A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors , navigation , meteorology , etc.
96-713: The Super Dual Auroral Radar Network ( SuperDARN ) is an international scientific radar network consisting of 35 high frequency (HF) radars located in both the Northern and Southern Hemispheres. SuperDARN radars are primarily used to map high-latitude plasma convection in the F region of the ionosphere , but the radars are also used to study a wider range of geospace phenomena including field aligned currents , magnetic reconnection , geomagnetic storms and substorms , magnetospheric MHD waves, mesospheric winds via meteor ionization trails, and interhemispheric plasma convection asymmetries. The SuperDARN collaboration
192-470: A fractal surface, such as rocks or soil, and are used by navigation radars. A radar beam follows a linear path in vacuum but follows a somewhat curved path in atmosphere due to variation in the refractive index of air, which is called the radar horizon . Even when the beam is emitted parallel to the ground, the beam rises above the ground as the curvature of the Earth sinks below the horizon. Furthermore,
288-424: A transmitter that emits radio waves known as radar signals in predetermined directions. When these signals contact an object they are usually reflected or scattered in many directions, although some of them will be absorbed and penetrate into the target. Radar signals are reflected especially well by materials of considerable electrical conductivity —such as most metals, seawater , and wet ground. This makes
384-437: A constant velocity and the pitcher is stationary, the catcher catches one ball every second. However, if the pitcher is jogging towards the catcher, the catcher catches balls more frequently because the balls are less spaced out (the frequency increases). The inverse is true if the pitcher is moving away from the catcher. The catcher catches balls less frequently because of the pitcher's backward motion (the frequency decreases). If
480-482: A different dielectric constant or diamagnetic constant from the first, the waves will reflect or scatter from the boundary between the materials. This means that a solid object in air or in a vacuum , or a significant change in atomic density between the object and what is surrounding it, will usually scatter radar (radio) waves from its surface. This is particularly true for electrically conductive materials such as metal and carbon fibre, making radar well-suited to
576-540: A full radar system, that he called a telemobiloscope . It operated on a 50 cm wavelength and the pulsed radar signal was created via a spark-gap. His system already used the classic antenna setup of horn antenna with parabolic reflector and was presented to German military officials in practical tests in Cologne and Rotterdam harbour but was rejected. In 1915, Robert Watson-Watt used radio technology to provide advance warning of thunderstorms to airmen and during
672-487: A large range of velocity detection, but the accuracy in velocity is in the tens of knots . Antenna designs for the CW and FM-CW started out as separate transmit and receive antennas before the advent of affordable microwave designs. In the late 1960s, traffic radars began being produced which used a single antenna. This was made possible by the use of circular polarization and a multi-port waveguide section operating at X band. By
768-756: A list maintained by Virginia Tech College of Engineering . As of 2009, an expansion project was underway for expanding the network into the middle latitudes, including the addition of sites in Hays, Kansas (near Fort Hays State University ), Oregon , and the Azores , in order to support mapping outside of the auroral regions during large magnetic storms . * : Part of the Southern Hemisphere Auroral Radar Experiment Northern Hemisphere Southern Hemisphere Each year
864-405: A low altitude target, filtering on the radial speed is a very effective way to eliminate the ground clutter that always has a null speed. Low-flying military plane with countermeasure alert for hostile radar track acquisition can turn perpendicular to the hostile radar to nullify its Doppler frequency, which usually breaks the lock and drives the radar off by hiding against the ground return which
960-481: A medium to high PRF (on the order of 3 to 30 kHz), which allows for the detection of either high-speed targets or high-resolution velocity measurements. Normally it is one or the other; a radar designed for detecting targets from zero to Mach 2 does not have a high resolution in speed, while a radar designed for high-resolution velocity measurements does not have a wide range of speeds. Weather radars are high-resolution velocity radars, while air defense radars have
1056-402: A number of aircraft of the era, and were combined with the main search radars of fighter designs by the 1960s. Doppler navigation was in common commercial aviation use in the 1960s until it was largely superseded by inertial navigation systems . The equipment consisted of a transmitter/receiver unit, a processing unit and a gyro stabilised antenna platform. The antenna generated four beams and
SECTION 10
#17327803780471152-749: A physics instructor at the Imperial Russian Navy school in Kronstadt , developed an apparatus using a coherer tube for detecting distant lightning strikes. The next year, he added a spark-gap transmitter . In 1897, while testing this equipment for communicating between two ships in the Baltic Sea , he took note of an interference beat caused by the passage of a third vessel. In his report, Popov wrote that this phenomenon might be used for detecting objects, but he did nothing more with this observation. The German inventor Christian Hülsmeyer
