The PDP–11 is a series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) from 1970 into the late 1990s, one of a set of products in the Programmed Data Processor (PDP) series. In total, around 600,000 PDP-11s of all models were sold, making it one of DEC's most successful product lines. The PDP-11 is considered by some experts to be the most popular minicomputer.
99-707: The PDP-11/73 (strictly speaking, the MicroPDP-11/73 ) was the third generation of the PDP-11 series of 16-bit minicomputers produced by Digital Equipment Corporation to use LSI processors. Introduced in 1983, this system used the DEC J-11 chip set and the Q-Bus , with a clock speed of 15.2 MHz. The 11/73 (also known as the KDJ11A) is a dual height module with on board bootstrap, cache and bus interface. From
198-538: A VT100 terminal enclosure. The /150 was housed in a table-top unit which included two 8-inch floppy drives, three asynchronous serial ports, one printer port, one modem port and one synchronous serial port and required an external terminal. All three employed the same chipset as used on the LSI-11/03 and LSI-11/2 in four "microm"s. There is an option which combines two of the microms into one dual carrier, freeing one socket for an EIS/FIS chip. The /150 in combination with
297-471: A VT105 terminal was also sold as MiniMINC , a budget version of the MINC-11 . The DEC Professional series are desktop PCs intended to compete with IBM's earlier 8088 and 80286 based personal computers. The models are equipped with 5 1 ⁄ 4 inch floppy disk drives and hard disks, except the 325 which has no hard disk. The original operating system was P/OS, which was essentially RSX-11 M+ with
396-477: A register . The binary code for this instruction is 10110 followed by a 3-bit identifier for which register to use. The identifier for the AL register is 000, so the following machine code loads the AL register with the data 01100001. This binary computer code can be made more human-readable by expressing it in hexadecimal as follows. Here, B0 means "Move a copy of the following value into AL ", and 61
495-517: A fifth chip can be added to extend the instruction set). It uses a bus which is a close variant of the Unibus called the LSI Bus or Q-Bus ; it differs from the Unibus primarily in that addresses and data are multiplexed onto a shared set of wires rather than having separate sets of wires. It also differs slightly in how it addresses I/O devices and it eventually allowed a 22-bit physical address (whereas
594-516: A higher-level language, for performance reasons or to interact directly with hardware in ways unsupported by the higher-level language. For instance, just under 2% of version 4.9 of the Linux kernel source code is written in assembly; more than 97% is written in C . Assembly language uses a mnemonic to represent, e.g., each low-level machine instruction or opcode , each directive , typically also each architectural register , flag , etc. Some of
693-494: A language is used to represent machine code instructions is found in Kathleen and Andrew Donald Booth 's 1947 work, Coding for A.R.C. . Assembly code is converted into executable machine code by a utility program referred to as an assembler . The term "assembler" is generally attributed to Wilkes , Wheeler and Gill in their 1951 book The Preparation of Programs for an Electronic Digital Computer , who, however, used
792-478: A list of data, arguments or parameters. Some instructions may be "implied", which means the data upon which the instruction operates is implicitly defined by the instruction itself—such an instruction does not take an operand. The resulting statement is translated by an assembler into machine language instructions that can be loaded into memory and executed. For example, the instruction below tells an x86 / IA-32 processor to move an immediate 8-bit value into
891-717: A macro definition, e.g., MEXIT in HLASM , while others may be permitted within open code (outside macro definitions), e.g., AIF and COPY in HLASM. In assembly language, the term "macro" represents a more comprehensive concept than it does in some other contexts, such as the pre-processor in the C programming language , where its #define directive typically is used to create short single line macros. Assembler macro instructions, like macros in PL/I and some other languages, can be lengthy "programs" by themselves, executed by interpretation by
990-481: A mask of 0. Extended mnemonics are often used to support specialized uses of instructions, often for purposes not obvious from the instruction name. For example, many CPU's do not have an explicit NOP instruction, but do have instructions that can be used for the purpose. In 8086 CPUs the instruction xchg ax , ax is used for nop , with nop being a pseudo-opcode to encode the instruction xchg ax , ax . Some disassemblers recognize this and will decode
1089-554: A menu system on top. As the design was intended to avoid software exchange with existing PDP–11 models, the poor market response was unsurprising. The RT-11 operating system was eventually ported to the PRO series. A port of the RSTS/E operating system to the PRO series was also done internal to DEC, but it was not released. The PRO-325 and -350 units are based on the DCF-11 ("Fonz") chipset,
SECTION 10
#17327872196551188-438: A mnemonic is a symbolic name for a single executable machine language instruction (an opcode ), and there is at least one opcode mnemonic defined for each machine language instruction. Each instruction typically consists of an operation or opcode plus zero or more operands . Most instructions refer to a single value or a pair of values. Operands can be immediate (value coded in the instruction itself), registers specified in
