1968, US President Lyndon B. Johnson mandated that all computers purchased by

10080-576: The earlier teleprinter encoding systems. Like other character encodings , ASCII specifies a correspondence between digital bit patterns and character symbols (i.e. graphemes and control characters ). This allows digital devices to communicate with each other and to process, store, and communicate character-oriented information such as written language. Before ASCII was developed, the encodings in use included 26 alphabetic characters, 10 numerical digits , and from 11 to 25 special graphic symbols. To include all these, and control characters compatible with

10206-548: The end-of-transmission character ( EOT ), also known as control-D, to indicate the end of a data stream. In the C programming language , and in Unix conventions, the null character is used to terminate text strings ; such null-terminated strings can be known in abbreviation as ASCIZ or ASCIIZ, where here Z stands for "zero". Other representations might be used by specialist equipment, for example ISO 2047 graphics or hexadecimal numbers. Codes 20 hex to 7E hex , known as

10332-579: The first 32 code points (numbers 0–31 decimal) and the last one (number 127 decimal) for control characters . These are codes intended to control peripheral devices (such as printers ), or to provide meta-information about data streams, such as those stored on magnetic tape. Despite their name, these code points do not represent printable characters (i.e. they are not characters at all, but signals). For debugging purposes, "placeholder" symbols (such as those given in ISO 2047 and its predecessors) are assigned to them. For example, character 0x0A represents

10458-507: The fixed-size code units are different from the "characters", the main difficulty currently is incorrectly designed APIs that attempt to hide this difference (UTF-32 does make code points fixed-sized, but these are not "characters" due to composing codes). Some languages, such as C++ , Perl and Ruby , normally allow the contents of a string to be changed after it has been created; these are termed mutable strings. In other languages, such as Java , JavaScript , Lua , Python , and Go ,

10584-405: The heap is depleted as the program runs, risks eventual failure from exhausting available memory. When a variable refers to a data structure created dynamically, some of its components may be only indirectly accessed through the variable. In such circumstances, garbage collectors (or analogous program features in languages that lack garbage collectors) must deal with a case where only a portion of

10710-430: The implementation is usually hidden , the string must be accessed and modified through member functions. text is a pointer to a dynamically allocated memory area, which might be expanded as needed. See also string (C++) . Both character termination and length codes limit strings: For example, C character arrays that contain null (NUL) characters cannot be handled directly by C string library functions: Strings using

10836-448: The keytop for the O key also showed a left-arrow symbol (from ASCII-1963, which had this character instead of underscore ), a noncompliant use of code 15 (control-O, shift in) interpreted as "delete previous character" was also adopted by many early timesharing systems but eventually became neglected. When a Teletype 33 ASR equipped with the automatic paper tape reader received a control-S (XOFF, an abbreviation for transmit off), it caused

10962-495: The language syntax which involves the format of valid identifiers. In almost all languages, variable names cannot start with a digit (0–9) and cannot contain whitespace characters. Whether or not punctuation marks are permitted in variable names varies from language to language; many languages only permit the underscore ("_") in variable names and forbid all other punctuation. In some programming languages, sigils (symbols or punctuation) are affixed to variable identifiers to indicate

11088-428: The latter case, the length-prefix field itself does not have fixed length, therefore the actual string data needs to be moved when the string grows such that the length field needs to be increased. Here is a Pascal string stored in a 10-byte buffer, along with its ASCII / UTF-8 representation: Many languages, including object-oriented ones, implement strings as records with an internal structure like: However, since

11214-407: The length is tedious and error-prone. Two common representations are: While character strings are very common uses of strings, a string in computer science may refer generically to any sequence of homogeneously typed data. A bit string or byte string , for example, may be used to represent non-textual binary data retrieved from a communications medium. This data may or may not be represented by

11340-800: The local conventions and the NVT. The File Transfer Protocol adopted the Telnet protocol, including use of the Network Virtual Terminal, for use when transmitting commands and transferring data in the default ASCII mode. This adds complexity to implementations of those protocols, and to other network protocols, such as those used for E-mail and the World Wide Web, on systems not using the NVT's CR-LF line-ending convention. The PDP-6 monitor, and its PDP-10 successor TOPS-10, used control-Z (SUB) as an end-of-file indication for input from

