Misplaced Pages

Drawdown (climate)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Climate drawdown refers to the future point in time when levels of greenhouse gas concentrations in the atmosphere stop climbing and start to steadily decline. Drawdown is a milestone in reversing climate change and eventually reducing global average temperatures. Project Drawdown refers to a nonprofit organization which tries to help the world reach drawdown and stop climate change. In 2017, a publication titled " Drawdown" highlighted and described different solutions and efforts available to help reach this goal.

#522477

84-483: Project Drawdown is a climate change mitigation project initiated by Paul Hawken and climate activist Amanda Joy Ravenhill. The Project Drawdown website includes video lessons that explain the analysis and insights behind the efforts and research that make up the science behind the project. Central to the project is the compilation of a list of the "most substantive solutions to global warming". The list, which encompasses only technologically viable existing solutions,

168-518: A just transition . In the context of global GHG emissions, food production within the global food system accounts for approximately 26%. Breaking it down, livestock and fisheries contribute 31%, whereas crop production, land use, and supply chains add 27%, 24%, and 18% respectively to the emissions. A 2023 study found that a vegan diet reduced emissions by 75%. Research in New Zealand estimated that switching agricultural production towards

252-416: A plant-based diet , having fewer children, using clothes and electrical products for longer, and electrifying homes. These approaches are more practical for people in high-income countries with high-consumption lifestyles. Naturally, it is more difficult for those with lower income statuses to make these changes. This is because choices like electric-powered cars may not be available. Excessive consumption

336-420: A 2°C temperature rise by the year 2100, while Scenario 2 shows a 1.5°C temperature increase within the same temporal range. Below is a table of the top ten solutions included on the organization's website, with the impacts of their respective emissions based on either. The measurements refer to the gigatons of carbon dioxide (CO 2 ) equivalent reduced/sequestered (2020–2050) with the minimum efforts required for

420-636: A bigger effect than population growth. Rising incomes, changes in consumption and dietary patterns, as well as population growth, cause pressure on land and other natural resources. This leads to more greenhouse gas emissions and fewer carbon sinks. Some scholars have argued that humane policies to slow population growth should be part of a broad climate response together with policies that end fossil fuel use and encourage sustainable consumption. Advances in female education and reproductive health , especially voluntary family planning , can contribute to reducing population growth. An important mitigation measure

504-534: A climate mitigation option. The terminology in this area is still evolving. Experts sometimes use the term geoengineering or climate engineering in the scientific literature for both CDR or SRM, if the techniques are used at a global scale. IPCC reports no longer use the terms geoengineering or climate engineering . GHG emissions 2020 by gas type without land-use change using 100 year GWP Total: 49.8 GtCO 2 e CO 2 emissions by fuel type Greenhouse gas emissions from human activities strengthen

588-656: A definitive or detailed evaluation of most goals set for 2020. But it appears the world failed to meet most or all international goals set for that year. One update came during the 2021 United Nations Climate Change Conference in Glasgow. The group of researchers running the Climate Action Tracker looked at countries responsible for 85% of greenhouse gas emissions. It found that only four countries or political entities—the EU, UK, Chile and Costa Rica—have published

672-540: A detailed official policy‑plan that describes the steps to realise 2030 mitigation targets. These four polities are responsible for 6% of global greenhouse gas emissions. In 2021 the US and EU launched the Global Methane Pledge to cut methane emissions by 30% by 2030. The UK, Argentina, Indonesia, Italy and Mexico joined the initiative. Ghana and Iraq signaled interest in joining. A White House summary of

756-444: A greenhouse gas, an aerosol or a precursor of a greenhouse gas from the atmosphere". Globally, the two most important carbon sinks are vegetation and the ocean . To enhance the ability of ecosystems to sequester carbon, changes are necessary in agriculture and forestry. Examples are preventing deforestation and restoring natural ecosystems by reforestation . Scenarios that limit global warming to 1.5 °C typically project