1287-410: A move between a byte-sized register and either another register or memory, and the second byte, E0h, is encoded (with three bit-fields) to specify that both operands are registers, the source is AH , and the destination is AL . In a case like this where the same mnemonic can represent more than one binary instruction, the assembler determines which instruction to generate by examining the operands. In
1386-522: A programmer, so that one program can be assembled in different ways, perhaps for different applications. Or, a pseudo-op can be used to manipulate presentation of a program to make it easier to read and maintain. Another common use of pseudo-ops is to reserve storage areas for run-time data and optionally initialize their contents to known values. Symbolic assemblers let programmers associate arbitrary names ( labels or symbols ) with memory locations and various constants. Usually, every constant and variable
1485-400: A pseudoinstruction that expands to the machine's "set if less than" and "branch if zero (on the result of the set instruction)". Most full-featured assemblers also provide a rich macro language (discussed below) which is used by vendors and programmers to generate more complex code and data sequences. Since the information about pseudoinstructions and macros defined in the assembler environment
1584-617: A register by one (byte instructions) or two (word instructions). Use of relative addressing lets a machine-language program be position-independent . Early models of the PDP–11 had no dedicated bus for input/output , but only a system bus called the Unibus , as input and output devices were mapped to memory addresses. An input/output device determined the memory addresses to which it would respond, and specified its own interrupt vector and interrupt priority . This flexible framework provided by
1683-400: A second pass would require storing the symbol table in memory (to handle forward references ), rewinding and rereading the program source on tape , or rereading a deck of cards or punched paper tape . Later computers with much larger memories (especially disc storage), had the space to perform all necessary processing without such re-reading. The advantage of the multi-pass assembler is that
1782-452: A single-board large-scale integration version of the processor was developed in 1975. A two- or three-chip processor, the J-11 was developed in 1979. The last models of the PDP–11 line were the single board PDP–11/94 and PDP–11/93 introduced in 1990. The PDP–11 processor architecture has a mostly orthogonal instruction set . For example, instead of instructions such as load and store ,
1881-495: A speed perspective it suffered from accessing memory over the Q-bus rather than the private memory interconnect bus adopted by the later PDP-11/83 . This minicomputer -related article is a stub . You can help Misplaced Pages by expanding it . PDP-11 The PDP–11 included a number of innovative features in its instruction set and additional general-purpose registers that made it easier to program than earlier models in
1980-538: A system known as the TSD (Test System Director). As such, they were in use until their software was rendered inoperable by the Year 2000 problem . The US Navy used a PDP–11/34 to control its Multi-station Spatial Disorientation Device, a simulator used in pilot training, until 2007, when it was replaced by a PC-based emulator that could run the original PDP–11 software and interface with custom Unibus controller cards. A PDP–11/45
2079-403: Is a one-to-one correspondence between many simple assembly statements and machine language instructions. However, in some cases, an assembler may provide pseudoinstructions (essentially macros) which expand into several machine language instructions to provide commonly needed functionality. For example, for a machine that lacks a "branch if greater or equal" instruction, an assembler may provide
SECTION 20
#17327872196552178-447: Is a hexadecimal representation of the value 01100001, which is 97 in decimal . Assembly language for the 8086 family provides the mnemonic MOV (an abbreviation of move ) for instructions such as this, so the machine code above can be written as follows in assembly language, complete with an explanatory comment if required, after the semicolon. This is much easier to read and to remember. In some assembly languages (including this one)
2277-453: Is a key feature of assemblers, saving tedious calculations and manual address updates after program modifications. Most assemblers also include macro facilities for performing textual substitution – e.g., to generate common short sequences of instructions as inline , instead of called subroutines . Some assemblers may also be able to perform some simple types of instruction set -specific optimizations . One concrete example of this may be
2376-404: Is always completely unable to recover source comments. Each computer architecture has its own machine language. Computers differ in the number and type of operations they support, in the different sizes and numbers of registers, and in the representations of data in storage. While most general-purpose computers are able to carry out essentially the same functionality, the ways they do so differ;
2475-442: Is any low-level programming language with a very strong correspondence between the instructions in the language and the architecture's machine code instructions . Assembly language usually has one statement per machine instruction (1:1), but constants, comments , assembler directives , symbolic labels of, e.g., memory locations , registers , and macros are generally also supported. The first assembly code in which
