Misplaced Pages

PAL-M

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

PAL-M is the analogue colour TV system used in Brazil since early 1972, making it the first South American country to broadcast in colour.

#152847

60-572: It is unique among analogue TV systems in that it combines the 525-line 30 frames-per-second System M with the PAL colour encoding system (using very nearly the NTSC colour subcarrier frequency), unlike all other countries which pair PAL with 625-line systems and NTSC with 525-line systems. Colour broadcasts began on 19 February 1972, when a TV station in Caxias do Sul , TV Difusora, transmitted

120-881: A TV set or a set-top box bought in Japan will not work in Brazil and vice versa. However, the Japanese-Brazilian Working Group is working to join the two systems into only one to achieve the benefits of gains of scale. On the other hand, Brazil is producing several types of TV sets and set-top boxes for the SBTVD (ISDB-Tb) system and in a good quantity and there is no problem meeting the consumer demand for TV sets, set-top boxes and also for transmitters and other components. Peru, Argentina, Chile, Venezuela, Ecuador, Costa Rica, Paraguay, Uruguay, Philippines and Nicaragua have recently adopted ISDB-T and will reinforce

180-613: A United Nations' regulatory agency for telecommunication and information technology questions — has certified on April 29, 2009, the module Ginga-NCL and the language NCL/Lua as the first international recommendation for interactive multimedia environments for Digital TV and IPTV—Recommendation H.761. NCL/Lua and Ginga-NCL were developed by the TeleMidia Laboratory of the Informatics Department at Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio),

240-527: A built-in DTV receiver) were increasing very fast and it seems that mobility was perceived by consumers as a more attractive SBTVD/ISDB-T feature than HD or Full HD definition. The SBTVD/ISDB-T standard allows a very impressive mobile reception, with high quality and steady image, without noise, excellent audio and very robust reception even in the presence of signal reflection, electromagnetic or impulsive interference. Peru, Argentina, Chile and Venezuela were planning

300-503: A display resolution of 640 × 480 ( VGA ); that is standard-definition television (SDTV) with a 4:3 aspect ratio (with square pixels). The field rate (not the frame rate ) is usually (60/1.001) = 59.94  hertz for color TV and is often incorrectly rounded up to 60 Hz. There are several conventions for written shorthands for the combination of resolution and rate: 480i60 , 480i/30 ( EBU /SMPTE always use frame rate to specify interlaced formats) and 480/60i . 480i

360-508: A group composed of technicians from Brazilian Society for Television Engineering (SET) and Brazilian Association of Radio and Television Broadcasters (ABERT) has been analyzing existing digital TV standards (American ATSC , European DVB-T and Japanese ISDB-T ) and its technical aspects but the discussion become a robust study only in 1998. From 1998 to 2000, the ABERT and SET group, supported by Universidade Presbiteriana Mackenzie developed

420-551: A public television station from the state of São Paulo, obtained special authorization (for educational purposes only) and is currently using this feature to broadcast four different video programs. Besides the HDTV and the one-segment (handheld) streams, an additional archive program (Multicultura) and the Virtual University channel (UNIVESP) have been on air since August 2009. In Japan Multiprogram has been successful with

480-419: A rolling and/or squashed monochrome picture with no sound on a native European PAL television, as do NTSC signals. PAL-M details: PAL-M colorimetry: Colorimetry is similar to the original 1953 color NTSC specification: PAL-M being a standard unique to one country, the need to convert it to/from other standards often arises. However some special VHS video recorders are available which can allow viewers

540-470: A very complete study based on several tests considering not only technical characteristics of each standard but also signal quality, both indoor and outdoor. That was the first complete study comparing all three major DTV standards in the world by an independent entity (i.e. without influence of the ATSC Committee, DVB Group or ARIB/DiBEG Group) and it was considered a very rigorous and robust study by

600-437: A very impressive price reduction for such a quality product, and other basic devices present even lower prices. However, until September 2009 the smallest TV that could be bought with an integrated digital tuner was a 32 inch LCD TV. This was slowing down the adoption of digital TV in Brazil, since most people that watch FTA TV cannot afford buying expensive LCD TVs, and 21 and 29 inch CRT TVs were still very popular among