1248-498: A proposal for further intensive research on radio-echo signals from moving targets to take place at NRL, where Taylor and Young were based at the time. Similarly, in the UK, L. S. Alder took out a secret provisional patent for Naval radar in 1928. W.A.S. Butement and P. E. Pollard developed a breadboard test unit, operating at 50 cm (600 MHz) and using pulsed modulation which gave successful laboratory results. In January 1931,
1344-732: A pulsed system, and the first such elementary apparatus was demonstrated in December 1934 by the American Robert M. Page , working at the Naval Research Laboratory . The following year, the United States Army successfully tested a primitive surface-to-surface radar to aim coastal battery searchlights at night. This design was followed by a pulsed system demonstrated in May 1935 by Rudolf Kühnhold and
1440-442: A rescue. For similar reasons, objects intended to avoid detection will not have inside corners or surfaces and edges perpendicular to likely detection directions, which leads to "odd" looking stealth aircraft . These precautions do not totally eliminate reflection because of diffraction , especially at longer wavelengths. Half wavelength long wires or strips of conducting material, such as chaff , are very reflective but do not direct
1536-677: A system might do, Wilkins recalled the earlier report about aircraft causing radio interference. This revelation led to the Daventry Experiment of 26 February 1935, using a powerful BBC shortwave transmitter as the source and their GPO receiver setup in a field while a bomber flew around the site. When the plane was clearly detected, Hugh Dowding , the Air Member for Supply and Research , was very impressed with their system's potential and funds were immediately provided for further operational development. Watson-Watt's team patented
1632-697: A system was the Green Satin radar used in the English Electric Canberra . This system sent a pulsed signal at a very low repetition rate so it could use a single antenna to transmit and receive. An oscillator held the reference frequency for comparison to the received signal. In practice, the initial "fix" was taken using a radio navigation system, normally Gee , and the Green Satin then provided accurate long-distance navigation beyond Gee's 350-mile range. Similar systems were used in
1728-596: A velocity output as the received signal from the target is compared in frequency with the original signal. Early Doppler radars included CW, but these quickly led to the development of frequency modulated continuous wave ( FMCW ) radar, which sweeps the transmitter frequency to encode and determine range. With the advent of digital techniques, Pulse-Doppler radars (PD) became light enough for aircraft use, and Doppler processors for coherent pulse radars became more common. That provides Look-down/shoot-down capability. The advantage of combining Doppler processing with pulse radars
1824-514: A wide region and direct fighter aircraft towards targets. Marine radars are used to measure the bearing and distance of ships to prevent collision with other ships, to navigate, and to fix their position at sea when within range of shore or other fixed references such as islands, buoys, and lightships. In port or in harbour, vessel traffic service radar systems are used to monitor and regulate ship movements in busy waters. Meteorologists use radar to monitor precipitation and wind. It has become
1920-907: A writeup on the apparatus was entered in the Inventions Book maintained by the Royal Engineers. This is the first official record in Great Britain of the technology that was used in coastal defence and was incorporated into Chain Home as Chain Home (low) . Before the Second World War , researchers in the United Kingdom, France , Germany , Italy , Japan , the Netherlands , the Soviet Union , and
2016-452: Is a simplification for transmission in a vacuum without interference. The propagation factor accounts for the effects of multipath and shadowing and depends on the details of the environment. In a real-world situation, pathloss effects are also considered. Frequency shift is caused by motion that changes the number of wavelengths between the reflector and the radar. This can degrade or enhance radar performance depending upon how it affects
SECTION 20
#17327803780472112-436: Is a system that uses radio waves to determine the distance ( ranging ), direction ( azimuth and elevation angles ), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft , ships , spacecraft , guided missiles , motor vehicles , map weather formations , and terrain . A radar system consists of a transmitter producing electromagnetic waves in
2208-451: Is as follows, where F D {\displaystyle F_{D}} is Doppler frequency, F T {\displaystyle F_{T}} is transmit frequency, V R {\displaystyle V_{R}} is radial velocity, and C {\displaystyle C} is the speed of light: Passive radar is applicable to electronic countermeasures and radio astronomy as follows: Only
2304-778: Is composed of radars operated by JHU/APL , Virginia Tech , Dartmouth College , the Geophysical Institute at the University of Alaska Fairbanks , the Institute of Space and Atmospheric Studies at the University of Saskatchewan , the University of Leicester , Lancaster University , La Trobe University , the Solar-Terrestrial Environment Laboratory at Nagoya University , the British Antarctic Survey and
2400-567: Is intended. Radar relies on its own transmissions rather than light from the Sun or the Moon, or from electromagnetic waves emitted by the target objects themselves, such as infrared radiation (heat). This process of directing artificial radio waves towards objects is called illumination , although radio waves are invisible to the human eye as well as optical cameras. If electromagnetic waves travelling through one material meet another material, having