2574-508: Is essential in assembly language programs, as the meaning and purpose of a sequence of binary machine instructions can be difficult to determine. The "raw" (uncommented) assembly language generated by compilers or disassemblers is quite difficult to read when changes must be made. Many assemblers support predefined macros , and others support programmer-defined (and repeatedly re-definable) macros involving sequences of text lines in which variables and constants are embedded. The macro definition
2673-401: Is given a name so instructions can reference those locations by name, thus promoting self-documenting code . In executable code, the name of each subroutine is associated with its entry point, so any calls to a subroutine can use its name. Inside subroutines, GOTO destinations are given labels. Some assemblers support local symbols which are often lexically distinct from normal symbols (e.g.,
2772-679: Is more than one assembler for the same architecture, and sometimes an assembler is specific to an operating system or to particular operating systems. Most assembly languages do not provide specific syntax for operating system calls, and most assembly languages can be used universally with any operating system, as the language provides access to all the real capabilities of the processor , upon which all system call mechanisms ultimately rest. In contrast to assembly languages, most high-level programming languages are generally portable across multiple architectures but require interpreting or compiling , much more complicated tasks than assembling. In
2871-442: Is most commonly a mixture of assembler statements, e.g., directives, symbolic machine instructions, and templates for assembler statements. This sequence of text lines may include opcodes or directives. Once a macro has been defined its name may be used in place of a mnemonic. When the assembler processes such a statement, it replaces the statement with the text lines associated with that macro, then processes them as if they existed in
2970-407: Is not present in the object program, a disassembler cannot reconstruct the macro and pseudoinstruction invocations but can only disassemble the actual machine instructions that the assembler generated from those abstract assembly-language entities. Likewise, since comments in the assembly language source file are ignored by the assembler and have no effect on the object code it generates, a disassembler
3069-524: Is universally enforced by their syntax. For example, in the Intel x86 assembly language, a hexadecimal constant must start with a numeral digit, so that the hexadecimal number 'A' (equal to decimal ten) would be written as 0Ah or 0AH , not AH , specifically so that it cannot appear to be the name of register AH . (The same rule also prevents ambiguity with the names of registers BH , CH , and DH , as well as with any user-defined symbol that ends with
PDP-11/73 - Misplaced Pages Continue
3168-476: The xchg ax , ax instruction as nop . Similarly, IBM assemblers for System/360 and System/370 use the extended mnemonics NOP and NOPR for BC and BCR with zero masks. For the SPARC architecture, these are known as synthetic instructions . Some assemblers also support simple built-in macro-instructions that generate two or more machine instructions. For instance, with some Z80 assemblers
3267-524: The C programming language took advantage of several low-level PDP–11–dependent programming features, albeit not originally by design. An effort to expand the PDP–11 from 16- to 32-bit addressing led to the VAX-11 design, which took part of its name from the PDP–11. In 1963, DEC introduced what is considered to be the first commercial minicomputer in the form of the PDP–5 . This was a 12-bit design adapted from
3366-818: The CPU , connecting semiconductor memory to the processor, with core memory and I/O devices connected via the Unibus. In the PDP–11/70, this was taken a step further, with the addition of a dedicated interface between disks and tapes and memory, via the Massbus . Although input/output devices continued to be mapped into memory addresses, some additional programming was necessary to set up the added bus interfaces. The PDP–11 supports hardware interrupts at four priority levels. Interrupts are serviced by software service routines, which could specify whether they themselves could be interrupted (achieving interrupt nesting ). The event that causes
3465-423: The CPU pipeline as efficiently as possible. Assemblers have been available since the 1950s, as the first step above machine language and before high-level programming languages such as Fortran , Algol , COBOL and Lisp . There have also been several classes of translators and semi-automatic code generators with properties similar to both assembly and high-level languages, with Speedcode as perhaps one of
3564-493: The "Desk Calculator" project. Not long after, Datamation published a note about a desk calculator being developed at DEC, which caused concern at Wang Laboratories , who were heavily invested in that market. Before long, it became clear that the entire market was moving to 16-bit, and the Desk Calculator began a 16-bit design as well. The team decided that the best approach to a new architecture would be to minimize