660-467: Is 576i . It originated from the need for a standard to digitize analog 525 line TV (defined in BT.601 ) and is now used for digital TV broadcasts and home appliances such as game consoles and DVD disc players. The 480 identifies a vertical resolution of 480 lines, and the i identifies it as an interlaced resolution. The field rate , which is 60  Hz (or 59.94 Hz when used with NTSC color),

SECTION 10

#1732798205153

720-556: Is a technical standard for digital television broadcast used in Brazil, Argentina , Peru , Botswana , Chile , Honduras , Venezuela , Ecuador , Costa Rica , Paraguay , Philippines , Bolivia , Nicaragua , El Salvador and Uruguay , based on the Japanese ISDB-T standard. ISDB-T International launched into commercial operation on 2 December 2007, in São Paulo , Brazil. It is similar to ISDB-T, except it utilizes

780-573: Is sometimes inaccurately called "NTSC", even though NTSC only exists in the analog domain. For analog NTSC, there are a total of 525 scanning lines per frame of which originally 483 lines were visible (241.5 visible lines per field + 21 lines of vertical blanking per field = 483 + 42 = 525 lines per frame) and later 480 (240 complete lines per field). [For quad video recording systems, the math suggests 15 transverse head passes, each consisting of 16 lines of video, are required to complete one field.] A full frame consists of two fields. One field contains

840-573: Is sometimes included when identifying the video mode, i.e. 480i60 ; another notation, endorsed by both the International Telecommunication Union in BT.601 and SMPTE in SMPTE 259M , includes the frame rate , as in 480i/30 . Although related, it should not be confused with the analog " 525 lines " resolution, mandated by CCIR Systems M and J and usually paired with NTSC color. This association explains why 480i

900-962: Is usually used in countries that conventionally use NTSC (most of the Americas and Japan ), because the 525 transmitted lines at 60 hertz of analogue NTSC contain 480 visible ones. In each case of the use of the ‘60’ terminology, it is merely shorthand for 59.94, to differentiate it from 30 (29.97) or 24 (23.976). Color information is stored using the YCbCr color space (different from NTSC that used YIQ ) with 4:2:2 sampling (also different from NTSC) and following Rec. 601 colorimetry. 480i can be transported by all major digital television formats ( ATSC , DVB and ISDB ) and on DVD . ISDB-T International ISDB-T International , also known in Brazil as Sistema Brasileiro de Televisão Digital ( SBTVD ; English: Brazilian Digital Television System ),

960-560: The H.264 video codec rather than MPEG-2 , and replaces BML with Ginga —a middleware supporting Nested Context Language (NCL) and Java -based interactive TV applications. The ISDB-T International standard was developed as SBTVD by a study group coordinated by the Brazilian Ministry of Communications and was led by the Brazilian Telecommunications Agency ( ANATEL ) with support from

1020-469: The digital divide , that is, to promote inclusion of those living apart from today's information society . Another goal was to enable access to e-government , i.e. to make government closer to the population, since in Brazil 95.1% of households have at least one TV set. In January 2009, the Brazilian-Japanese study group for digital TV finished and published a specification document joining

1080-669: The Brazilian Government (digital inclusion, educational and cultural support, e-gov, etc.). Economical points were analyzed too, such as the elimination of royalties by the Japanese Government on the use of ISDB-T, the transfer of technology from Japan to Brazil, the creation of a Japanese-Brazilian work group for ongoing developments, and financial help for the initial implementation from the Japanese Development Bank. The final decision

1140-655: The Brazilian Ministry of Communication ordered the National Telecommunication Agency to carry on studies to select and implement a DTV standard in Brazil. Due to the completeness and quality of the ABERT/SET/Mackenzie study, ANATEL considered that as the official result and supported it considering ISDB-T the better standard to be implemented in Brazil. However the final decision about the standard selected wasn't announced at that moment (August 2000) because of three main points: In