2496-470: Is much larger. Doppler radar tends to be lightweight because it eliminates heavy pulse hardware. The associated filtering removes stationary reflections while integrating signals over a longer time span, which improves range performance while reducing power. The military applied these advantages during the 1940s. Continuous-broadcast, or FM, radar was developed during World War II for United States Navy aircraft, to support night combat operation. Most used
2592-415: Is required. That extra weight imposed unacceptable kinematic performance limitations that restricted aircraft use to night operation, heavy weather, and heavy jamming environments until the 1970s. Digital fast Fourier transform (FFT) filtering became practical when modern microprocessors became available during the 1970s. This was immediately connected to coherent pulsed radars, where velocity information
2688-417: Is the range. This yields: This shows that the received power declines as the fourth power of the range, which means that the received power from distant targets is relatively very small. Additional filtering and pulse integration modifies the radar equation slightly for pulse-Doppler radar performance , which can be used to increase detection range and reduce transmit power. The equation above with F = 1
2784-432: Is to provide accurate velocity information. This velocity is called range-rate . It describes the rate that a target moves toward or away from the radar. A target with no range-rate reflects a frequency near the transmitter frequency and cannot be detected. The classic zero doppler target is one which is on a heading that is tangential to the radar antenna beam. Basically, any target that is heading 90 degrees in relation to
2880-620: The Institute for Space Astrophysics and Planetology (INAF-IAPS Italy). In the 1970s and 1980s, the Scandinavian Twin Auroral Radar Experiment (STARE) very high frequency (VHF) coherent scatter radars were used to study field aligned E region ionospheric irregularities. Using two radars with overlapping fields of view, it was possible to determine the 2D velocity vector of E region ionospheric plasma flow. However, irregularities were only observed when
2976-489: The NEXRAD network being deployed at the end of the 1980s. Doppler radars were used as a navigation aid for aircraft and spacecraft. By directly measuring the movement of the ground with the radar, and then comparing this to the airspeed returned from the aircraft instruments, the wind speed could be accurately determined for the first time. This value was then used for highly accurate dead reckoning . One early example of such
Super Dual Auroral Radar Network - Misplaced Pages Continue
3072-628: The Nyquist frequency , since the returned frequency otherwise cannot be distinguished from shifting of a harmonic frequency above or below, thus requiring: Or when substituting with F D {\displaystyle F_{D}} : As an example, a Doppler weather radar with a pulse rate of 2 kHz and transmit frequency of 1 GHz can reliably measure weather speed up to at most 150 m/s (340 mph), thus cannot reliably determine radial velocity of aircraft moving 1,000 m/s (2,200 mph). In all electromagnetic radiation ,
3168-717: The RAF's Pathfinder . The information provided by radar includes the bearing and range (and therefore position) of the object from the radar scanner. It is thus used in many different fields where the need for such positioning is crucial. The first use of radar was for military purposes: to locate air, ground and sea targets. This evolved in the civilian field into applications for aircraft, ships, and automobiles. In aviation , aircraft can be equipped with radar devices that warn of aircraft or other obstacles in or approaching their path, display weather information, and give accurate altitude readings. The first commercial device fitted to aircraft
3264-514: The UHF spectrum and had a transmit Yagi antenna on the port wing and a receiver Yagi antenna on the starboard wing. This enabled bombers to fly an optimum speed when approaching ship targets, and let escort fighter aircraft train guns on enemy aircraft during night operation. These strategies were adapted to semi-active radar homing . In 1951, Carl A. Wiley invented synthetic-aperture radar , which, though distinct from mainstream Doppler radar,
3360-440: The electromagnetic spectrum . One example is lidar , which uses predominantly infrared light from lasers rather than radio waves. With the emergence of driverless vehicles, radar is expected to assist the automated platform to monitor its environment, thus preventing unwanted incidents. As early as 1886, German physicist Heinrich Hertz showed that radio waves could be reflected from solid objects. In 1895, Alexander Popov ,
3456-460: The radio or microwaves domain, a transmitting antenna , a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds. Radar was developed secretly for military use by several countries in
3552-407: The reflective surfaces . A corner reflector consists of three flat surfaces meeting like the inside corner of a cube. The structure will reflect waves entering its opening directly back to the source. They are commonly used as radar reflectors to make otherwise difficult-to-detect objects easier to detect. Corner reflectors on boats, for example, make them more detectable to avoid collision or during