3663-756: The 1950s and early 1960s. Some assemblers have free-form syntax, with fields separated by delimiters, e.g., punctuation, white space . Some assemblers are hybrid, with, e.g., labels, in a specific column and other fields separated by delimiters; this became more common than column-oriented syntax in the 1960s. An assembler program creates object code by translating combinations of mnemonics and syntax for operations and addressing modes into their numerical equivalents. This representation typically includes an operation code (" opcode ") as well as other control bits and data. The assembler also calculates constant expressions and resolves symbolic names for memory locations and other entities. The use of symbolic references
3762-557: The 1962 LINC machine that was intended to be used in a lab setting. DEC slightly simplified the LINC system and instruction set, aiming the PDP-5 at smaller settings that did not need the power of their larger 18-bit PDP-4 . The PDP-5 was a success, ultimately selling about 1,000 machines. This led to the PDP–8 , a further cost-reduced 12-bit model that sold about 50,000 units. During this period,
3861-656: The DEQNA Q-Bus card, were also available. Many of the earliest systems on the ARPANET were PDP–11's A wide range of peripherals were available; some of them were also used in other DEC systems like the PDP–8 or PDP–10 . The following are some of the more common PDP–11 peripherals. The PDP–11 family of computers was used for many purposes. It was used as a standard minicomputer for general-purpose computing, such as timesharing , scientific, educational, medical, government or business computing. Another common application
3960-764: The DN100 in 1981 running Domain/OS , which was proprietary but offered a degree of Unix compatibility; and the Silicon Graphics IRIS range, which developed into Unix-based workstations by 1985 (IRIS 2000). Personal computers based on the 68000 such as the Apple Lisa and Macintosh , the Atari ST , and the Commodore Amiga arguably constituted less of a threat to DEC's business, although technically these systems could also run Unix derivatives. In
4059-544: The Intel 8080 family and the Intel 8086/8088. Because Intel claimed copyright on its assembly language mnemonics (on each page of their documentation published in the 1970s and early 1980s, at least), some companies that independently produced CPUs compatible with Intel instruction sets invented their own mnemonics. The Zilog Z80 CPU, an enhancement of the Intel 8080A , supports all the 8080A instructions plus many more; Zilog invented an entirely new assembly language, not only for
PDP-11/73 - Misplaced Pages Continue
4158-538: The LSI-11. This option allowed programming of the internal 8-bit micromachine to create application-specific extensions to the PDP–11 instruction set. The WCS is a quad Q-Bus board with a ribbon cable connecting to the third microcode ROM socket. The source code for EIS/FIS microcode was included so these instructions, normally located in the third MICROM, could be loaded in the WCS, if desired. Later Q-Bus based systems such as
4257-506: The LSI–11/23, /73, and /83 are based upon chip sets designed in house by Digital Equipment Corporation. Later PDP–11 Unibus systems were designed to use similar Q-Bus processor cards, using a Unibus adapter to support existing Unibus peripherals , sometimes with a special memory bus for improved speed. There were other significant innovations in the Q-Bus lineup. For example, a system variant of
4356-670: The PC based on BSD or Linux became available. By the late 1990s, not only DEC but most of the New England computer industry which had been built around minicomputers similar to the PDP–11 collapsed in the face of microcomputer-based workstations and servers. The PDP–11 processors tend to fall into several natural groups depending on the original design upon which they are based and which I/O bus they use. Within each group, most models were offered in two versions, one intended for OEMs and one intended for end-users. Although all models share
4455-504: The PDP series. Further, the innovative Unibus system allowed external devices to be more easily interfaced to the system using direct memory access , opening the system to a wide variety of peripherals . The PDP–11 replaced the PDP–8 in many real-time computing applications, although both product lines lived in parallel for more than 10 years. The ease of programming of the PDP–11 made it popular for general-purpose computing. The design of
4554-557: The PDP–11 and could use its peripherals and system software. These include: Several operating systems were available for the PDP–11. The DECSA communications server was a communications platform developed by DEC based on a PDP–11/24, with the provision for user installable I/O cards including asynchronous and synchronous modules. This product was used as one of the earliest commercial platforms upon which networking products could be built, including X.25 gateways, SNA gateways, routers , and terminal servers . Ethernet adaptors, such as
4653-709: The PDP–11 has a move instruction for which either operand (source and destination) can be memory or register. There are no specific input or output instructions; the PDP–11 uses memory-mapped I/O and so the same move instruction is used; orthogonality even enables moving data directly from an input device to an output device. More complex instructions such as add likewise can have memory, register, input, or output as source or destination. Most operands can apply any of eight addressing modes to eight registers. The addressing modes provide register, immediate, absolute, relative, deferred (indirect), and indexed addressing, and can specify autoincrementation and autodecrementation of