1200-919: The Caxias do Sul Grape Festival in collaboration with TV Rio. Transition from black and white to colour on most programmes was not complete until 1978, and only became commonplace nationwide by 1980. NTSC being the "natural" choice for countries with monochrome standard M, the choice of a different colour system poses problems of incompatibility with available hardware and the need to develop new television sets and production hardware. Walter Bruch , inventor of PAL, explains Brazil's choice of PAL over NTSC against these odds by an advertising campaign Telefunken and Philips carried out across South America in 1972, which included colour test broadcasts of popular shows (done with TV Globo) and technical demonstrations with executives of television stations. PAL-M signals are in general identical to North American NTSC signals, except for

1260-523: The DTV technical world community. The results of the "Brazilian digital television tests" showed the insufficient quality for indoor reception presented by ATSC (that is a very important parameter because 47% of television sets in Brazil use only an internal antenna) and, between DVB-T and ISDB-T, the last one presented superior performance in indoor reception and flexibility to access digital services and TV programs through non-mobile, mobile or portable receivers with impressive quality. In parallel in 1998,

SECTION 20

#1732798205153

1320-570: The Japanese ISDB-T with Brazilian SBTVD, resulting in a specification now called "ISDB-T International". ISDB-T International is the system that is proposed by Japan and Brazil for use in other countries in South America and around the world. The history of SBTVD development can be divided in two major periods: a) Initial Studies and Tests; b) Implementation of Digital TV Work Group and final definition of SBTVD standard. Since 1994

1380-618: The Panasonic NV-FJ605. The PAL colour system (either baseband or with any RF system, with the normal 4.43 MHz subcarrier unlike PAL-M) can also be applied to an NTSC-like 525-line picture to form what is often known as "PAL-60" (sometimes "PAL-60/525," "Pseudo-PAL," or "Quasi-PAL"). This non-standard signal is a method used in European domestic VCRs and DVD players for playback of NTSC material on PAL televisions. It's not identical to PAL-M and incompatible with it, because

1440-587: The SBTVD Forum announced the selection of Japanese ISDB-T system as a baseline for the SBTVD system, enhanced by some new technologies: SBTVD system also presents some adaptations (the following are the main ones): Note: There are around 16 technical documents for the SBTVD system, with more than 3,000 pages published by the ABNT (Brazilian Association for Technical Standards) and the SBTVD Forum detailing

1500-743: The SBTVD Forum in April 2009. The same forum declared that the APIs set developed by Sun Microsystems, called Java-DTV, is the standard for SBTVD system, after negotiations with Sun Microsystems to reduce royalties in 15% . Hence, the royalty cost defined by Sun for Java-DTV is much more affordable than that charged by GEM APIs owners (GEM middleware is used in DVB-T ;– the European DTV standard). That will benefit development of interactive set-top boxes and TV sets keeping them cheaper than if GEM

1560-650: The Telecommunication's Research and Development Centre ( CPqD ). The study group was composed of members of ten other Brazilian ministries, the National Institute for Information Technology (ITI), several Brazilian universities, broadcast professional organizations, and manufacturers of broadcast/reception devices. The objective of the group was to develop and implement a digital terrestrial television standard in Brazil, addressing not only technical and economical issues, but also and mainly mitigating

1620-501: The band used by the broadcast companies for analog TV must be returned to the Brazilian Government. It is important to note that this Presidential Act states that ISDB-Tb must offer a "Multiprogram" feature. During the implementation in Brazil, however, the Ministry of Communication changed this requirement and blocked this feature at least till May 2009. The decision for ISDB-T was contested by some sectors of society that complained it

1680-526: The beginning, from the broadcasters' point of view, the DTV implementation in Brazil seemed to be very successful if compared with the implementation process in other countries. After 16 months, the digital TV signal covered almost 50% of the Brazilian population. The country successfully finished the transition from analog to digital TV in December 2018, when analog TV was phased out in most regions where it

1740-536: The benefits of SBTVD/ISDB-Tb standard to Guatemala , Cuba , Belize , Mozambique , Tanzania , Malawi , Thailand , and some SADC countries. Additionally, Brazil and Japan are trying to present the benefits of SBTVD/ISDB-Tb to Colombia and Panama which have initially chosen the European standard as of January 2011 and Honduras and El Salvador who have initially chosen the US-American standard as of December 2010. International Telecommunication Union (ITU) —