3648-714: The speed of light and v as the target radial velocity gives the shifted frequency ( f r {\displaystyle f_{r}} ) as a function of the original frequency ( f t {\displaystyle f_{t}} ) : which simplifies to The "beat frequency", (Doppler frequency) ( f d {\displaystyle f_{d}} ), is thus: Since for most practical applications of radar, v ≪ c {\displaystyle v\ll c} , so ( c − v ) → c {\displaystyle \left(c-v\right)\rightarrow c} . We can then write: There are four ways of producing
3744-534: The "new boy" Arnold Frederic Wilkins to conduct an extensive review of available shortwave units. Wilkins would select a General Post Office model after noting its manual's description of a "fading" effect (the common term for interference at the time) when aircraft flew overhead. By placing a transmitter and receiver on opposite sides of the Potomac River in 1922, U.S. Navy researchers A. Hoyt Taylor and Leo C. Young discovered that ships passing through
3840-413: The 1920s went on to lead the U.K. research establishment to make many advances using radio techniques, including the probing of the ionosphere and the detection of lightning at long distances. Through his lightning experiments, Watson-Watt became an expert on the use of radio direction finding before turning his inquiry to shortwave transmission. Requiring a suitable receiver for such studies, he told
3936-494: The 2D ionospheric velocity, it became apparent that determining the 2D ionospheric velocity would be advantageous. Combining velocity measurements from Goose Bay with a second coherent-scatter radar in Schefferville in 1989 allowed for a 2D determination of the F region ionospheric velocity. This work led to SuperDARN, a network of HF radars with pairs of radars having overlapping fields of view. This arrangement allowed for
Super Dual Auroral Radar Network - Misplaced Pages Continue
4032-490: The Doppler effect. Radars may be: Doppler allows the use of narrow band receiver filters that reduce or eliminate signals from slow moving and stationary objects. This effectively eliminates false signals produced by trees, clouds, insects, birds, wind, and other environmental influences but various inexpensive hand held Doppler radar devices not using this may produce erroneous measurements. CW Doppler radar only provides
4128-509: The Doppler function for weather radar has a long history in many countries. In June 1958, American researchers David Holmes and Robert Smith were able to detect the rotation of a tornado using the mobile continuous-wave radar (photo to the right). Norman's laboratory, which later became the National Severe Storms Laboratory (NSSL), modified this radar to make it a pulsed Doppler radar allowing more easily to know
4224-402: The Doppler offset being measured is caused by the relative motion between the ground station and the fast-moving satellite. The combination of Doppler offset and reception time can be used to generate a locus of locations that would have the measured offset at that intersects the Earth's surface at that moment: by combining this with other loci from measurements at other times, the true location of
4320-606: The Goose Bay radar was capable of measuring the F region plasma convection velocity. A magnetically conjugate radar was constructed in Antarctica at Halley Research Station in 1988 as part of the Polar Anglo–American Conjugate Experiment (PACE). PACE provided simultaneous conjugate studies of ionospheric and magnetospheric phenomena. From PACE, which was only able to determine a single component of
4416-505: The HF band between 8.0 MHz (37 m) and 22.0 MHz (14 m). In the standard operating mode each radar scans through 16 beams of azimuthal separation of ~3.24°, with a scan taking 1 min to complete (~3 seconds integration per beam). Each beam is divided into 75 (or 100) range gates each 45 km in distance, and so in each full scan the radars each cover 52° in azimuth and over 3000 km in range; an area encompassing
4512-489: The PRF of the radar. This is not a problem for weather radars. Velocity information for aircraft cannot be extracted directly from low-PRF radar because sampling restricts measurements to about 75 miles per hour. Specialized radars quickly were developed when digital techniques became lightweight and more affordable. Pulse-Doppler radars combine all the benefits of long range and high velocity capability. Pulse-Doppler radars use
4608-874: The SuperDARN scientific community gather to discuss SuperDARN science, operations, hardware, software and other SuperDARN related issues. Traditionally, this workshop has been hosted by one of the SuperDARN PI groups, often at their home institution, or at another location such as a site close to a radar installation. A list of the SuperDARN workshop locations and their host institutions is provided below: Research papers related to SuperDARN and related technologies Real time display of SuperDarn radar Each participating university should be listed here. As these are ongoing research sites, these links are subject to change. Northern Hemisphere Stations Southern Hemisphere Stations Download coordinates as: Radar Radar
4704-787: The United States, independently and in great secrecy, developed technologies that led to the modern version of radar. Australia, Canada, New Zealand, and South Africa followed prewar Great Britain's radar development, Hungary and Sweden generated its radar technology during the war. In France in 1934, following systematic studies on the split-anode magnetron , the research branch of the Compagnie générale de la télégraphie sans fil (CSF) headed by Maurice Ponte with Henri Gutton, Sylvain Berline and M. Hugon, began developing an obstacle-locating radio apparatus, aspects of which were installed on
