Misplaced Pages

Swamp ash

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Swamp ash is a common name for several North American trees in the genus Fraxinus which may grow in swamps and other wetlands. The wood of swamp ashes is relatively low in density and is used in the construction of musical instruments, particularly electric guitars.

#535464

145-426: Swamp ash may refer to: As of 2020, climate change is creating a shortage of swamp ash suitable for making electric guitars. This Lamiales article is a stub . You can help Misplaced Pages by expanding it . Climate change Present-day climate change includes both global warming —the ongoing increase in global average temperature —and its wider effects on Earth's climate . Climate change in

290-415: A clathrate gun hypothesis . Later research found that it takes millennia for methane hydrates to respond to warming, while methane emissions from the seafloor rarely transfer from the water column into the atmosphere. IPCC Sixth Assessment Report states "It is very unlikely that gas clathrates (mostly methane) in deeper terrestrial permafrost and subsea clathrates will lead to a detectable departure from

435-491: A 15% worldwide increase in biomass by the end of the century, but this would be more than offset by the 41% biomass decline in the tropics. In 2022, the results of a 5-year warming experiment in North America had shown that the juveniles of tree species which currently dominate the southern margins of the boreal forests fare the worst in response to even 1.5 °C (2.7 °F) or 3.1 °C (5.6 °F) of warming and

580-638: A 2022 assessment. Additionally, the same assessment argued that while the rest of the ice in the Arctic Ocean may recover from a total summertime loss during the winter, ice cover in the Barents Sea may not reform during the winter even below 2 °C (3.6 °F) of warming. This is because the Barents Sea is already the fastest-warming part of the Arctic: in 2021-2022 it was found that while

725-438: A bifurcation takes place – and what was a stable state loses its stability or simply disappears. The Atlantic Meridional Overturning Circulation (AMOC) is an example of a tipping element that can show bifurcation-induced tipping. Slow changes to the bifurcation parameters in this system – the salinity and temperature of the water – may push the circulation towards collapse. Many types of bifurcations show hysteresis , which

870-562: A broader sense also includes previous long-term changes to Earth's climate. The current rise in global temperatures is driven by human activities , especially fossil fuel burning since the Industrial Revolution . Fossil fuel use, deforestation , and some agricultural and industrial practices release greenhouse gases . These gases absorb some of the heat that the Earth radiates after it warms from sunlight , warming

1015-871: A climate model showed that nearly one-third of those simulations resulted in domino effects, even when temperature increases were limited to 2 °C (3.6 °F) – the upper limit set by the Paris Agreement in 2015. The authors of the study said that the science of tipping points is so complex that there is great uncertainty as to how they might unfold, but nevertheless, argued that the possibility of cascading tipping points represents "an existential threat to civilisation". A network model analysis suggested that temporary overshoots of climate change – increasing global temperature beyond Paris Agreement goals temporarily as often projected – can substantially increase risks of climate tipping cascades ("by up to 72% compared with non-overshoot scenarios"). The possibility that

1160-442: A conveyor belt, sending warm surface water from the tropics north, and carrying cold fresh water back south. As warm water flows northwards, some evaporates which increases salinity. It also cools when it is exposed to cooler air. Cold, salty water is more dense and slowly begins to sink. Several kilometres below the surface, cold, dense water begins to move south. Increased rainfall and the melting of ice due to global warming dilutes

1305-590: A decadal timescale. Other changes are caused by an imbalance of energy from external forcings . Examples of these include changes in the concentrations of greenhouse gases , solar luminosity , volcanic eruptions, and variations in the Earth's orbit around the Sun. To determine the human contribution to climate change, unique "fingerprints" for all potential causes are developed and compared with both observed patterns and known internal climate variability . For example, solar forcing—whose fingerprint involves warming

1450-504: A few states which are stable in the long term - a treeless tundra / steppe , a forest with >75% tree cover and an open woodland with ~20% and ~45% tree cover. Thus, continued climate change would be able to force at least some of the presently existing taiga forests into one of the two woodland states or even into a treeless steppe - but it could also shift tundra areas into woodland or forest states as they warm and become more suitable for tree growth. These trends were first detected in

1595-542: A lot of light to being dark after the ice has melted, they start absorbing more heat . Local black carbon deposits on snow and ice also contribute to Arctic warming. Arctic surface temperatures are increasing between three and four times faster than in the rest of the world. Melting of ice sheets near the poles weakens both the Atlantic and the Antarctic limb of thermohaline circulation , which further changes

SECTION 10

#1732780810536

1740-412: A marked increase in temperature. Ongoing changes in climate have had no precedent for several thousand years. Multiple independent datasets all show worldwide increases in surface temperature, at a rate of around 0.2 °C per decade. The 2014–2023 decade warmed to an average 1.19 °C [1.06–1.30 °C] compared to the pre-industrial baseline (1850–1900). Not every single year was warmer than

1885-558: A northward shift of the desert, i.e. a drying of northernmost Africa. In 2017, it was discovered that 40% of the Cuvette Centrale wetlands are underlain with a dense layer of peat , which contains around 30 petagrams (billions of tons) of carbon . This amounts to 28% of all tropical peat carbon, equivalent to the carbon contained in all the forests of the Congo Basin. In other words, while this peatland only covers 4% of

2030-408: A physical climate model. These models simulate how population, economic growth , and energy use affect—and interact with—the physical climate. With this information, these models can produce scenarios of future greenhouse gas emissions. This is then used as input for physical climate models and carbon cycle models to predict how atmospheric concentrations of greenhouse gases might change. Depending on

2175-461: A result of climate change. Global sea level is rising as a consequence of thermal expansion and the melting of glaciers and ice sheets . Sea level rise has increased over time, reaching 4.8 cm per decade between 2014 and 2023. Over the 21st century, the IPCC projects 32–62 cm of sea level rise under a low emission scenario, 44–76 cm under an intermediate one and 65–101 cm under

2320-474: A result. The World Health Organization calls climate change one of the biggest threats to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming . Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for

2465-472: A self-reinforcing feedback on permafrost thaw, but are unlikely to lead to a global tipping point or runaway warming process. The Atlantic Meridional Overturning Circulation (AMOC), also known as the Gulf Stream System, is a large system of ocean currents . It is driven by differences in the density of water; colder and more salty water is heavier than warmer fresh water. The AMOC acts as

2610-485: A set of AMOC indices, suggesting that the AMOC may be close to tipping. However, it was contradicted by another study published in the same journal the following year, which found a largely stable AMOC which had so far not been affected by climate change beyond its own natural variability. Two more studies published in 2022 have also suggested that the modelling approaches commonly used to evaluate AMOC appear to overestimate

2755-417: A small share of global emissions , yet have the least ability to adapt and are most vulnerable to climate change . Many climate change impacts have been observed in the first decades of the 21st century, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points , such as melting all of