4752-510: The PDP–11 inspired the design of late-1970s microprocessors including the Intel x86 and the Motorola 68000 . The design features of PDP–11 operating systems, and other operating systems from Digital Equipment, influenced the design of operating systems such as CP/M and hence also MS-DOS . The first officially named version of Unix ran on the PDP–11/20 in 1970. It is commonly stated that
4851-402: The PDP–11 system-software rights to Mentec Inc., an Irish producer of LSI-11 based boards for Q-Bus and ISA architecture personal computers, and in 1997 discontinued PDP–11 production. For several years, Mentec produced new PDP–11 processors. Other companies found a niche market for replacements for legacy PDP–11 processors, disk subsystems, etc. At the same time, free implementations of Unix for
4950-479: The PDP–11/03 introduced full system power-on self-test (POST). The basic design of the PDP–11 was flexible, and was continually updated to use newer technologies. However, the limited throughput of the Unibus and Q-Bus started to become a system-performance bottleneck , and the 16-bit logical address limitation hampered the development of larger software applications. The article on PDP–11 architecture describes
5049-607: The PSW (priority level) on entry to the service routine. The PDP–11 was designed for ease of manufacture by semiskilled labor. The dimensions of its pieces were relatively non-critical. It used a wire-wrapped backplane . The LSI–11 (PDP–11/03), introduced in February 1975 is the first PDP–11 model produced using large-scale integration ; the entire CPU is contained on four LSI chips made by Western Digital (the MCP-1600 chip set;
SECTION 50
#17327872196555148-418: The Unibus only allows an 18-bit physical address) and block-mode operations for significantly improved bandwidth (which the Unibus does not support). The CPU microcode includes a debugger : firmware with a direct serial interface ( RS-232 or current loop ) to a terminal . This lets the operator do debugging by typing commands and reading octal numbers, rather than operating switches and reading lights,
5247-527: The V20 and V30 actually wrote in NEC's assembly language rather than Intel's; since any two assembly languages for the same instruction set architecture are isomorphic (somewhat like English and Pig Latin ), there is no requirement to use a manufacturer's own published assembly language with that manufacturer's products. There is a large degree of diversity in the way the authors of assemblers categorize statements and in
5346-463: The Z80, NEC invented new mnemonics for all of the 8086 and 8088 instructions, to avoid accusations of infringement of Intel's copyright. (It is questionable whether such copyrights can be valid, and later CPU companies such as AMD and Cyrix republished Intel's x86/IA-32 instruction mnemonics exactly with neither permission nor legal penalty.) It is doubtful whether in practice many people who programmed
5445-402: The absence of errata makes the linking process (or the program load if the assembler directly produces executable code) faster. Example: in the following code snippet, a one-pass assembler would be able to determine the address of the backward reference BKWD when assembling statement S2 , but would not be able to determine the address of the forward reference FWD when assembling
5544-424: The architecture, these elements may also be combined for specific instructions or addressing modes using offsets or other data as well as fixed addresses. Many assemblers offer additional mechanisms to facilitate program development, to control the assembly process, and to aid debugging . Some are column oriented, with specific fields in specific columns; this was very common for machines using punched cards in
5643-443: The assembler operates and "may affect the object code, the symbol table, the listing file, and the values of internal assembler parameters". Sometimes the term pseudo-opcode is reserved for directives that generate object code, such as those that generate data. The names of pseudo-ops often start with a dot to distinguish them from machine instructions. Pseudo-ops can make the assembly of the program dependent on parameters input by
5742-408: The basis for the PDP–11. When they first presented the new architecture, the managers were dismayed. It lacked single instruction-word immediate data and short addresses, both of which were considered essential to improving memory performance. McGowan and McFarland were eventually able to convince them that the system would work as expected, and suddenly "the Desk Calculator project got hot". Much of
5841-586: The better-known examples. There may be several assemblers with different syntax for a particular CPU or instruction set architecture . For instance, an instruction to add memory data to a register in a x86 -family processor might be add eax,[ebx] , in original Intel syntax , whereas this would be written addl (%ebx),%eax in the AT&T syntax used by the GNU Assembler . Despite different appearances, different syntactic forms generally generate
5940-674: The branch statement S1 ; indeed, FWD may be undefined. A two-pass assembler would determine both addresses in pass 1, so they would be known when generating code in pass 2. More sophisticated high-level assemblers provide language abstractions such as: See Language design below for more details. A program written in assembly language consists of a series of mnemonic processor instructions and meta-statements (known variously as declarative operations, directives, pseudo-instructions, pseudo-operations and pseudo-ops), comments and data. Assembly language instructions usually consist of an opcode mnemonic followed by an operand , which might be