4800-431: The antenna beam cannot be detected by its velocity (only by its conventional reflectivity ). Ultra-wideband waveforms have been investigated by the U.S. Army Research Laboratory (ARL) as a potential approach to Doppler processing due to its low average power, high resolution, and object-penetrating ability. While investigating the feasibility of whether UWB radar technology can incorporate Doppler processing to estimate
4896-537: The arrest of Oshchepkov and his subsequent gulag sentence. In total, only 607 Redut stations were produced during the war. The first Russian airborne radar, Gneiss-2 , entered into service in June 1943 on Pe-2 dive bombers. More than 230 Gneiss-2 stations were produced by the end of 1944. The French and Soviet systems, however, featured continuous-wave operation that did not provide the full performance ultimately synonymous with modern radar systems. Full radar evolved as
SECTION 50
#17327803780474992-479: The beam path caused the received signal to fade in and out. Taylor submitted a report, suggesting that this phenomenon might be used to detect the presence of ships in low visibility, but the Navy did not immediately continue the work. Eight years later, Lawrence A. Hyland at the Naval Research Laboratory (NRL) observed similar fading effects from passing aircraft; this revelation led to a patent application as well as
5088-408: The detection of aircraft and ships. Radar absorbing material , containing resistive and sometimes magnetic substances, is used on military vehicles to reduce radar reflection . This is the radio equivalent of painting something a dark colour so that it cannot be seen by the eye at night. Radar waves scatter in a variety of ways depending on the size (wavelength) of the radio wave and the shape of
5184-421: The detection process. As an example, moving target indication can interact with Doppler to produce signal cancellation at certain radial velocities, which degrades performance. Sea-based radar systems, semi-active radar homing , active radar homing , weather radar , military aircraft, and radar astronomy rely on the Doppler effect to enhance performance. This produces information about target velocity during
5280-411: The detection process. This also allows small objects to be detected in an environment containing much larger nearby slow moving objects. Doppler shift depends upon whether the radar configuration is active or passive. Active radar transmits a signal that is reflected back to the receiver. Passive radar depends upon the object sending a signal to the receiver. The Doppler frequency shift for active radar
5376-515: The determination of the full 2D ionospheric plasma convection velocity. Due to the advancement of data assimilation models, radars recently added to the network do not necessarily have overlapping fields of view. Using data from all SuperDARN radars in the northern or southern hemisphere, an ionospheric plasma convection pattern—a map of high-latitude plasma velocity at F region altitudes (300 km)—can be determined. The primary goals of SuperDARN are to determine or study: SuperDARN radars operate in
5472-626: The device in patent GB593017. Development of radar greatly expanded on 1 September 1936, when Watson-Watt became superintendent of a new establishment under the British Air Ministry , Bawdsey Research Station located in Bawdsey Manor , near Felixstowe, Suffolk. Work there resulted in the design and installation of aircraft detection and tracking stations called " Chain Home " along the East and South coasts of England in time for
5568-538: The electric field is perpendicular to the direction of propagation, and the electric field direction is the polarization of the wave. For a transmitted radar signal, the polarization can be controlled to yield different effects. Radars use horizontal, vertical, linear, and circular polarization to detect different types of reflections. For example, circular polarization is used to minimize the interference caused by rain. Linear polarization returns usually indicate metal surfaces. Random polarization returns usually indicate
5664-473: The entire area in front of it, and then used one of Watson-Watt's own radio direction finders to determine the direction of the returned echoes. This fact meant CH transmitters had to be much more powerful and have better antennas than competing systems but allowed its rapid introduction using existing technologies. A key development was the cavity magnetron in the UK, which allowed the creation of relatively small systems with sub-meter resolution. Britain shared
5760-466: The firm GEMA [ de ] in Germany and then another in June 1935 by an Air Ministry team led by Robert Watson-Watt in Great Britain. In 1935, Watson-Watt was asked to judge recent reports of a German radio-based death ray and turned the request over to Wilkins. Wilkins returned a set of calculations demonstrating the system was basically impossible. When Watson-Watt then asked what such
5856-445: The ground station can be determined accurately. A notable example of utilizing Doppler information is in the detection and classification of small unmanned aerial vehicles . Radar systems operating at extremely high frequency offer enhanced Doppler resolution for a given coherent processing interval. This increased resolution allows access to micro-Doppler signatures (MDSs), where micro-Doppler refers to Doppler modulations caused by
SECTION 60