11466-435: The logical length of the string (number of characters) differs from the physical length of the array (number of bytes in use). UTF-32 avoids the first part of the problem. The length of a string can be stored implicitly by using a special terminating character; often this is the null character (NUL), which has all bits zero, a convention used and perpetuated by the popular C programming language . Hence, this representation

11592-418: The memory reachable from the variable needs to be reclaimed. Unlike their mathematical counterparts, programming variables and constants commonly take multiple-character names, e.g. COST or total . Single-character names are most commonly used only for auxiliary variables; for instance, i , j , k for array index variables. Some naming conventions are enforced at the language level as part of

11718-403: The name to be used independently of the exact information it represents. The identifier in computer source code can be bound to a value during run time , and the value of the variable may thus change during the course of program execution . Variables in programming may not directly correspond to the concept of variables in mathematics . The latter is abstract , having no reference to

11844-439: The objects are no longer needed. In a garbage-collected language (such as C# , Java , Python, Golang and Lisp ), the runtime environment automatically reclaims objects when extant variables can no longer refer to them. In non-garbage-collected languages, such as C , the program (and the programmer) must explicitly allocate memory, and then later free it, to reclaim its memory. Failure to do so leads to memory leaks , in which

11970-450: The original assembly language directive used to declare them.) Using a special byte other than null for terminating strings has historically appeared in both hardware and software, though sometimes with a value that was also a printing character. $ was used by many assembler systems, : used by CDC systems (this character had a value of zero), and the ZX80 used " since this was

12096-452: The previous character in canonical input processing (where a very simple line editor is available); this could be set to BS or DEL, but not both, resulting in recurring situations of ambiguity where users had to decide depending on what terminal they were using ( shells that allow line editing, such as ksh , bash , and zsh , understand both). The assumption that no key sent a BS character allowed Ctrl+H to be used for other purposes, such as

12222-515: The previous section. Code 7F hex corresponds to the non-printable "delete" (DEL) control character and is therefore omitted from this chart; it is covered in the previous section's chart. Earlier versions of ASCII used the up arrow instead of the caret (5E hex ) and the left arrow instead of the underscore (5F hex ). ASCII was first used commercially during 1963 as a seven-bit teleprinter code for American Telephone & Telegraph 's TWX (TeletypeWriter eXchange) network. TWX originally used

12348-404: The previous two cases may be said to be out of extent or unbound . In many languages, it is an error to try to use the value of a variable when it is out of extent. In other languages, doing so may yield unpredictable results . Such a variable may, however, be assigned a new value, which gives it a new extent. For space efficiency, a memory space needed for a variable may be allocated only when

12474-413: The printable characters, represent letters, digits, punctuation marks , and a few miscellaneous symbols. There are 95 printable characters in total. Code 20 hex , the "space" character, denotes the space between words, as produced by the space bar of a keyboard. Since the space character is considered an invisible graphic (rather than a control character) it is listed in the table below instead of in

12600-407: The program. Extent , on the other hand, is a runtime ( dynamic ) aspect of a variable. Each binding of a variable to a value can have its own extent at runtime. The extent of the binding is the portion of the program's execution time during which the variable continues to refer to the same value or memory location. A running program may enter and leave a given extent many times, as in the case of

12726-798: The programmer. The main examples are dynamic objects in C++ (via new and delete) and all objects in Java. Implicit Heap-Dynamic variables are bound to heap storage only when they are assigned values. Allocation and release occur when values are reassigned to variables. As a result, Implicit heap-dynamic variables have the highest degree of flexibility. The main examples are some variables in JavaScript, PHP and all variables in APL. ASCII ASCII ( / ˈ æ s k iː / ASS -kee ), an acronym for American Standard Code for Information Interchange ,

12852-444: The proposed Bell code and ASCII were both ordered for more convenient sorting (i.e., alphabetization) of lists and added features for devices other than teleprinters. The use of ASCII format for Network Interchange was described in 1969. That document was formally elevated to an Internet Standard in 2015. Originally based on the (modern) English alphabet , ASCII encodes 128 specified characters into seven-bit integers as shown by