2900-424: A study which used a primitive finite-difference ocean model estimated that AMOC collapse could be invoked by a sufficiently fast increase in ice melt even if it never reached the common thresholds for tipping obtained from slower change. Thus, it implied that the AMOC collapse is more likely than what is usually estimated by the complex and large-scale climate models. Another 2021 study found early-warning signals in

3045-542: A surface warming of about 8 °C (14 °F) globally and 10 °C (18 °F) in the subtropics, which would be in addition to at least 4 °C (7.2 °F) already caused by such CO 2 concentrations. In addition, stratocumulus clouds would not reform until the CO 2 concentrations drop to a much lower level. It was suggested that this finding could help explain past episodes of unusually rapid warming such as Paleocene-Eocene Thermal Maximum In 2020, further work from

SECTION 20

#1732780810536

3190-467: A system reorganizes, often abruptly and/or irreversibly". It can be brought about by a small disturbance causing a disproportionately large change in the system. It can also be associated with self-reinforcing feedbacks , which could lead to changes in the climate system irreversible on a human timescale. For any particular climate component, the shift from one state to a new stable state may take many decades or centuries. The 2019 IPCC Special Report on

3335-567: A threshold in one part of the climate system may trigger another tipping element to tip into a new state. Such sequences of thresholds are called cascading tipping points , an example of a domino effect . Ice loss in West Antarctica and Greenland will significantly alter ocean circulation . Sustained warming of the northern high latitudes as a result of this process could activate tipping elements in that region, such as permafrost degradation, and boreal forest dieback . Thawing permafrost

3480-402: A tipping point can trigger a regime shift , a major systems reorganisation into a new stable state. Such regime shifts need not be harmful. In the context of the climate crisis, the tipping point metaphor is sometimes used in a positive sense, such as to refer to shifts in public opinion in favor of action to mitigate climate change, or the potential for minor policy changes to rapidly accelerate

3625-690: A tipping point if global warming reaches 1.5 °C (2.7 °F). They are the Greenland ice sheet collapse, West Antarctic ice sheet collapse, tropical coral reef die off, and boreal permafrost abrupt thaw. Tipping points exists in a range of systems, for example in the cryosphere , within ocean currents, and in terrestrial systems. The tipping points in the cryosphere include: Greenland ice sheet disintegration, West Antarctic ice sheet disintegration, East Antarctic ice sheet disintegration, arctic sea ice decline, retreat of mountain glaciers , permafrost thaw. The tipping points for ocean current changes include

3770-412: A tipping point will be reached. During the last quarter of the twentieth century, the zone of latitude occupied by taiga experienced some of the greatest temperature increases on Earth. Winter temperatures have increased more than summer temperatures. In summer, the daily low temperature has increased more than the daily high temperature. It has been hypothesised that the boreal environments have only

3915-503: A tipping point. The West Antarctic Ice Sheet (WAIS) is a large ice sheet in Antarctica; in places more than 4 kilometres (2.5 mi) thick. It sits on bedrock mostly below sea level, having formed a deep subglacial basin due to the weight of the ice sheet over millions of years. As such, it is in contact with the heat from the ocean which makes it vulnerable to fast and irreversible ice loss. A tipping point could be reached once

4060-489: A very high emission scenario. Marine ice sheet instability processes in Antarctica may add substantially to these values, including the possibility of a 2-meter sea level rise by 2100 under high emissions. Climate change has led to decades of shrinking and thinning of the Arctic sea ice . While ice-free summers are expected to be rare at 1.5 °C degrees of warming, they are set to occur once every three to ten years at

4205-519: A warming level of 2 °C. Higher atmospheric CO 2 concentrations cause more CO 2 to dissolve in the oceans, which is making them more acidic . Because oxygen is less soluble in warmer water, its concentrations in the ocean are decreasing , and dead zones are expanding. Greater degrees of global warming increase the risk of passing through ' tipping points '—thresholds beyond which certain major impacts can no longer be avoided even if temperatures return to their previous state. For instance,

4350-478: Is a threat multiplier because it holds roughly twice as much carbon as the amount currently circulating in the atmosphere. Loss of ice in Greenland likely destabilises the West Antarctic ice sheet via sea level rise, and vice-versa, especially if Greenland were to melt first as West Antarctica is particularly vulnerable to contact with warm sea water. A 2021 study with three million computer simulations of

4495-564: Is an estimated total sea level rise of 2.3 metres per degree Celsius (4.2 ft/°F) after 2000 years. Oceanic CO 2 uptake is slow enough that ocean acidification will also continue for hundreds to thousands of years. Deep oceans (below 2,000 metres (6,600 ft)) are also already committed to losing over 10% of their dissolved oxygen by the warming which occurred to date. Further, the West Antarctic ice sheet appears committed to practically irreversible melting, which would increase

Swamp ash - Misplaced Pages Continue

4640-445: Is currently covered by the existing protected areas . For comparison, 26% of its peat is located in areas open to logging , mining or palm oil plantations, and nearly all of this area is open for fossil fuel exploration. Around 500 million people around the world depend on coral reefs for food, income, tourism and coastal protection. Since the 1980s, this is being threatened by the increase in sea surface temperatures which

4785-711: Is determined by modelling the carbon cycle and climate sensitivity to greenhouse gases. According to UNEP , global warming can be kept below 1.5 °C with a 50% chance if emissions after 2023 do not exceed 200 gigatonnes of CO 2 . This corresponds to around 4 years of current emissions. To stay under 2.0 °C, the carbon budget is 900 gigatonnes of CO 2 , or 16 years of current emissions. The climate system experiences various cycles on its own which can last for years, decades or even centuries. For example, El Niño events cause short-term spikes in surface temperature while La Niña events cause short term cooling. Their relative frequency can affect global temperature trends on

4930-399: Is independent of where greenhouse gases are emitted, because the gases persist long enough to diffuse across the planet. Since the pre-industrial period, the average surface temperature over land regions has increased almost twice as fast as the global average surface temperature. This is because oceans lose more heat by evaporation and oceans can store a lot of heat . The thermal energy in

5075-538: Is no definitive evidence indicating changes in ENSO behaviour, and the IPCC Sixth Assessment Report concluded that it is "virtually certain that the ENSO will remain the dominant mode of interannual variability in a warmer world." Consequently, the 2022 assessment no longer includes it in the list of likely tipping elements. The Indian summer monsoon is another part of the climate system which

5220-450: Is primarily attributed to sulfate aerosols produced by the combustion of fossil fuels with heavy sulfur concentrations like coal and bunker fuel . Smaller contributions come from black carbon (from combustion of fossil fuels and biomass), and from dust. Globally, aerosols have been declining since 1990 due to pollution controls, meaning that they no longer mask greenhouse gas warming as much. Aerosols also have indirect effects on

5365-444: Is radiating into space. Warming reduces average snow cover and forces the retreat of glaciers . At the same time, warming also causes greater evaporation from the oceans , leading to more atmospheric humidity , more and heavier precipitation . Plants are flowering earlier in spring, and thousands of animal species have been permanently moving to cooler areas. Different regions of the world warm at different rates . The pattern