6039-451: The computer market was moving from computer word lengths based on units of 6 bits to units of 8 bits, following the introduction of the 7-bit ASCII standard. In 1967–1968, DEC engineers designed a 16-bit machine, the PDP–X, but management ultimately canceled the project as it did not appear to offer a significant advantage over their existing 12- and 18-bit platforms. This prompted several of
SECTION 60
#17327872196556138-453: The corresponding assembly languages reflect these differences. Multiple sets of mnemonics or assembly-language syntax may exist for a single instruction set, typically instantiated in different assembler programs. In these cases, the most popular one is usually that supplied by the CPU manufacturer and used in its documentation. Two examples of CPUs that have two different sets of mnemonics are
6237-652: The early years, in particular, Microsoft 's Xenix was ported to systems like the TRS-80 Model 16 (with up to 1 MB of memory) in 1983, and to the Apple Lisa, with up to 2 MB of installed RAM, in 1984. The mass-production of those chips eliminated any cost advantage for the 16-bit PDP–11. A line of personal computers based on the PDP–11, the DEC Professional series, failed commercially, along with other non-PDP–11 PC offerings from DEC. In 1994, DEC sold
6336-599: The emergence of a market of increasingly powerful scientific and technical workstations that would often run Unix variants. These included the HP 9000 series 200 (starting with the HP 9826A in 1981) and 300/400, with the HP-UX system being ported to the 68000 in 1984; Sun Microsystems workstations running SunOS , starting with the Sun-1 in 1982; Apollo/Domain workstations starting with
6435-454: The engineers from the PDP-X program to leave DEC and form Data General . The next year they introduced the 16-bit Data General Nova . The Nova sold tens of thousands of units and launched what would become one of DEC's major competitors through the 1970s and 1980s. Ken Olsen , president and founder of DEC, was more interested in a small 8-bit machine than the larger 16-bit system. This became
6534-425: The first decades of computing, it was commonplace for both systems programming and application programming to take place entirely in assembly language. While still irreplaceable for some purposes, the majority of programming is now conducted in higher-level interpreted and compiled languages. In " No Silver Bullet ", Fred Brooks summarised the effects of the switch away from assembly language programming: "Surely
6633-480: The first example, the operand 61h is a valid hexadecimal numeric constant and is not a valid register name, so only the B0 instruction can be applicable. In the second example, the operand AH is a valid register name and not a valid numeric constant (hexadecimal, decimal, octal, or binary), so only the 88 instruction can be applicable. Assembly languages are always designed so that this sort of lack of ambiguity
6732-467: The following examples show. In each case, the MOV mnemonic is translated directly into one of the opcodes 88-8C, 8E, A0-A3, B0-BF, C6 or C7 by an assembler, and the programmer normally does not have to know or remember which. Transforming assembly language into machine code is the job of an assembler, and the reverse can at least partially be achieved by a disassembler . Unlike high-level languages , there
6831-514: The forward slash character for comments in the assembler code, as was the case in the PDP–8 assembler. McGowan stated that he would then have to use semicolon to indicate division, and the idea was dropped. The PDP–11 family was announced in January 1970 and shipments began early that year. DEC sold over 170,000 PDP–11s in the 1970s. Initially manufactured of small-scale transistor–transistor logic ,
6930-515: The hardware and software techniques used to work around address-space limitations. DEC's 32-bit successor to the PDP–11, the VAX–11 (for "Virtual Address eXtension") overcame the 16-bit limitation, but was initially a superminicomputer aimed at the high-end time-sharing market. The early VAX CPUs provided a PDP–11 compatibility mode under which much existing software could be immediately used, in parallel with newer 32-bit software, but this capability
7029-459: The instruction ld hl,bc is recognized to generate ld l,c followed by ld h,b . These are sometimes known as pseudo-opcodes . Mnemonics are arbitrary symbols; in 1985 the IEEE published Standard 694 for a uniform set of mnemonics to be used by all assemblers. The standard has since been withdrawn. There are instructions used to define data elements to hold data and variables. They define
7128-526: The instruction or implied, or the addresses of data located elsewhere in storage. This is determined by the underlying processor architecture: the assembler merely reflects how this architecture works. Extended mnemonics are often used to specify a combination of an opcode with a specific operand, e.g., the System/360 assemblers use B as an extended mnemonic for BC with a mask of 15 and NOP ("NO OPeration" – do nothing for one step) for BC with
7227-412: The interrupt is indicated by the device itself, as it informs the processor of the address of its own interrupt vector. Interrupt vectors are blocks of two 16-bit words in low kernel address space (which normally corresponded to low physical memory) between 0 and 776. The first word of the interrupt vector contains the address of the interrupt service routine and the second word the value to be loaded into