840-423: A healthier diet while reducing greenhouse gas emissions would cost approximately 1% of the agricultural sector's export revenue for New Zealand, which is an order of magnitude less than the estimated health system savings from a healthier diet. Research continues on the use of various seaweed species, in particular Asparegopsis armata , as a food additive that helps reduce methane production in ruminants. CO 2

924-482: A higher feed-conversion efficiency and also do not produce as much methane. Non-ruminant livestock, such as poultry, emit far fewer greenhouse gases. There are many strategies to reduce greenhouse gas emissions from agriculture (this is one of the goals of climate-smart agriculture ). Mitigation measures in the food system can be divided into four categories. These are demand-side changes, ecosystem protections, mitigation on farms, and mitigation in supply chains . On

SECTION 10

#1732787365523

1008-402: A low efficiency of less than 50%. Large amounts of heat in power plants and in motors of vehicles go to waste. The actual amount of energy consumed is significantly lower at 116,000 TWh. Energy conservation is the effort made to reduce the consumption of energy by using less of an energy service. One way is to use energy more efficiently . This means using less energy than before to produce

1092-481: A lower status. If they reduce their emissions and promote green policies, these people could become low-carbon lifestyle role models. However, there are many psychological variables that influence consumers. These include awareness and perceived risk. Government policies can support or hinder demand-side mitigation options. For example, public policy can promote circular economy concepts which would support climate change mitigation. Reducing greenhouse gas emissions

1176-408: A major driver of global warming. When rainforests are cut and the land is converted for grazing, the impact is even higher. In Brazil, producing 1 kg of beef can result in the emission of up to 335 kg CO 2 -eq. Other livestock, manure management and rice cultivation also emit greenhouse gases, in addition to fossil fuel combustion in agriculture. Important mitigation options for reducing

1260-592: A major increase in the use of renewable energy in combination with increased energy efficiency measures. It will be necessary to accelerate the deployment of renewable energy six-fold from 0.25% annual growth in 2015 to 1.5% to keep global warming under 2 °C. The competitiveness of renewable energy is a key to a rapid deployment. In 2020, onshore wind and solar photovoltaics were the cheapest source for new bulk electricity generation in many regions. Renewables may have higher storage costs but non-renewables may have higher clean-up costs. A carbon price can increase

1344-464: A more efficient technology or production process. Another way is to use commonly accepted methods to reduce energy losses. Individual action on climate change can include personal choices in many areas. These include diet, travel, household energy use, consumption of goods and services, and family size. People who wish to reduce their carbon footprint can take high-impact actions such as avoiding frequent flying and petrol-fuelled cars, eating mainly

1428-552: A plant-based diet, vast amounts of land used for animal agriculture could be allowed to return to their natural state . This in turn has the potential to sequester 100 billion tonnes of CO 2 by the end of the century. A comprehensive analysis found that plant based diets reduce emissions, water pollution and land use significantly (by 75%), while reducing the destruction of wildlife and usage of water. Population growth has resulted in higher greenhouse gas emissions in most regions, particularly Africa. However, economic growth has

1512-411: A residence time of around 120 years. Different management practices such as conserving water through drip irrigation , monitoring soil nutrients to avoid overfertilization, and using cover crops in place of fertilizer application may help in reducing nitrous oxide emissions. Agriculture is often not included in government emissions reduction plans. For example, the agricultural sector is exempt from

1596-470: A substantial economic return of 16-to-1. Mitigation measures in the food system can be divided into four categories. These are demand-side changes, ecosystem protections, mitigation on farms, and mitigation in supply chains . On the demand side, limiting food waste is an effective way to reduce food emissions. Changes to a diet less reliant on animal products such as plant-based diets are also effective. With 21% of global methane emissions, cattle are

1680-432: Is coal-fired power stations with 20% of greenhouse gas emissions. Deforestation and other changes in land use also emit carbon dioxide and methane. The largest sources of anthropogenic methane emissions are agriculture , and gas venting and fugitive emissions from the fossil-fuel industry. The largest agricultural methane source is livestock. Agricultural soils emit nitrous oxide , partly due to fertilizers. There