#17327803780475952-677: The late 1970s this changed to linear polarization and the use of ferrite circulators at both X and K bands. PD radars operate at too high a PRF to use a transmit-receive gas filled switch, and most use solid-state devices to protect the receiver low-noise amplifier when the transmitter is fired. Doppler radars are used in aviation , sounding satellites, Major League Baseball 's StatCast system , meteorology , radar guns , radiology and healthcare (fall detection and risk assessment, nursing or clinic purpose ), and bistatic radar ( surface-to-air missiles ). Partly because of its common use by television meteorologists in on-air weather reporting,
6048-418: The observer; it is maximum when the source is moving directly toward or away from the observer and diminishes with increasing angle between the direction of motion and the direction of the waves, until when the source is moving at right angles to the observer, there is no shift. Imagine a baseball pitcher throwing one ball every second to a catcher (a frequency of 1 ball per second). Assuming the balls travel at
6144-508: The ocean liner Normandie in 1935. During the same period, Soviet military engineer P.K. Oshchepkov , in collaboration with the Leningrad Electrotechnical Institute , produced an experimental apparatus, RAPID, capable of detecting an aircraft within 3 km of a receiver. The Soviets produced their first mass production radars RUS-1 and RUS-2 Redut in 1939 but further development was slowed following
6240-516: The order of 1 million square km. The radars measure the Doppler velocity (and other related characteristics) of plasma density irregularities in the ionosphere. Since Linux became popular, it has become the default operating system for the SuperDARN network. The operating system (superdarn-ros.3.6) is currently licensed under the LGPL ). [1] The following is a list of SuperDARN sites, based on
6336-531: The outbreak of World War II in 1939. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain ; without it, significant numbers of fighter aircraft, which Great Britain did not have available, would always have needed to be in the air to respond quickly. The radar formed part of the " Dowding system " for collecting reports of enemy aircraft and coordinating
6432-1370: The period before and during World War II . A key development was the cavity magnetron in the United Kingdom , which allowed the creation of relatively small systems with sub-meter resolution. The term RADAR was coined in 1940 by the United States Navy as an acronym for "radio detection and ranging". The term radar has since entered English and other languages as an anacronym , a common noun, losing all capitalization . The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy , air-defense systems , anti-missile systems , marine radars to locate landmarks and other ships, aircraft anti-collision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, radar remote sensing , altimetry and flight control systems , guided missile target locating systems, self-driving cars , and ground-penetrating radar for geological observations. Modern high tech radar systems use digital signal processing and machine learning and are capable of extracting useful information from very high noise levels. Other systems which are similar to radar make use of other parts of
6528-602: The perpendicularity requirement to be met at high latitudes. Refraction of radio waves in the ionosphere is a complicated non-linear phenomenon governed by the Appleton–Hartree equation . In 1983, a steerable-beam HF radar with 16 log-periodic antennas began operations at Goose Bay, Labrador, Canada. Comparing measurements of F region ionospheric plasma velocity from the Goose Bay radar with the Sondestrom Incoherent Scatter Radar revealed that
6624-427: The pitcher moves at an angle, but at the same speed, the frequency variation at which the receiver catches balls is less, as the distance between the two changes more slowly. From the point of view of the pitcher, the frequency remains constant (whether he's throwing balls or transmitting microwaves). Since with electromagnetic radiation like microwaves or with sound, frequency is inversely proportional to wavelength,
6720-482: The position of the echoes and having a greater power The work was accelerated after such event in the United States as the 1974 Super Outbreak when 148 tornadoes roared through thirteen states. The reflectivity only radar of the time could only locate the precipitation structure of the thunderclouds but not the mesocyclonic rotation and divergence of winds leading to the development of tornadoes or downbursts . The NSSL Doppler became operational in 1971 and led to
6816-706: The primary tool for short-term weather forecasting and watching for severe weather such as thunderstorms , tornadoes , winter storms , precipitation types, etc. Geologists use specialized ground-penetrating radars to map the composition of Earth's crust . Police forces use radar guns to monitor vehicle speeds on the roads. Automotive radars are used for adaptive cruise control and emergency breaking on vehicles by ignoring stationary roadside objects that could cause incorrect brake application and instead measuring moving objects to prevent collision with other vehicles. As part of Intelligent Transport Systems , fixed-position stopped vehicle detection (SVD) radars are mounted on
6912-421: The radar wavevector was perpendicular to the magnetic field in the scattering region. This meant that there was a problem with operating at VHF since VHF frequencies don't allow for very much refraction of the transmitted radar wave vector; thus, the perpendicularity requirement could not be easily met at high latitudes. At HF frequencies, however, refraction of the radar wave vector is greater, and this allows for
7008-432: The radial component of the velocity is relevant. When the reflector is moving at right angle to the radar beam, it has no relative velocity. Objects moving parallel to the radar beam produce the maximum Doppler frequency shift. When the transmit frequency ( F T {\displaystyle F_{T}} ) is pulsed, using a pulse repeat frequency of F R {\displaystyle F_{R}} ,