7326-403: The letter H and otherwise contains only characters that are hexadecimal digits, such as the word "BEACH".) Returning to the original example, while the x86 opcode 10110000 ( B0 ) copies an 8-bit value into the AL register, 10110001 ( B1 ) moves it into CL and 10110010 ( B2 ) does so into DL . Assembly language examples for these follow. The syntax of MOV can also be more complex as
7425-408: The memory bandwidth needed to execute the instructions. Larry McGowan coded a series of assembly language programs using the instruction sets of various existing platforms and examined how much memory would be exchanged to execute them. Harold McFarland joined the effort and had already written a very complex instruction set that the team rejected, but a second one was simpler and would ultimately form
7524-427: The mnemonics may be built-in and some user-defined. Many operations require one or more operands in order to form a complete instruction. Most assemblers permit named constants, registers, and labels for program and memory locations, and can calculate expressions for operands. Thus, programmers are freed from tedious repetitive calculations and assembler programs are much more readable than machine code. Depending on
7623-423: The most powerful stroke for software productivity, reliability, and simplicity has been the progressive use of high-level languages for programming. Most observers credit that development with at least a factor of five in productivity, and with concomitant gains in reliability, simplicity, and comprehensibility." Today, it is typical to use small amounts of assembly language code within larger systems implemented in
7722-463: The new instructions but also for all of the 8080A instructions. For example, where Intel uses the mnemonics MOV , MVI , LDA , STA , LXI , LDAX , STAX , LHLD , and SHLD for various data transfer instructions, the Z80 assembly language uses the mnemonic LD for all of them. A similar case is the NEC V20 and V30 CPUs, enhanced copies of the Intel 8086 and 8088, respectively. Like Zilog with
7821-400: The nomenclature that they use. In particular, some describe anything other than a machine mnemonic or extended mnemonic as a pseudo-operation (pseudo-op). A typical assembly language consists of 3 types of instruction statements that are used to define program operations: Instructions (statements) in assembly language are generally very simple, unlike those in high-level languages . Generally,
7920-405: The operation, and if necessary, pad it with one or more " no-operation " instructions in a later pass or the errata. In an assembler with peephole optimization , addresses may be recalculated between passes to allow replacing pessimistic code with code tailored to the exact distance from the target. The original reason for the use of one-pass assemblers was memory size and speed of assembly – often
8019-624: The predecessors of Alcatel-Lucent , the Bell Telephone Manufacturing Company , developed the BTMC DPS-1500 packet-switching ( X.25 ) network and used PDP–11s in the regional and national network management system, with the Unibus directly connected to the DPS-1500 hardware. Higher-performance members of the PDP–11 family departed from the single-bus approach. The PDP–11/45 had a dedicated data path within
8118-443: The processor architecture made it unusually easy to invent new bus devices, including devices to control hardware that had not been contemplated when the processor was originally designed. DEC openly published the basic Unibus specifications, even offering prototyping bus interface circuit boards, and encouraging customers to develop their own Unibus-compatible hardware. The Unibus made the PDP–11 suitable for custom peripherals. One of
8217-532: The same as found in the 11/23, 11/23+ and 11/24. The PRO-380 is based on the DCJ-11 ("Jaws") chipset, the same as found in the 11/53,73,83 and others, though running only at 10 MHz because of limitations in the support chipset. The PDP–11 was sufficiently popular that many unlicensed PDP–11-compatible minicomputers and microcomputers were produced in Eastern Bloc countries. Some were pin-compatible with
8316-465: The same instruction set, later models added new instructions and interpreted certain instructions slightly differently. As the architecture evolved, there were also variations in handling of some processor status and control registers. The following models use the Unibus as their principal bus: The following models use the Q-Bus as their principal bus: The PDT series were desktop systems marketed as "smart terminals". The /110 and /130 were housed in
8415-499: The same mnemonic is used for different instructions, that means that the mnemonic corresponds to several different binary instruction codes, excluding data (e.g. the 61h in this example), depending on the operands that follow the mnemonic. For example, for the x86/IA-32 CPUs, the Intel assembly language syntax MOV AL, AH represents an instruction that moves the contents of register AH into register AL . The hexadecimal form of this instruction is: The first byte, 88h, identifies
8514-489: The same mnemonic, such as MOV, may be used for a family of related instructions for loading, copying and moving data, whether these are immediate values, values in registers, or memory locations pointed to by values in registers or by immediate (a.k.a. direct) addresses. Other assemblers may use separate opcode mnemonics such as L for "move memory to register", ST for "move register to memory", LR for "move register to register", MVI for "move immediate operand to memory", etc. If
8613-415: The same numeric machine code . A single assembler may also have different modes in order to support variations in syntactic forms as well as their exact semantic interpretations (such as FASM -syntax, TASM -syntax, ideal mode, etc., in the special case of x86 assembly programming). There are two types of assemblers based on how many passes through the source are needed (how many times the assembler reads