5510-516: Is shaped by feedbacks, which either amplify or dampen the change. Self-reinforcing or positive feedbacks increase the response, while balancing or negative feedbacks reduce it. The main reinforcing feedbacks are the water-vapour feedback , the ice–albedo feedback , and the net effect of clouds. The primary balancing mechanism is radiative cooling , as Earth's surface gives off more heat to space in response to rising temperature. In addition to temperature feedbacks, there are feedbacks in

5655-431: Is the dependence of the state of a system on its history. For instance, depending on how warm it was in the past, there can be differing amounts of ice on the poles at the same concentration of greenhouse gases or temperature. For tipping points that occur because of a bifurcation, it may be possible to detect whether a system is getting closer to a tipping point, as it becomes less resilient to perturbations on approach of

5800-480: Is the largest tropical rainforest in the world. It is twice as big as India and spans nine countries in South America. It produces around half of its own rainfall by recycling moisture through evaporation and transpiration as air moves across the forest. This moisture recycling expands the area in which there is enough rainfall for rainforest to be maintained, and without it one model indicates around 40% of

5945-407: Is the major reason why different climate models project different magnitudes of warming for a given amount of emissions. A climate model is a representation of the physical, chemical and biological processes that affect the climate system. Models include natural processes like changes in the Earth's orbit, historical changes in the Sun's activity, and volcanic forcing. Models are used to estimate

Swamp ash - Misplaced Pages Continue

6090-413: Is triggering mass bleaching of coral , especially in sub-tropical regions . A sustained ocean temperature spike of 1 °C (1.8 °F) above average is enough to cause bleaching. Under heat stress, corals expel the small colourful algae which live in their tissues, which causes them to turn white. The algae, known as zooxanthellae , have a symbiotic relationship with coral such that without them,

6235-417: Is unclear. A related phenomenon driven by climate change is woody plant encroachment , affecting up to 500 million hectares globally. Climate change has contributed to the expansion of drier climate zones, such as the expansion of deserts in the subtropics . The size and speed of global warming is making abrupt changes in ecosystems more likely. Overall, it is expected that climate change will result in

6380-470: The Arctic winter . As such, the loss of Arctic ice during the summer is not a tipping point for as long as the Arctic winter remains cool enough to enable the formation of new Arctic sea ice. However, if the higher levels of warming prevent the formation of new Arctic ice even during winter, then this change may become irreversible. Consequently, Arctic Winter Sea Ice is included as a potential tipping point in

6525-642: The Atlantic Meridional Overturning Circulation (AMOC), the North Subpolar Gyre and the Southern Ocean overturning circulation . Lastly, the tipping points in terrestrial systems include Amazon rainforest dieback, boreal forest biome shift, Sahel greening, and vulnerable stores of tropical peat carbon. The IPCC Sixth Assessment Report defines a tipping point as a "critical threshold beyond which

6670-511: The Atlantic meridional overturning circulation (AMOC), and irreversible damage to key ecosystems like the Amazon rainforest and coral reefs can unfold in a matter of decades. The long-term effects of climate change on oceans include further ice melt, ocean warming , sea level rise, ocean acidification and ocean deoxygenation. The timescale of long-term impacts are centuries to millennia due to CO 2 's long atmospheric lifetime. The result

6815-661: The Earth's energy budget . Sulfate aerosols act as cloud condensation nuclei and lead to clouds that have more and smaller cloud droplets. These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets. They also reduce the growth of raindrops , which makes clouds more reflective to incoming sunlight. Indirect effects of aerosols are the largest uncertainty in radiative forcing . While aerosols typically limit global warming by reflecting sunlight, black carbon in soot that falls on snow or ice can contribute to global warming. Not only does this increase

6960-938: The El Niño–Southern Oscillation (ENSO) is a tipping element had attracted attention in the past. Normally strong winds blow west across the South Pacific Ocean from South America to Australia . Every two to seven years, the winds weaken due to pressure changes and the air and water in the middle of the Pacific warms up, causing changes in wind movement patterns around the globe. This is known as El Niño and typically leads to droughts in India , Indonesia and Brazil , and increased flooding in Peru . In 2015/2016, this caused food shortages affecting over 60 million people. El Niño-induced droughts may increase

7105-573: The Greenland ice sheet is already melting, but if global warming reaches levels between 1.7 °C and 2.3 °C, its melting will continue until it fully disappears. If the warming is later reduced to 1.5 °C or less, it will still lose a lot more ice than if the warming was never allowed to reach the threshold in the first place. While the ice sheets would melt over millennia, other tipping points would occur faster and give societies less time to respond. The collapse of major ocean currents like

7250-412: The Greenland ice sheet passes a tipping point and is doomed, but its melt would take place over millennia. Tipping points are possible at today's global warming of just over 1 °C (1.8 °F) above preindustrial times , and highly probable above 2 °C (3.6 °F) of global warming. It is possible that some tipping points are close to being crossed or have already been crossed, like those of

7395-840: The Greenland ice sheet . Under the 2015 Paris Agreement , nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.8 °C (5.0 °F) by the end of the century. Limiting warming to 1.5 °C would require halving emissions by 2030 and achieving net-zero emissions by 2050. Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind , solar , hydro , and nuclear power . Cleanly generated electricity can replace fossil fuels for powering transportation , heating buildings , and running industrial processes. Carbon can also be removed from

SECTION 50

#1732780810536

7540-480: The Hindu Kush Himalaya region, which is colloquially known as the Earth's Third Pole as the result. It is believed that one third of that ice will be lost by 2100 even if the warming is limited to 1.5 °C (2.7 °F), while the intermediate and severe climate change scenarios ( Representative Concentration Pathways (RCP) 4.5 and 8.5) are likely to lead to the losses of 50% and >67% of

7685-635: The Industrial Revolution , naturally-occurring amounts of greenhouse gases caused the air near the surface to be about 33 °C warmer than it would have been in their absence. Human activity since the Industrial Revolution, mainly extracting and burning fossil fuels ( coal , oil , and natural gas ), has increased the amount of greenhouse gases in the atmosphere. In 2022, the concentrations of CO 2 and methane had increased by about 50% and 164%, respectively, since 1750. These CO 2 levels are higher than they have been at any time during

7830-604: The Republic of Congo and Indonesia (a country with longer experience of managing its own tropical peatlands) aiming to promote better management and conservation of this region. However, 2022 research by the same team which had originally discovered this peatland not only revised its area (from the original estimate of 145,500 square kilometres (56,200 sq mi) to 167,600 square kilometres (64,700 sq mi)) and depth (from 2 m (6.6 ft) to (1.7 m (5.6 ft)) but also noted that only 8% of this peat carbon