7104-414: The response. Given all required funding and development support, the team produced working radar systems in 1935 and began deployment. By 1936, the first five Chain Home (CH) systems were operational and by 1940 stretched across the entire UK including Northern Ireland. Even by standards of the era, CH was crude; instead of broadcasting and receiving from an aimed antenna, CH broadcast a signal floodlighting
7200-410: The resulting frequency spectrum will contain harmonic frequencies above and below F T {\displaystyle F_{T}} with a distance of F R {\displaystyle F_{R}} . As a result, the Doppler measurement is only non-ambiguous if the Doppler frequency shift is less than half of F R {\displaystyle F_{R}} , called
7296-427: The roadside to detect stranded vehicles, obstructions and debris by inverting the automotive radar approach and ignoring moving objects. Smaller radar systems are used to detect human movement . Examples are breathing pattern detection for sleep monitoring and hand and finger gesture detection for computer interaction. Automatic door opening, light activation and intruder sensing are also common. A radar system has
7392-407: The scattered energy back toward the source. The extent to which an object reflects or scatters radio waves is called its radar cross-section . The power P r returning to the receiving antenna is given by the equation: where In the common case where the transmitter and the receiver are at the same location, R t = R r and the term R t ² R r ² can be replaced by R , where R
7488-425: The signal is attenuated by the medium the beam crosses, and the beam disperses. The maximum range of conventional radar can be limited by a number of factors: Doppler radar The Doppler effect (or Doppler shift), named after Austrian physicist Christian Doppler who proposed it in 1842, is the difference between the observed frequency and the emitted frequency of a wave for an observer moving relative to
7584-401: The source of the waves. It is commonly heard when a vehicle sounding a siren approaches, passes and recedes from an observer. The received frequency is higher (compared to the emitted frequency) during the approach, it is identical at the instant of passing by, and it is lower during the recession. This variation of frequency also depends on the direction the wave source is moving with respect to
7680-444: The specific term " Doppler Radar " has erroneously become popularly synonymous with the type of radar used in meteorology. Most modern weather radars use the pulse-Doppler technique to examine the motion of precipitation , but it is only a part of the processing of their data. So, while these radars use a highly specialized form of Doppler radar , this type of radar is much broader in its meaning and its applications. The work on
7776-491: The target. If the wavelength is much shorter than the target's size, the wave will bounce off in a way similar to the way light is reflected by a mirror . If the wavelength is much longer than the size of the target, the target may not be visible because of poor reflection. Low-frequency radar technology is dependent on resonances for detection, but not identification, of targets. This is described by Rayleigh scattering , an effect that creates Earth's blue sky and red sunsets. When
7872-585: The technology with the U.S. during the 1940 Tizard Mission . In April 1940, Popular Science showed an example of a radar unit using the Watson-Watt patent in an article on air defence. Also, in late 1941 Popular Mechanics had an article in which a U.S. scientist speculated about the British early warning system on the English east coast and came close to what it was and how it worked. Watson-Watt
7968-879: The transmitter. The reflected radar signals captured by the receiving antenna are usually very weak. They can be strengthened by electronic amplifiers . More sophisticated methods of signal processing are also used in order to recover useful radar signals. The weak absorption of radio waves by the medium through which they pass is what enables radar sets to detect objects at relatively long ranges—ranges at which other electromagnetic wavelengths, such as visible light , infrared light , and ultraviolet light , are too strongly attenuated. Weather phenomena, such as fog, clouds, rain, falling snow, and sleet, that block visible light are usually transparent to radio waves. Certain radio frequencies that are absorbed or scattered by water vapour, raindrops, or atmospheric gases (especially oxygen) are avoided when designing radars, except when their detection
8064-487: The two length scales are comparable, there may be resonances . Early radars used very long wavelengths that were larger than the targets and thus received a vague signal, whereas many modern systems use shorter wavelengths (a few centimetres or less) that can image objects as small as a loaf of bread. Short radio waves reflect from curves and corners in a way similar to glint from a rounded piece of glass. The most reflective targets for short wavelengths have 90° angles between
8160-418: The use of radar altimeters possible in certain cases. The radar signals that are reflected back towards the radar receiver are the desirable ones that make radar detection work. If the object is moving either toward or away from the transmitter, there will be a slight change in the frequency of the radio waves due to the Doppler effect . Radar receivers are usually, but not always, in the same location as