12978-409: The representation of their values vary widely, both among programming languages and among implementations of a given language. Many language implementations allocate space for local variables , whose extent lasts for a single function call on the call stack , and whose memory is automatically reclaimed when the function returns. More generally, in name binding , the name of a variable is bound to

13104-522: The same reason, many special signs commonly used as separators were placed before digits. The committee decided it was important to support uppercase 64-character alphabets , and chose to pattern ASCII so it could be reduced easily to a usable 64-character set of graphic codes, as was done in the DEC SIXBIT code (1963). Lowercase letters were therefore not interleaved with uppercase . To keep options available for lowercase letters and other graphics,

13230-494: The second stick, positions 1–5, corresponding to the digits 1–5 in the adjacent stick. The parentheses could not correspond to 9 and 0 , however, because the place corresponding to 0 was taken by the space character. This was accommodated by removing _ (underscore) from 6 and shifting the remaining characters, which corresponded to many European typewriters that placed the parentheses with 8 and 9 . This discrepancy from typewriters led to bit-paired keyboards , notably

13356-434: The security of the program accessing the string data. String representations requiring a terminating character are commonly susceptible to buffer overflow problems if the terminating character is not present, caused by a coding error or an attacker deliberately altering the data. String representations adopting a separate length field are also susceptible if the length can be manipulated. In such cases, program code accessing

13482-538: The simple line characters \ | (in addition to common / ). The @ symbol was not used in continental Europe and the committee expected it would be replaced by an accented À in the French variation, so the @ was placed in position 40 hex , right before the letter A. The control codes felt essential for data transmission were the start of message (SOM), end of address (EOA), end of message (EOM), end of transmission (EOT), "who are you?" (WRU), "are you?" (RU),

13608-402: The special and numeric codes were arranged before the letters, and the letter A was placed in position 41 hex to match the draft of the corresponding British standard. The digits 0–9 are prefixed with 011, but the remaining 4 bits correspond to their respective values in binary, making conversion with binary-coded decimal straightforward (for example, 5 in encoded to 011 0101 , where 5

13734-425: The standard is unclear about the meaning of "delete". Probably the most influential single device affecting the interpretation of these characters was the Teletype Model 33 ASR, which was a printing terminal with an available paper tape reader/punch option. Paper tape was a very popular medium for long-term program storage until the 1980s, less costly and in some ways less fragile than magnetic tape. In particular,

13860-497: The string data requires bounds checking to ensure that it does not inadvertently access or change data outside of the string memory limits. String data is frequently obtained from user input to a program. As such, it is the responsibility of the program to validate the string to ensure that it represents the expected format. Performing limited or no validation of user input can cause a program to be vulnerable to code injection attacks. Sometimes, strings need to be embedded inside

13986-499: The string delimiter in its BASIC language. Somewhat similar, "data processing" machines like the IBM 1401 used a special word mark bit to delimit strings at the left, where the operation would start at the right. This bit had to be clear in all other parts of the string. This meant that, while the IBM 1401 had a seven-bit word, almost no-one ever thought to use this as a feature, and override

14112-407: The strings are taken initially and the remainder derived from these by operations performed according to rules which are independent of any meaning assigned to the marks. That a system should consist of 'marks' instead of sounds or odours is immaterial. According to Jean E. Sammet , "the first realistic string handling and pattern matching language" for computers was COMIT in the 1950s, followed by

14238-440: The structure or appearance of text within a document. Other schemes, such as markup languages , address page and document layout and formatting. The original ASCII standard used only short descriptive phrases for each control character. The ambiguity this caused was sometimes intentional, for example where a character would be used slightly differently on a terminal link than on a data stream , and sometimes accidental, for example

14364-441: The tape reader to stop; receiving control-Q (XON, transmit on) caused the tape reader to resume. This so-called flow control technique became adopted by several early computer operating systems as a "handshaking" signal warning a sender to stop transmission because of impending buffer overflow ; it persists to this day in many systems as a manual output control technique. On some systems, control-S retains its meaning, but control-Q

14490-600: The time could record eight bits in one position, it also allowed for a parity bit for error checking if desired. Eight-bit machines (with octets as the native data type) that did not use parity checking typically set the eighth bit to 0. The code itself was patterned so that most control codes were together and all graphic codes were together, for ease of identification. The first two so-called ASCII sticks (32 positions) were reserved for control characters. The "space" character had to come before graphics to make sorting easier, so it became position 20 hex ; for