7975-518: The West Antarctic and Greenland ice sheets , the Amazon rainforest and warm-water coral reefs . A danger is that if the tipping point in one system is crossed, this could cause a cascade of other tipping points, leading to severe, potentially catastrophic , impacts. Crossing a threshold in one part of the climate system may trigger another tipping element to tip into a new state. For example, ice loss in West Antarctica and Greenland will significantly alter ocean circulation . Sustained warming of

8120-518: The World Economic Forum , 14.5 million more deaths are expected due to climate change by 2050. 30% of the global population currently live in areas where extreme heat and humidity are already associated with excess deaths. By 2100, 50% to 75% of the global population would live in such areas. While total crop yields have been increasing in the past 50 years due to agricultural improvements, climate change has already decreased

8265-414: The carbon cycle . While plants on land and in the ocean absorb most excess emissions of CO 2 every year, that CO 2 is returned to the atmosphere when biological matter is digested, burns, or decays. Land-surface carbon sink processes, such as carbon fixation in the soil and photosynthesis, remove about 29% of annual global CO 2 emissions. The ocean has absorbed 20 to 30% of emitted CO 2 over

8410-402: The climate system . Solar irradiance has been measured directly by satellites , and indirect measurements are available from the early 1600s onwards. Since 1880, there has been no upward trend in the amount of the Sun's energy reaching the Earth, in contrast to the warming of the lower atmosphere (the troposphere ). The upper atmosphere (the stratosphere ) would also be warming if the Sun

8555-971: The extinction of many species. The oceans have heated more slowly than the land, but plants and animals in the ocean have migrated towards the colder poles faster than species on land. Just as on land, heat waves in the ocean occur more frequently due to climate change, harming a wide range of organisms such as corals, kelp , and seabirds . Ocean acidification makes it harder for marine calcifying organisms such as mussels , barnacles and corals to produce shells and skeletons ; and heatwaves have bleached coral reefs . Harmful algal blooms enhanced by climate change and eutrophication lower oxygen levels, disrupt food webs and cause great loss of marine life. Coastal ecosystems are under particular stress. Almost half of global wetlands have disappeared due to climate change and other human impacts. Plants have come under increased stress from damage by insects. The effects of climate change are impacting humans everywhere in

8700-553: The monsoon is low: however, irrigation and hydropower generation would still have to adjust to greater interannual variability and lower pre-monsoon flows in all of the region's rivers. Perennially frozen ground, or permafrost , covers large fractions of land – mainly in Siberia , Alaska , northern Canada and the Tibetan plateau – and can be up to a kilometre thick. Subsea permafrost up to 100 metres thick also occurs on

8845-432: The socioeconomic scenario and the mitigation scenario, models produce atmospheric CO 2 concentrations that range widely between 380 and 1400 ppm. The environmental effects of climate change are broad and far-reaching, affecting oceans , ice, and weather. Changes may occur gradually or rapidly. Evidence for these effects comes from studying climate change in the past, from modelling, and from modern observations. Since

SECTION 60

#1732780810536

8990-418: The (dark) ocean, which would warm. Arctic sea ice cover is likely to melt entirely under even relatively low levels of warming, and it was hypothesised that this could eventually transfer enough heat to the ocean to prevent sea ice recovery even if the global warming is reversed. Modelling now shows that this heat transfer during the Arctic summer does not overcome the cooling and the formation of new ice during

9135-405: The 18th century and 1970 there was little net warming, as the warming impact of greenhouse gas emissions was offset by cooling from sulfur dioxide emissions. Sulfur dioxide causes acid rain , but it also produces sulfate aerosols in the atmosphere, which reflect sunlight and cause global dimming . After 1970, the increasing accumulation of greenhouse gases and controls on sulfur pollution led to

9280-560: The 1950s, droughts and heat waves have appeared simultaneously with increasing frequency. Extremely wet or dry events within the monsoon period have increased in India and East Asia. Monsoonal precipitation over the Northern Hemisphere has increased since 1980. The rainfall rate and intensity of hurricanes and typhoons is likely increasing , and the geographic range likely expanding poleward in response to climate warming. Frequency of tropical cyclones has not increased as

9425-500: The 1980s, the terms global warming and climate change became more common, often being used interchangeably. Scientifically, global warming refers only to increased surface warming, while climate change describes both global warming and its effects on Earth's climate system , such as precipitation changes. Climate change can also be used more broadly to include changes to the climate that have happened throughout Earth's history. Global warming —used as early as 1975 —became

9570-434: The AMOC may not return to its current state. It is unlikely that the AMOC will tip in the 21st century, but it may do so before 2300 if greenhouse gas emissions are very high. A weakening of 24% to 39% is expected depending on greenhouse emissions, even without tipping behaviour. If the AMOC does shut down, a new stable state could emerge that lasts for thousands of years, possibly triggering other tipping points. In 2021,

9715-641: The Amazon rainforest. As of September 2022, nine global core tipping elements and seven regional impact tipping elements have been identified. Out of those, one regional and three global climate elements are estimated to likely pass a tipping point if global warming reaches 1.5 °C (2.7 °F), namely Greenland ice sheet collapse, West Antarctic ice sheet collapse, tropical coral reef die off, and boreal permafrost abrupt thaw. Two further tipping points are forecast as likely if warming continues to approach 2 °C (3.6 °F): Barents sea ice abrupt loss, and

9860-440: The Arctic is forcing many species to relocate or become extinct . Even if efforts to minimize future warming are successful, some effects will continue for centuries. These include ocean heating , ocean acidification and sea level rise . Climate change threatens people with increased flooding , extreme heat, increased food and water scarcity, more disease, and economic loss . Human migration and conflict can also be

10005-435: The Arctic is another major feedback, this reduces the reflectivity of the Earth's surface in the region and accelerates Arctic warming . This additional warming also contributes to permafrost thawing, which releases methane and CO 2 into the atmosphere. Around half of human-caused CO 2 emissions have been absorbed by land plants and by the oceans. This fraction is not static and if future CO 2 emissions decrease,

10150-497: The CO 2 released by the chemical reactions for making cement , steel , aluminum , and fertilizer . Methane emissions come from livestock , manure, rice cultivation , landfills, wastewater, and coal mining , as well as oil and gas extraction . Nitrous oxide emissions largely come from the microbial decomposition of fertilizer . While methane only lasts in the atmosphere for an average of 12 years, CO 2 lasts much longer. The Earth's surface absorbs CO 2 as part of

10295-537: The Canadian boreal forests in the early 2010s, and summer warming had also been shown to increase water stress and reduce tree growth in dry areas of the southern boreal forest in central Alaska and portions of far eastern Russia. In Siberia, the taiga is converting from predominantly needle-shedding larch trees to evergreen conifers in response to a warming climate. Subsequent research in Canada found that even in

10440-496: The Congo Basin area, its carbon content is equal to that of all trees in the other 96%. It was then estimated that if all of that peat burned, the atmosphere would absorb the equivalent of 20 years of current United States carbon dioxide emissions, or three years of all anthropogenic CO 2 emissions. This threat prompted the signing of Brazzaville Declaration in March 2018: an agreement between Democratic Republic of Congo ,