1800-469: The colour subcarrier is at a different frequency; it will therefore display in monochrome on PAL-M and NTSC television sets. The analog PAL-M was scheduled to be supplanted by a digital high-definition system named Sistema Brasileiro de Televisão Digital (SBTVD) by 2015, and finishing in 2018. From 1999 to 2000, the ABERT /SET group in Brazil did system comparison tests of ATSC , DVB-T and ISDB-T under

1860-465: The country, leaving some regions to phase out analog transmissions to 2023. A massive distribution program of set top boxes to low income citizens who still had old TV sets (therefore unable to receive ISDB-T) was performed between 2015 and 2018. As of 2021, LED-backlit TV are much more affordable (like in most of the world), a 40" LED-backlit TV can be bought for about US$ 300.00. Sales of mobile receivers (for laptops, mobile DTV sets and mobile phones with

PAL-M - Misplaced Pages Continue

1920-471: The creation of research networks where the studies could be carried in a decentralized manner by several institutes working together. Some groups worked to present a totally new digital standard, some groups worked to analyze and select the most known digital TV standards (American ATSC , European DVB-T and Japanese ISDB-T ), and other groups worked to implement new features/modules to these already known standards. After 3 years of studies and developments,

1980-641: The current TV business model, reducing revenues from advertising. However, once users see the benefit of the Multiprogram feature, some organizations are asking that the Ministry of Communication will allow its use by all broadcasters. Some broadcasters, using a different business model from that used by TV Globo, are asking the Federal Superior Court to decide if the Multiprogram blockage is legal. Only federal government TV channels are allowed to use Multiprogram in Brazil today. TV Cultura ,

2040-491: The deployment before announcing their analog shutdown date. This innovative feature of the ISDB-T standard allows a consumer to watch three different programs at once, or in a sports match, it is possible to watch the game from the point of view of different cameras. The Brazilian Ministry of Communication prevented commercial broadcast companies from using this feature; only public DTV channels are allowed to use it. This decision

2100-509: The encoding of the colour carrier. Both systems are based on the monochrome CCIR System M standard, therefore, PAL-M will display in monochrome with sound on an NTSC set and vice versa. Nevertheless, due to the different gamma correction values (2.2 for NTSC, 2.8 for PAL-M), gray tones will be incorrect. PAL-M is incompatible with 625-line based versions of PAL , because its frame rate, scan line, colour subcarrier and sound carrier specifications are different. It will therefore usually give

2160-434: The entire SBTVD system. The selection of the Japanese ISDB-T system as the baseline for SBTVD was based on video/audio quality indoor and outdoor, signal robustness, excellent interference treatment, support for complex interactive TV programs, and quality mobile TV. Besides that, ISDB-T with the new features like MPEG-4 video compression and Ginga middleware become an excellent support for those social requirements intended by

2220-412: The first equalizing pulse following an active line or half line. This has the effect of placing a half line of video at the end of the even (first) field and the beginning of the odd (second field). Thus the line numbers correspond to the real lines of the video frame. On all other systems, the field was considered to start with the falling edge of the first field pulse which gave the confusing position that

2280-522: The flexibility of enjoying PAL-M recordings using a standard PAL (625/50 Hz) colour TV, or even through multi-system TV sets. Video recorders like Panasonic NV-W1E (AG-W1 for the USA), AG-W2, AG-W3, NV-J700AM, Aiwa HV-MX100, HV-MX1U, Samsung SV-4000W and SV-7000W feature a digital TV system conversion circuitry. Some recorders support the other way around, being able to playback standard PAL (625/50 Hz) in 50 Hz-compatible PAL-M TV sets, such as

2340-665: The gains of scale in the production of equipment, thus continuing to reduce the price, consolidating the use of the ISDB-T International standard not only in South America. Some months after Presidential Act number 5.820, in November 2006, the SBTVD Forum was created to lead and coordinate technical discussions about the standard, to create all related documentation (in conjunction with ABNT (Associação Brasileira de Normas Técnicas; Brazilian Association for Technical Standards)) and to plan further developments. Samsung

2400-449: The launch of ISDB-T there. Brazilian broadcasters defend the use of the current analog TV VHF band for the " return channel ", the channel that allows digital TV sets to send data to broadcasters as part of an interactive TV service. That 700 MHz band enables the return channel using WiMAX technology, which would be another option to be added to the regular ones (ADSL Internet, Cable Internet, GSM EDGE, GSM 3G, WiFi or dial). That idea