14616-447: The typebars that strike the ribbon remain stationary. The entire carriage had to be pushed (returned) to the right in order to position the paper for the next line. DEC operating systems ( OS/8 , RT-11 , RSX-11 , RSTS , TOPS-10 , etc.) used both characters to mark the end of a line so that the console device (originally Teletype machines) would work. By the time so-called "glass TTYs" (later called CRTs or "dumb terminals") came along,

14742-777: The value is fixed and a new string must be created if any alteration is to be made; these are termed immutable strings. Some of these languages with immutable strings also provide another type that is mutable, such as Java and .NET 's StringBuilder , the thread-safe Java StringBuffer , and the Cocoa NSMutableString . There are both advantages and disadvantages to immutability: although immutable strings may require inefficiently creating many copies, they are simpler and completely thread-safe . Strings are typically implemented as arrays of bytes, characters, or code units, in order to allow fast access to individual units or substrings—including characters when they have

14868-404: The value type as opposed to the supertypes the variable is allowed to have. Variables often store simple data, like integers and literal strings, but some programming languages allow a variable to store values of other datatypes as well. Such languages may also enable functions to be parametric polymorphic . These functions operate like variables to represent data of multiple types. For example,

14994-436: The variable is first used and freed when it is no longer needed. A variable is only needed when it is in scope, thus beginning each variable's lifetime when it enters scope may give space to unused variables. To avoid wasting such space, compilers often warn programmers if a variable is declared but not used. It is considered good programming practice to make the scope of variables as narrow as feasible so that different parts of

15120-424: The variable named x is a parameter because it is given a value when the function is called. The integer 5 is the argument which gives x its value. In most languages, function parameters have local scope. This specific variable named x can only be referred to within the addtwo function (though of course other functions can also have variables called x ). The specifics of variable allocation and

15246-452: The variable's datatype or scope. Case-sensitivity of variable names also varies between languages and some languages require the use of a certain case in naming certain entities; Most modern languages are case-sensitive; some older languages are not. Some languages reserve certain forms of variable names for their own internal use; in many languages, names beginning with two underscores ("__") often fall under this category. However, beyond

15372-453: The variable's scope, the variable may once again be used. A variable whose scope begins before its extent does is said to be uninitialized and often has an undefined, arbitrary value if accessed (see wild pointer ), since it has yet to be explicitly given a particular value. A variable whose extent ends before its scope may become a dangling pointer and deemed uninitialized once more since its value has been destroyed. Variables described by

15498-403: Was coined in 1984 by computer scientist Zvi Galil for the theory of algorithms and data structures used for string processing. Some categories of algorithms include: Variable (programming) In computer programming , a variable is an abstract storage location paired with an associated symbolic name , which contains some known or unknown quantity of data or object referred to as

15624-562: Was developed under the auspices of a committee of the American Standards Association (ASA), called the X3 committee, by its X3.2 (later X3L2) subcommittee, and later by that subcommittee's X3.2.4 working group (now INCITS ). The ASA later became the United States of America Standards Institute (USASI) and ultimately became the American National Standards Institute (ANSI). With the other special characters and control codes filled in, ASCII

15750-695: Was published as ASA X3.4-1963, leaving 28 code positions without any assigned meaning, reserved for future standardization, and one unassigned control code. There was some debate at the time whether there should be more control characters rather than the lowercase alphabet. The indecision did not last long: during May 1963 the CCITT Working Party on the New Telegraph Alphabet proposed to assign lowercase characters to sticks 6 and 7, and International Organization for Standardization TC 97 SC 2 voted during October to incorporate

15876-450: Was removed). ASCII was subsequently updated as USAS X3.4-1967, then USAS X3.4-1968, ANSI X3.4-1977, and finally, ANSI X3.4-1986. In the X3.15 standard, the X3 committee also addressed how ASCII should be transmitted ( least significant bit first) and recorded on perforated tape. They proposed a 9-track standard for magnetic tape and attempted to deal with some punched card formats. The X3.2 subcommittee designed ASCII based on

#228771