8256-582: The velocity of a moving target when the platform is stationary, a 2013 ARL report highlighted issues related to target range migration. However, researchers have suggested that these issues can be alleviated if the correct matched filter is used. In military airborne applications, the Doppler effect has 2 main advantages. Firstly, the radar is more robust against counter-measure. Return signals from weather, terrain, and countermeasures like chaff are filtered out before detection, which reduces computer and operator loading in hostile environments. Secondly, against
8352-444: The wavelength of the waves is also affected. Thus, the relative difference in velocity between a source and an observer is what gives rise to the Doppler effect. The formula for radar Doppler shift is the same as that for reflection of light by a moving mirror. There is no need to invoke Albert Einstein 's theory of special relativity , because all observations are made in the same frame of reference. The result derived with c as
8448-608: Was a 1938 Bell Lab unit on some United Air Lines aircraft. Aircraft can land in fog at airports equipped with radar-assisted ground-controlled approach systems in which the plane's position is observed on precision approach radar screens by operators who thereby give radio landing instructions to the pilot, maintaining the aircraft on a defined approach path to the runway. Military fighter aircraft are usually fitted with air-to-air targeting radars, to detect and target enemy aircraft. In addition, larger specialized military aircraft carry powerful airborne radars to observe air traffic over
8544-574: Was a mechanical device containing a steel ball rotated by a motor whose speed was controlled by the Doppler determined ground speed. The angle of this motor was controlled by the 'drift angle'. Two fixed wheels, one 'fore and aft' the other 'left to right' drove counters to output distance along track and across track difference. The aircraft's compass was integrated into the computer so that a desired track could be set between two waypoints on an over water great circle route. It may seem surprising to 21st. century readers, but it actually worked rather well and
8640-602: Was based on Doppler principles, and originally patented as "Pulsed Doppler Radar Methods and Means," #3,196,436. Modern Doppler systems are light enough for mobile ground surveillance associated with infantry and surface ships. These detect motion from vehicles and personnel for night and all weather combat operation. Modern police radar guns are a smaller, more portable version of these systems. Early Doppler radar sets relied on large analog filters to achieve acceptable performance. Analog filters, waveguide, and amplifiers pick up vibration like microphones, so bulky vibration damping
8736-442: Was extracted. This proved useful in both weather and air traffic control radars. The velocity information provided another input to the software tracker, and improved computer tracking. Because of the low pulse repetition frequency (PRF) of most coherent pulsed radars, which maximizes the coverage in range, the amount of Doppler processing is limited. The Doppler processor can only process velocities up to ± 1 / 2
8832-517: Was great improvement over other 'dead reckoning' methods available at the time. It was generally backed up with position fixes from Loran , VORs , NDBs , or as a last resort sextant and chronometer. It was possible to cross the Atlantic with an error of a couple of miles when in range of a couple of VORs or NDBs. Its major shortcoming in practice was the sea state, as a calm sea gave poor radar returns and hence unreliable Doppler measurements. But this
8928-503: Was infrequent on the North Atlantic Location-based Doppler techniques were also used in the U.S. Navy's historical Transit satellite navigation system , with satellite transmitters and ground-based receivers, and are currently used in the civilian Argos system , which uses satellite receivers and ground-based transmitters. In these cases, the ground stations are either stationary or slow-moving, and
9024-462: Was rotated by a servo mechanism to align with the aircraft's track by equalising the Doppler shift from the left and right hand antennas. A synchro transmitted the platform angle to the flight deck, thus providing a measure of 'drift angle'. The ground speed was determined from the Doppler shift between the forward and aft facing beams. These were displayed on the flight deck on single instrument. Some aircraft had an additional 'Doppler Computer'. This
9120-748: Was sent to the U.S. in 1941 to advise on air defense after Japan's attack on Pearl Harbor . Alfred Lee Loomis organized the secret MIT Radiation Laboratory at Massachusetts Institute of Technology , Cambridge, Massachusetts which developed microwave radar technology in the years 1941–45. Later, in 1943, Page greatly improved radar with the monopulse technique that was used for many years in most radar applications. The war precipitated research to find better resolution, more portability, and more features for radar, including small, lightweight sets to equip night fighters ( aircraft interception radar ) and maritime patrol aircraft ( air-to-surface-vessel radar ), and complementary navigation systems like Oboe used by
9216-463: Was the first to use radio waves to detect "the presence of distant metallic objects". In 1904, he demonstrated the feasibility of detecting a ship in dense fog, but not its distance from the transmitter. He obtained a patent for his detection device in April 1904 and later a patent for a related amendment for estimating the distance to the ship. He also obtained a British patent on 23 September 1904 for
#46953