10585-604: The Earth will be able to absorb up to around 70%. If they increase substantially, it'll still absorb more carbon than now, but the overall fraction will decrease to below 40%. This is because climate change increases droughts and heat waves that eventually inhibit plant growth on land, and soils will release more carbon from dead plants when they are warmer . The rate at which oceans absorb atmospheric carbon will be lowered as they become more acidic and experience changes in thermohaline circulation and phytoplankton distribution. Uncertainty over feedbacks, particularly cloud cover,

10730-584: The East Coast of the United States. Frajka-Williams et al. 2017 pointed out that recent changes in cooling of the subpolar gyre, warm temperatures in the subtropics and cool anomalies over the tropics, increased the spatial distribution of meridional gradient in sea surface temperatures , which is not captured by the AMO Index . Southern ocean overturning circulation itself consists of two parts,

10875-475: The Labrador sea subpolar gyre collapse. The Greenland ice sheet is the second largest ice sheet in the world, and the water which it holds, if completely melted, would raise sea levels globally by 7.2 metres (24 ft). Due to global warming, the ice sheet is melting at an accelerating rate, adding almost 1 mm to global sea levels every year. Around half of the ice loss occurs via surface melting, and

11020-518: The Ocean and Cryosphere in a Changing Climate defines a tipping point as: "A level of change in system properties beyond which a system reorganises, often in a non-linear manner, and does not return to the initial state even if the drivers of the change are abated. For the climate system, the term refers to a critical threshold at which global or regional climate changes from one stable state to another stable state.". In ecosystems and in social systems,

11165-514: The Paris Agreement range (1.5–2 °C (2.7–3.6 °F)) by 2016. As of 2021 tipping points are considered to have significant probability at today's warming level of just over 1 °C (1.8 °F), with high probability above 2 °C (3.6 °F) of global warming. Some tipping points may be close to being crossed or have already been crossed, like those of the ice sheets in West Antarctic and Greenland, warm-water coral reefs , and

11310-534: The Sahel/WAM as a potential regional impact tipping element (low confidence)." Some simulations of global warming and increased carbon dioxide concentrations have shown a substantial increase in precipitation in the Sahel/Sahara. This and the increased plant growth directly induced by carbon dioxide could lead to an expansion of vegetation into present-day desert, although it might be accompanied by

11455-509: The WAIS would contribute around 3.3 metres (11 ft) of sea level rise over thousands of years. Ice loss from the WAIS is accelerating, and some outlet glaciers are estimated to be close to or possibly already beyond the point of self-sustaining retreat. The paleo record suggests that during the past few hundred thousand years, the WAIS largely disappeared in response to similar levels of warming and CO 2 emission scenarios projected for

11600-492: The WAIS's grounding lines (the point at which ice no longer sits on rock and becomes floating ice shelves ) retreat behind the edge of the subglacial basin, resulting in self-sustaining retreat in to the deeper basin - a process known as the Marine Ice Sheet Instability (MISI). Thinning and collapse of the WAIS's ice shelves is helping to accelerate this grounding line retreat. If completely melted,

11745-441: The absorption of sunlight, it also increases melting and sea-level rise. Limiting new black carbon deposits in the Arctic could reduce global warming by 0.2 °C by 2050. The effect of decreasing sulfur content of fuel oil for ships since 2020 is estimated to cause an additional 0.05 °C increase in global mean temperature by 2050. As the Sun is the Earth's primary energy source, changes in incoming sunlight directly affect

11890-514: The associated reductions in precipitation. While the temperate species which would benefit from such conditions are also present in the southern boreal forests, they are both rare and have slower growth rates. The Special Report on Global Warming of 1.5 °C and the IPCC Fifth Assessment Report indicate that global warming will likely result in increased precipitation across most of East Africa, parts of Central Africa and

12035-411: The atmosphere , for instance by increasing forest cover and farming with methods that capture carbon in soil . Before the 1980s it was unclear whether the warming effect of increased greenhouse gases was stronger than the cooling effect of airborne particulates in air pollution . Scientists used the term inadvertent climate modification to refer to human impacts on the climate at this time. In

12180-452: The atmosphere. volcanic CO 2 emissions are more persistent, but they are equivalent to less than 1% of current human-caused CO 2 emissions. Volcanic activity still represents the single largest natural impact (forcing) on temperature in the industrial era. Yet, like the other natural forcings, it has had negligible impacts on global temperature trends since the Industrial Revolution. The climate system's response to an initial forcing

12325-454: The biggest threats to global health in the 21st century. Scientists have warned about the irreversible harms it poses. Extreme weather events affect public health, and food and water security . Temperature extremes lead to increased illness and death. Climate change increases the intensity and frequency of extreme weather events. It can affect transmission of infectious diseases , such as dengue fever and malaria . According to

12470-523: The biological material in the permafrost, some of which is irreversibly lost. While most thaw is gradual and will take centuries, abrupt thaw can occur in some places where permafrost is rich in large ice masses, which once melted cause the ground to slump or form 'thermokarst' lakes over years to decades. These processes can become self-sustaining, leading to localised tipping dynamics, and could increase greenhouse gas emissions by around 40%. Because CO 2 and methane are both greenhouse gases, they act as

12615-472: The boreal forests are much more strongly affected by climate change than the other forest types in Canada and projected that most of the eastern Canadian boreal forests would reach a tipping point around 2080 under the RCP 8.5 scenario, which represents the largest potential increase in anthropogenic emissions. Another 2021 study projected that under the moderate SSP2-4.5 scenario, boreal forests would experience

12760-436: The bottom of a 1.4 kilometres (0.87 mi) Greenland ice core finds that the Greenland ice sheet melted away at least once during the last million years, and therefore strongly suggests that its tipping point is below the 2.5 °C (4.5 °F) maximum temperature increase over the preindustrial conditions observed over that period. There is some evidence that the Greenland ice sheet is losing stability, and getting close to

12905-540: The carbon cycle, such as the fertilizing effect of CO 2 on plant growth. Feedbacks are expected to trend in a positive direction as greenhouse gas emissions continue, raising climate sensitivity. These feedback processes alter the pace of global warming. For instance, warmer air can hold more moisture in the form of water vapour , which is itself a potent greenhouse gas. Warmer air can also make clouds higher and thinner, and therefore more insulating, increasing climate warming. The reduction of snow cover and sea ice in

13050-551: The climate cycled through ice ages . One of the hotter periods was the Last Interglacial , around 125,000 years ago, where temperatures were between 0.5 °C and 1.5 °C warmer than before the start of global warming. This period saw sea levels 5 to 10 metres higher than today. The most recent glacial maximum 20,000 years ago was some 5–7 °C colder. This period has sea levels that were over 125 metres (410 ft) lower than today. Temperatures stabilized in