2460-461: The light of those points, the Brazilian Government, created a more structured discussion group, to review the first studies and to address these new points. The SBTVD program was deployed on November 26, 2003, by Presidential Act # 4.901, focusing the creation of a reference model for national terrestrial digital TV in Brazil. The National Telecommunications Agency (ANATEL) was charged by the Brazilian Ministry of Communications to lead this work with

PAL-M - Misplaced Pages Continue

2520-467: The low income population and could be bought for about R$ 400–600 (US$ 200–300). From 2010 on, it was mandated that all TV sets sold in Brazil to be ISDB-T compatible. Furthermore, in the period between 2009 and 2013, Brazil's economy improved, which encouraged family consumption. This, associated with a rapid drop in prices of LCD and LED-backlit TVs quickly led to a more widespread usage of DTV. In December 2018, Brazil phased out analog transmissions in most of

2580-528: The odd field (first) had a half a line of video occupying the latter half of a whole line and ended with a whole line of video but half a scanning line (and vice versa for the even field). The NTSC convention solved this confusion. For DV-NTSC only 480 lines are used. The digitally transmitted horizontal resolution is usually 720 samples (which includes 16 samples for the horizontal sync and horizontal blanking) or 704 visible pixels with an aspect ratio of 4:3 (with vertically rectangular pixels) and therefore

2640-454: The odd-numbered lines and the other contains the even ones. By convention an NTSC video frame is considered to start with an even field followed by an odd field. The disparity of the line numbering compared to other systems is solved by defining the line numbering to start five equalizing pulses (or 2 and a half lines) earlier than on all other systems, including Systems A (405-line) and E (819-line) even though they had no equalizing pulses, on

2700-515: The originally-Japanese digital norm. 480i 480i is the video mode used for standard-definition digital video in the Caribbean , Japan , South Korea , Taiwan , Philippines , Myanmar , Western Sahara , and most of the Americas (with the exception of Argentina , Paraguay , and Uruguay ). The other common standard definition digital standard, used in the rest of the world,

2760-509: The prices dropped quickly to around R$ 300 (~US$ 150) . The Federal Government announced subsidies worth 1 billion Reais (~US$ 556 million) so these prices faced a new reduction phase. By May 2009 a 42 inch LCD TV full HD (1920×1080) with built-in digital TV tuner and special characteristics such as double presentation rate (120 Hz) and exceptional contrast (50.000:1) was being sold for R$ 3,600.00 (~US$ 1,800.00) in São Paulo City,

2820-472: The studios where Globo produces its programs. The 2007 Pan American Games were also experimentally broadcast in high definition by Globo. Broadcasts of the event could be seen both from Samsung's show room and electronics megastores that received digital tuners to show and demonstrate the technology to the public. Regular SBTVD broadcasts started on December 2, 2007, initially in São Paulo. By January 2008,

2880-635: The supervision of the CPqD foundation. Originally, Brazil including Argentina, Paraguay and Uruguay planned to adopt the DVB-T standard. However, the ABERT/SET group selected ISDB-T, after field-tests results showed that it was the most robust system under Brazilian reception conditions. Therefore, SBTVD was replaced by the Brazilian variant of the ISDB standard, ISDB-Tb , which features SBTVD's characteristics into

2940-472: The system had also launched in these other Brazilian cities: Rio de Janeiro , Belo Horizonte , Goiânia , Porto Alegre , Curitiba , Campinas , Cuiabá , Salvador , Florianópolis , Vitória , Uberlândia , São José do Rio Preto , Teresina , Santos , Brasília , Campo Grande , Fortaleza , Recife , João Pessoa , Sorocaba , Mogi das Cruzes , Ribeirão Preto , Manaus, Belém , Joinville , Aracaju , Londrina , São Luís , Araraquara and Natal . In

3000-414: The technical support of CPqD, and the contributions of 10 other Brazilian ministries, the National Institute for Information Technology (ITI), 25 organizations related to the matter (broadcast professionals, broadcast companies, TV program producers, etc.), and 75 universities/R&D institutes and electro-electronic manufacturers. More than 1,200 researchers/professionals were mobilized. The DTV Work Group