8712-433: The source code file (including, in some assemblers, expansion of any macros existing in the replacement text). Macros in this sense date to IBM autocoders of the 1950s. Macro assemblers typically have directives to, e.g., define macros, define variables, set variables to the result of an arithmetic, logical or string expression, iterate, conditionally generate code. Some of those directives may be restricted to use within
8811-407: The source) to produce the object file. In both cases, the assembler must be able to determine the size of each instruction on the initial passes in order to calculate the addresses of subsequent symbols. This means that if the size of an operation referring to an operand defined later depends on the type or distance of the operand, the assembler will make a pessimistic estimate when first encountering
8910-457: The system was developed using a PDP-10 where the SIM-11 simulated what would become the PDP–11/20 and Bob Bowers wrote an assembler for it. At a late stage, the marketing team wanted to ship the system with 2K of memory as the minimal configuration. When McGowan stated this would mean an assembler could not run on the system, the minimum was expanded to 4K. The marketing team also wanted to use
9009-456: The term to mean "a program that assembles another program consisting of several sections into a single program". The conversion process is referred to as assembly , as in assembling the source code . The computational step when an assembler is processing a program is called assembly time . Because assembly depends on the machine code instructions, each assembly language is specific to a particular computer architecture . Sometimes there
9108-496: The type of data, the length and the alignment of data. These instructions can also define whether the data is available to outside programs (programs assembled separately) or only to the program in which the data section is defined. Some assemblers classify these as pseudo-ops. Assembly directives, also called pseudo-opcodes, pseudo-operations or pseudo-ops, are commands given to an assembler "directing it to perform operations other than assembling instructions". Directives affect how
9207-472: The typical debugging method at the time. The operator can thus examine and modify the computer's registers, memory, and input/output devices, diagnosing and perhaps correcting failures in software and peripherals (unless a failure disables the microcode itself). The operator can also specify which disk to boot from. Both innovations increased the reliability and decreased the cost of the LSI-11. A Writable Control Store (WCS) option (KUV11-AA) could be added to
9306-414: The ubiquitous x86 assemblers from various vendors. Called jump-sizing , most of them are able to perform jump-instruction replacements (long jumps replaced by short or relative jumps) in any number of passes, on request. Others may even do simple rearrangement or insertion of instructions, such as some assemblers for RISC architectures that can help optimize a sensible instruction scheduling to exploit
9405-591: The use of "10$ " as a GOTO destination). Some assemblers, such as NASM , provide flexible symbol management, letting programmers manage different namespaces , automatically calculate offsets within data structures , and assign labels that refer to literal values or the result of simple computations performed by the assembler. Labels can also be used to initialize constants and variables with relocatable addresses. Assembly languages, like most other computer languages, allow comments to be added to program source code that will be ignored during assembly. Judicious commenting
9504-469: Was real-time process control and factory automation . Some OEM models were also frequently used as embedded systems to control complex systems like traffic-light systems, medical systems, numerical controlled machining , or for network management. An example of such use of PDP–11s was the management of the packet switched network Datanet 1. In the 1980s, the UK's air traffic control radar processing
9603-455: Was conducted on a PDP 11/34 system known as PRDS – Processed Radar Display System at RAF West Drayton. The software for the Therac-25 medical linear particle accelerator also ran on a 32K PDP 11/23. In 2013, it was reported that PDP–11 programmers would be needed to control nuclear power plants through 2050. Another use was for storage of test programs for Teradyne ATE equipment, in
9702-587: Was dropped with the first MicroVAX . For a decade, the PDP–11 was the smallest system that could run Unix , but in the 1980s, the IBM PC and its clones largely took over the small computer market; BYTE in 1984 reported that the PC's Intel 8088 microprocessor could outperform the PDP–11/23 when running Unix. Newer microprocessors such as the Motorola 68000 (1979) and Intel 80386 (1985) also included 32-bit logical addressing. The 68000 in particular facilitated
9801-818: Was used for the experiment that discovered the J/ψ meson at the Brookhaven National Laboratory . In 1976, Samuel C. C. Ting received the Nobel Prize for this discovery. Another PDP–11/45 was used to create the Death Star plans during the briefing sequence in Star Wars . Assembly language In computer programming , assembly language (alternatively assembler language or symbolic machine code ), often referred to simply as assembly and commonly abbreviated as ASM or asm ,
#654345