13195-447: The climate system In climate science , a tipping point is a critical threshold that, when crossed, leads to large, accelerating and often irreversible changes in the climate system . If tipping points are crossed, they are likely to have severe impacts on human society and may accelerate global warming . Tipping behavior is found across the climate system, for example in ice sheets , mountain glaciers , circulation patterns in

13340-576: The continuation of the present climate, or the French Alps , where The Argentière and Mer de Glace glaciers are expected to disappear completely by end of the 21st century if current climate trends persist. Altogether, it was estimated in 2023 that 49% of the world's glaciers would be lost by 2100 at 1.5 °C (2.7 °F) of global warming, and 83% of glaciers would be lost at 4 °C (7.2 °F). This would amount to one quarter and nearly half of mountain glacier *mass* loss, respectively, as only

13485-431: The corals slowly die. After these zooxanthellae have disappeared, the corals are vulnerable to a transition towards a seaweed -dominated ecosystem , making it very difficult to shift back to a coral-dominated ecosystem. The IPCC estimates that by the time temperatures have risen to 1.5 °C (2.7 °F) above pre-industrial times, Coral reefs... are projected to decline by a further 70–90% at 1.5 °C; and that if

13630-462: The current forest area would be too dry to sustain rainforest. However, when forest is lost via climate change (from droughts and wildfires) or deforestation , there will be less rain in downwind regions, increasing tree stress and mortality there. Eventually, if enough forest is lost a threshold can be reached beyond which large parts of the remaining rainforest may die off and transform into drier degraded forest or savanna landscapes, particularly in

13775-684: The current interglacial period beginning 11,700 years ago . This period also saw the start of agriculture. Historical patterns of warming and cooling, like the Medieval Warm Period and the Little Ice Age , did not occur at the same time across different regions. Temperatures may have reached as high as those of the late 20th century in a limited set of regions. Climate information for that period comes from climate proxies , such as trees and ice cores . Around 1850 thermometer records began to provide global coverage. Between

13920-403: The degree of warming future emissions will cause when accounting for the strength of climate feedbacks . Models also predict the circulation of the oceans, the annual cycle of the seasons, and the flows of carbon between the land surface and the atmosphere. The physical realism of models is tested by examining their ability to simulate current or past climates. Past models have underestimated

14065-427: The destroyed trees release CO 2 , and are not replaced by new trees, removing that carbon sink . Between 2001 and 2018, 27% of deforestation was from permanent clearing to enable agricultural expansion for crops and livestock. Another 24% has been lost to temporary clearing under the shifting cultivation agricultural systems. 26% was due to logging for wood and derived products, and wildfires have accounted for

14210-401: The distribution of heat and precipitation around the globe. The World Meteorological Organization estimates there is an 80% chance that global temperatures will exceed 1.5 °C warming for at least one year between 2024 and 2028. The chance of the 5-year average being above 1.5 °C is almost half. The IPCC expects the 20-year average global temperature to exceed +1.5 °C in

14355-444: The dominant direct influence on temperature from land use change. Thus, land use change to date is estimated to have a slight cooling effect. Air pollution, in the form of aerosols, affects the climate on a large scale. Aerosols scatter and absorb solar radiation. From 1961 to 1990, a gradual reduction in the amount of sunlight reaching the Earth's surface was observed. This phenomenon is popularly known as global dimming , and

14500-453: The drier south and east. In 2022, a study reported that the rainforest has been losing resilience since the early 2000s. Resilience is measured by recovery-time from short-term perturbations , with delayed return to equilibrium of the rainforest termed as critical slowing down . The observed loss of resilience reinforces the theory that the rainforest could be approaching a critical transition , although it cannot determine exactly when or if

14645-610: The early 2030s. The IPCC Sixth Assessment Report (2021) included projections that by 2100 global warming is very likely to reach 1.0–1.8 °C under a scenario with very low emissions of greenhouse gases , 2.1–3.5 °C under an intermediate emissions scenario , or 3.3–5.7 °C under a very high emissions scenario . The warming will continue past 2100 in the intermediate and high emission scenarios, with future projections of global surface temperatures by year 2300 being similar to millions of years ago. The remaining carbon budget for staying beneath certain temperature increases

14790-802: The emissions continue to increase for the rest of century, then over 9 million climate-related deaths would occur annually by 2100. Economic damages due to climate change may be severe and there is a chance of disastrous consequences. Severe impacts are expected in South-East Asia and sub-Saharan Africa , where most of the local inhabitants are dependent upon natural and agricultural resources. Heat stress can prevent outdoor labourers from working. If warming reaches 4 °C then labour capacity in those regions could be reduced by 30 to 50%. The World Bank estimates that between 2016 and 2030, climate change could drive over 120 million people into extreme poverty without adaptation. Tipping points in

14935-422: The emissions trajectory during this century". Tipping point behaviour in the climate can be described in mathematical terms. Three types of tipping points have been identified— bifurcation , noise -induced and rate -dependent. Bifurcation-induced tipping happens when a particular parameter in the climate (for instance a change in environmental conditions or forcing ), passes a critical level – at which point

15080-430: The entire atmosphere—is ruled out because only the lower atmosphere has warmed. Atmospheric aerosols produce a smaller, cooling effect. Other drivers, such as changes in albedo , are less impactful. Greenhouse gases are transparent to sunlight , and thus allow it to pass through the atmosphere to heat the Earth's surface. The Earth radiates it as heat , and greenhouse gases absorb a portion of it. This absorption slows

15225-432: The forests where biomass trends did not change, there was a substantial shift towards the deciduous broad-leaved trees with higher drought tolerance over the past 65 years. A Landsat analysis of 100,000 undisturbed sites found that the areas with low tree cover became greener in response to warming, but tree mortality (browning) became the dominant response as the proportion of existing tree cover increased. A 2018 study of

15370-604: The global climate system has grown with only brief pauses since at least 1970, and over 90% of this extra energy has been stored in the ocean . The rest has heated the atmosphere , melted ice, and warmed the continents. The Northern Hemisphere and the North Pole have warmed much faster than the South Pole and Southern Hemisphere . The Northern Hemisphere not only has much more land, but also more seasonal snow cover and sea ice . As these surfaces flip from reflecting

15515-526: The ice loss. In the IPCC Fifth Assessment Report , it was suggested that this effect could potentially overpower increased ice loss under the higher levels of warming and result in small net ice gain, but by the time of the IPCC Sixth Assessment Report , improved modelling had proven that the glacier breakup would consistently accelerate at a faster rate. East Antarctic ice sheet is the largest and thickest ice sheet on Earth, with

15660-516: The largest repository of land-bound ice after the Greenland and the Antarctica ice sheets, and they are also undergoing melting as the result of climate change. A glacier tipping point is when it enters a disequilibrium state with the climate and will melt away unless the temperatures go down. Examples include glaciers of the North Cascade Range , where even in 2005 67% of the glaciers observed were in disequilibrium and will not survive