3060-509: Was a "political" decision where the Brazilian Government was influenced by the Broadcaster Association, especially TV Globo, since ISDB-T isolates TV business from telecommunication company business which will protect the already decreasing earnings of broadcasters in a world that is migrating from TV to Internet and cellular telephone services. The SBTVD (ISDB-Tb) and the original ISDB-T are not compatible systems. That means

SECTION 50

#1732798205153

3120-511: Was already released for use by set-top box/DTV manufacturers, using NCL (Nested Context Language)/ Lua as its declarative programming language. That part of Ginga is called Ginga-NCL. However, the complete Ginga middleware specification was planned to present the declarative NCL module and procedural Java module to allow programmers, manufacturers and users to take the best from the two environments: declarative and procedural. The Java part of Ginga, called Ginga-J, had its specification approved by

3180-530: Was also shown. The signal was a test reel from Rede Globo , broadcast at 1080i (the standard does not define 1080p) consisting of short clips from soap operas, talk shows, soccer games from recent years and footage of the Brazilian Carnival in Rio de Janeiro along with some scenic views. All content was natively HD, some of which was shot with high definition cameras experimentally placed in many of

3240-478: Was announced on June 29, 2006, by Presidential Act # 5.820 officially stating that Brazil adopted the ISDB-T terrestrial digital transmission system as the baseline for ISDB-Tb (the commercial name for the SBTVD system). The Presidential Act also defines the implementation plan and rules for digital TV in Brazil stating that in seven years all Brazilian territory must be covered by the digital TV signal and in 10 years (i.e. 2016) all TV broadcast must be digital, and that

3300-745: Was organized in a structure with 3 areas of development: The objective of the DTV Work Group was not only to define the technical and economical aspects of the Digital TV system but also to address: Besides, technical requirements are important and were also considered: Just for the Consultant Committee, 20 public RFP (Request for Proposal) were published trying to cover all areas that compose digital TV: Modulation, Signal Processing/Compression, video systems, audio systems, data transport, middleware, etc. The RFPs strongly reinforced

3360-486: Was still broadcasting. Citizens with low income who still had old TV sets (i.e. unable to receive digital TV) were given set top boxes to enable them to continue watching TV. However, there are some less populated regions where the regulator accepted phasing out to be postponed to 2023. A new push in set-top box and DTV sets sales was expected with the final specification of Ginga middleware that will allow interactive use of TV. Ginga 1.0 (a first implementation of Ginga)

3420-497: Was taken because Multiprogram could allow unauthorized use of the TV broadcast band. To start with, the Ministry of Communication informed that legal support was being created to the allow the use of such a feature , but later decided that the feature will be blocked until new studies are performed. TV Globo and ABRA (Association of Broadcasting Companies) are pushing the Ministry to keep the Multiprogram feature blocked because it will impact

3480-516: Was the first company to do a public demonstration of SBTVD transmissions and receivers on June 19, 2007, although other companies claimed to have receivers ready at the time. At their showroom in São Paulo , two Full HD LCD sets were shown: one with a built-in tuner and another connected to a prototype set-top box. The tuner and set-top box were developed in Brazil, at Samsung's research center in Manaus , Amazonas . 1seg broadcasting to mobile devices

3540-616: Was to be presented to the Brazilian Government in the WiMAX Forum in June 2009, in the hope of creating an international standard for the return channel. The Brazilian and Japanese governments are working together to show the benefits of SBTVD (ISDB-Tb) standard to all South-American countries, focusing specially on the social benefits of digital inclusion through DTV and quality of image, sound and robustness of ISDB-T system as well as mobility and interaction. Brazil and Japan are presenting

3600-484: Was used as middleware or even if GEM APIs were used with Ginga-J. In the 3rd quarter 2009 the first set-top boxes and TV sets with complete Ginga middleware (Ginga-NCL and Ginga-J) were available in the market. That date match with the release of first interactive programs to be broadcast by television companies. At launch on December 2, 2007, set-top boxes were available for prices ranging between R$ 900 (~US$ 450) and R$ 1200 (~US$ 600), inhibiting sales. But after 8 months

#152847