15805-456: The largest, most resilient glaciers would survive the century. This ice loss would also contribute ~ 9 cm ( 3 + 1 ⁄ 2  in) and ~15 cm (6 in) to sea level rise, while the current likely trajectory of 2.7 °C (4.9 °F) would result in the SLR contribution of ~ 11 cm ( 4 + 1 ⁄ 2  in) by 2100. The absolute largest amount of glacier ice is located in

15950-572: The last 14 million years. Concentrations of methane are far higher than they were over the last 800,000 years. Global human-caused greenhouse gas emissions in 2019 were equivalent to 59 billion tonnes of CO 2 . Of these emissions, 75% was CO 2 , 18% was methane , 4% was nitrous oxide, and 2% was fluorinated gases . CO 2 emissions primarily come from burning fossil fuels to provide energy for transport , manufacturing, heating , and electricity. Additional CO 2 emissions come from deforestation and industrial processes , which include

16095-436: The last two decades. CO 2 is only removed from the atmosphere for the long term when it is stored in the Earth's crust, which is a process that can take millions of years to complete. Around 30% of Earth's land area is largely unusable for humans ( glaciers , deserts , etc.), 26% is forests , 10% is shrubland and 34% is agricultural land . Deforestation is the main land use change contributor to global warming, as

16240-441: The last: internal climate variability processes can make any year 0.2 °C warmer or colder than the average. From 1998 to 2013, negative phases of two such processes, Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) caused a short slower period of warming called the " global warming hiatus ". After the "hiatus", the opposite occurred, with years like 2023 exhibiting temperatures well above even

16385-493: The likelihood of forest fires in the Amazon . The threshold for tipping was estimated to be between 3.5 °C (6.3 °F) and 7 °C (13 °F) of global warming in 2016. After tipping, the system would be in a more permanent El Niño state, rather than oscillating between different states. This has happened in Earth's past, in the Pliocene , but the layout of the ocean was significantly different from now. So far, there

16530-608: The lower atmosphere. Carbon dioxide , the primary greenhouse gas driving global warming, has grown by about 50% and is at levels not seen for millions of years. Climate change has an increasingly large impact on the environment . Deserts are expanding , while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost , retreat of glaciers and sea ice decline . Higher temperatures are also causing more intense storms , droughts, and other weather extremes . Rapid environmental change in mountains , coral reefs , and

16675-560: The lower cell has weakened by 10-20%. Some of this has been due to the natural cycle of Interdecadal Pacific Oscillation , but climate change has also played a substantial role in both trends, as it had altered the Southern Annular Mode weather pattern, while the massive growth of ocean heat content in the Southern Ocean has increased the melting of the Antarctic ice sheets , and this fresh meltwater dilutes salty Antarctic bottom water. The Amazon rainforest

16820-409: The maximum thickness of 4,800 metres (3.0 mi). A complete disintegration would raise the global sea levels by 53.3 metres (175 ft), but this may not occur until global warming of 10 °C (18 °F), while the loss of two-thirds of its volume may require at least 6 °C (11 °F) of warming to trigger. Its melt would also occur over a longer timescale than the loss of any other ice on

16965-413: The more popular term after NASA climate scientist James Hansen used it in his 1988 testimony in the U.S. Senate . Since the 2000s, climate change has increased usage. Various scientists, politicians and media may use the terms climate crisis or climate emergency to talk about climate change, and may use the term global heating instead of global warming . Over the last few million years

17110-411: The next few centuries. Like with the other ice sheets, there is a counteracting negative feedback - greater warming also intensifies the effects of climate change on the water cycle , which result in an increased precipitation over the ice sheet in the form of snow during the winter, which would freeze on the surface, and this increase in the surface mass balance (SMB) counteracts some fraction of

17255-456: The northern high latitudes as a result of this process could activate tipping elements in that region, such as permafrost degradation, and boreal forest dieback . Scientists have identified many elements in the climate system which may have tipping points. As of September 2022, nine global core tipping elements and seven regional impact tipping elements are known. Out of those, one regional and three global climate elements will likely pass

17400-580: The ocean , in ecosystems , and the atmosphere. Examples of tipping points include thawing permafrost , which will release methane , a powerful greenhouse gas , or melting ice sheets and glaciers reducing Earth's albedo , which would warm the planet faster. Thawing permafrost is a threat multiplier because it holds roughly twice as much carbon as the amount currently circulating in the atmosphere. Tipping points are often, but not necessarily, abrupt . For example, with average global warming somewhere between 0.8 °C (1.4 °F) and 3 °C (5.4 °F),

17545-547: The paleo record, like sediments, ice caps, and tree rings, where past examples of tipping can be observed. It is not always possible to say whether increased variance and autocorrelation is a precursor to tipping, or caused by internal variability, for instance in the case of the collapse of the AMOC. Quality limitations of paleodata further complicate the development of EWSs. They have been developed for detecting tipping due to drought in forests in California, and melting of

17690-512: The planet, taking no less than 10,000 years to finish. However, the subglacial basin portions of the East Antarctic ice sheet may be vulnerable to tipping at lower levels of warming. The Wilkes Basin is of particular concern, as it holds enough ice to raise sea levels by about 3–4 metres (10–13 ft). Arctic sea ice was once identified as a potential tipping element. The loss of sunlight-reflecting sea ice during summer exposes

17835-685: The principal wet season of West Africa. However, there is significant uncertainty related to these projections especially for West Africa. Currently, the Sahel is becoming greener but precipitation has not fully recovered to levels reached in the mid-20th century. A study from 2022 concluded: "Clearly the existence of a future tipping threshold for the WAM ( West African Monsoon ) and Sahel remains uncertain as does its sign but given multiple past abrupt shifts, known weaknesses in current models, and huge regional impacts but modest global climate feedback, we retain

17980-619: The rate at which heat escapes into space, trapping heat near the Earth's surface and warming it over time. While water vapour (≈50%) and clouds (≈25%) are the biggest contributors to the greenhouse effect, they primarily change as a function of temperature and are therefore mostly considered to be feedbacks that change climate sensitivity . On the other hand, concentrations of gases such as CO 2 (≈20%), tropospheric ozone , CFCs and nitrous oxide are added or removed independently from temperature, and are therefore considered to be external forcings that change global temperatures. Before

18125-522: The rate of Arctic shrinkage and underestimated the rate of precipitation increase. Sea level rise since 1990 was underestimated in older models, but more recent models agree well with observations. The 2017 United States-published National Climate Assessment notes that "climate models may still be underestimating or missing relevant feedback processes". Additionally, climate models may be unable to adequately predict short-term regional climatic shifts. A subset of climate models add societal factors to

18270-622: The rate of yield growth . Fisheries have been negatively affected in multiple regions. While agricultural productivity has been positively affected in some high latitude areas, mid- and low-latitude areas have been negatively affected. According to the World Economic Forum, an increase in drought in certain regions could cause 3.2 million deaths from malnutrition by 2050 and stunting in children. With 2 °C warming, global livestock headcounts could decline by 7–10% by 2050, as less animal feed will be available. If

18415-405: The recent average. This is why the temperature change is defined in terms of a 20-year average, which reduces the noise of hot and cold years and decadal climate patterns, and detects the long-term signal. A wide range of other observations reinforce the evidence of warming. The upper atmosphere is cooling, because greenhouse gases are trapping heat near the Earth's surface, and so less heat

18560-406: The region's glaciers over the same timeframe. Glacier melt is projected to accelerate regional river flows until the amount of meltwater peaks around 2060, going into an irreversible decline afterwards. Since regional precipitation will continue to increase even as the glacier meltwater contribution declines, annual river flows are only expected to diminish in the western basins where contribution from

18705-411: The release of chemical compounds that influence clouds, and by changing wind patterns. In tropic and temperate areas the net effect is to produce significant warming, and forest restoration can make local temperatures cooler. At latitudes closer to the poles, there is a cooling effect as forest is replaced by snow-covered (and more reflective) plains. Globally, these increases in surface albedo have been

18850-432: The remainder occurs at the base of the ice sheet where it touches the sea, by calving (breaking off) icebergs from its margins. The Greenland ice sheet has a tipping point because of the melt-elevation feedback . Surface melting reduces the height of the ice sheet, and air at a lower altitude is warmer. The ice sheet is then exposed to warmer temperatures, accelerating its melt. A 2021 analysis of sub-glacial sediment at

18995-476: The remaining 23%. Some forests have not been fully cleared, but were already degraded by these impacts. Restoring these forests also recovers their potential as a carbon sink. Local vegetation cover impacts how much of the sunlight gets reflected back into space ( albedo ), and how much heat is lost by evaporation . For instance, the change from a dark forest to grassland makes the surface lighter, causing it to reflect more sunlight. Deforestation can also modify

19140-720: The risk of its collapse. Some climate models indicate that the deep convection in Labrador - Irminger Seas could collapse under certain global warming scenarios, which would then collapse the entire circulation in the North subpolar gyre . It is considered unlikely to recover even if the temperature is returned to a lower level, making it an example of a climate tipping point. This would result in rapid cooling, with implications for economic sectors, agriculture industry, water resources and energy management in Western Europe and

19285-402: The salty surface water, and warming further decreases its density. The lighter water is less able to sink, slowing down the circulation. Theory, simplified models, and reconstructions of abrupt changes in the past suggest the AMOC has a tipping point. If freshwater input from melting glaciers reaches a certain threshold, it could collapse into a state of reduced flow. Even after melting stops,

19430-484: The same authors revealed that in their large eddy simulation, this tipping point cannot be stopped with solar radiation modification : in a hypothetical scenario where very high CO 2 emissions continue for a long time but are offset with extensive solar radiation modification, the break-up of stratocumulus clouds is simply delayed until CO 2 concentrations hit 1,700 ppm, at which point it would still cause around 5 °C (9.0 °F) of unavoidable warming. Crossing

19575-468: The sea floor under part of the Arctic Ocean. This frozen ground holds vast amounts of carbon from plants and animals that have died and decomposed over thousands of years. Scientists believe there is nearly twice as much carbon in permafrost than is present in Earth's atmosphere. As the climate warms and the permafrost begins to thaw, carbon dioxide and methane are released into the atmosphere. With higher temperatures, microbes become active and decompose

19720-583: The sea levels by at least 3.3 m (10 ft 10 in) over approximately 2000 years. Recent warming has driven many terrestrial and freshwater species poleward and towards higher altitudes . For instance, the range of hundreds of North American birds has shifted northward at an average rate of 1.5 km/year over the past 55 years. Higher atmospheric CO 2 levels and an extended growing season have resulted in global greening. However, heatwaves and drought have reduced ecosystem productivity in some regions. The future balance of these opposing effects

19865-467: The seven tree species dominant in the Eastern Canadian forests found that while 2 °C (3.6 °F) warming alone increases their growth by around 13% on average, water availability is much more important than temperature. Also, further warming of up to 4 °C (7.2 °F) would result in substantial declines unless matched by increases in precipitation. A 2021 paper had confirmed that

20010-465: The tipping threshold. These systems display critical slowing down , with an increased memory (rising autocorrelation ) and variance . Depending on the nature of the tipping system, there may be other types of early warning signals. Abrupt change is not an early warning signal (EWS) for tipping points, as abrupt change can also occur if the changes are reversible to the control parameter. These EWSs are often developed and tested using time series from

20155-667: The transition to a green economy. Scientists have identified many elements in the climate system which may have tipping points. In the early 2000s the IPCC began considering the possibility of tipping points, originally referred to as large-scale discontinuities . At that time the IPCC concluded they would only be likely in the event of global warming of 4 °C (7.2 °F) or more above preindustrial times, and another early assessment placed most tipping point thresholds at 3–5 °C (5.4–9.0 °F) above 1980–1999 average warming. Since then estimates for global warming thresholds have generally fallen, with some thought to be possible in

20300-401: The upper and the lower cell. The smaller upper cell is most strongly affected by winds due to its proximity to the surface, while the behaviour of the larger lower cell is defined by the temperature and salinity of Antarctic bottom water . The strength of both halves had undergone substantial changes in the recent decades: the flow of the upper cell has increased by 50-60% since 1970s, while

20445-524: The warming within the Arctic Circle has already been nearly four times faster than the global average since 1979, Barents Sea warmed up to seven times faster than the global average. This tipping point matters because of the decade-long history of research into the connections between the state of Barents- Kara Sea ice and the weather patterns elsewhere in Eurasia . Mountain glaciers are

20590-411: The world warms by 2 °C (3.6 °F), they will become extremely rare. In 2019, a study employed a large eddy simulation model to estimate that equatorial stratocumulus clouds could break up and scatter when CO 2 levels rise above 1,200  ppm (almost three times higher than the current levels, and over 4 times greater than the preindustrial levels). The study estimated that this would cause

20735-438: The world. Impacts can be observed on all continents and ocean regions, with low-latitude, less developed areas facing the greatest risk. Continued warming has potentially "severe, pervasive and irreversible impacts" for people and ecosystems. The risks are unevenly distributed, but are generally greater for disadvantaged people in developing and developed countries. The World Health Organization calls climate change one of

20880-471: Was considered suspectible to irreversible collapse in the earlier research. However, more recent research has demonstrated that warming tends to strengthen the Indian monsoon, and it is projected to strengthen in the future. Methane hydrate deposits in the Arctic were once thought to be vulnerable to a rapid dissociation which would have a large impact on global temperatures, in a dramatic scenario known as

21025-524: Was sending more energy to Earth, but instead, it has been cooling. This is consistent with greenhouse gases preventing heat from leaving the Earth's atmosphere. Explosive volcanic eruptions can release gases, dust and ash that partially block sunlight and reduce temperatures, or they can send water vapour into the atmosphere, which adds to greenhouse gases and increases temperatures. These impacts on temperature only last for several years, because both water vapour and volcanic material have low persistence in

#535464