1764-539: Is pumped-storage hydroelectricity . This requires locations with large differences in height and access to water. Batteries are also in wide use. They typically store electricity for short periods. Batteries have low energy density . This and their cost makes them impractical for the large energy storage necessary to balance inter-seasonal variations in energy production. Some locations have implemented pumped hydro storage with capacity for multi-month usage. Nuclear power could complement renewables for electricity. On

SECTION 20

#1732787365523

1848-460: Is "preserving and enhancing carbon sinks ". This refers to the management of Earth's natural carbon sinks in a way that preserves or increases their capability to remove CO 2 from the atmosphere and to store it durably. Scientists call this process also carbon sequestration . In the context of climate change mitigation, the IPCC defines a sink as "Any process, activity or mechanism which removes

1932-431: Is 28 times more capable of trapping heat. Not only do livestock contribute to harmful emissions, but they also require a lot of land and may overgraze , which leads to unhealthy soil quality and reduced species diversity. A few ways to reduce methane emissions include switching to plant-rich diets with less meat, feeding the cattle more nutritious food, manure management , and composting . Traditional rice cultivation

2016-591: Is because the native inhabitants turn to work for extractive companies to survive. Proforestation is promoting forests to capture their full ecological potential. This is a mitigation strategy as secondary forests that have regrown in abandoned farmland are found to have less biodiversity than the original old-growth forests . Original forests store 60% more carbon than these new forests. Strategies include rewilding and establishing wildlife corridors . Greenhouse gas emissions from agriculture The amount of greenhouse gas emissions from agriculture

2100-695: Is by reducing the demand by improving infrastructure, by building a good public transport network, for example. Lastly, changes in end-use technology can reduce energy demand. For instance a well-insulated house emits less than a poorly-insulated house. Mitigation options that reduce demand for products or services help people make personal choices to reduce their carbon footprint . This could be in their choice of transport or food. So these mitigation options have many social aspects that focus on demand reduction; they are therefore demand-side mitigation actions . For example, people with high socio-economic status often cause more greenhouse gas emissions than those from

2184-413: Is competitive with other electricity generation technologies if long term costs for nuclear waste disposal are excluded from the calculation. There is also no sufficient financial insurance for nuclear accidents. Switching from coal to natural gas has advantages in terms of sustainability. For a given unit of energy produced, the life-cycle greenhouse-gas emissions of natural gas are around 40 times

2268-420: Is currently a high cost climate change mitigation strategy. Human land use changes such as agriculture and deforestation cause about 1/4th of climate change. These changes impact how much CO 2 is absorbed by plant matter and how much organic matter decays or burns to release CO 2 . These changes are part of the fast carbon cycle , whereas fossil fuels release CO 2 that was buried underground as part of

2352-411: Is found for reducing deforestation in tropical regions. The economic potential of these activities has been estimated to be 4.2 to 7.4 gigatonnes of carbon dioxide equivalent (GtCO 2 -eq) per year. The Stern Review on the economics of climate change stated in 2007 that curbing deforestation was a highly cost-effective way of reducing greenhouse gas emissions. About 95% of deforestation occurs in

2436-621: Is higher in the winter when PV output is low. For this reason, combinations of wind and solar power lead to better-balanced systems. Other well-established renewable energy forms include hydropower, bioenergy and geothermal energy. Wind and solar power production does not consistently match demand. To deliver reliable electricity from variable renewable energy sources such as wind and solar, electrical power systems must be flexible. Most electrical grids were constructed for non-intermittent energy sources such as coal-fired power plants. The integration of larger amounts of solar and wind energy into

2520-404: Is linked to the sharing economy . There is a debate regarding the correlation of economic growth and emissions. It seems economic growth no longer necessarily means higher emissions. Global primary energy demand exceeded 161,000 terawatt hours (TWh) in 2018. This refers to electricity, transport and heating including all losses. In transport and electricity production, fossil fuel usage has

2604-652: Is more to blame for climate change than population increase. High-consumption lifestyles have a greater environmental impact, with the richest 10% of people emitting about half the total lifestyle emissions. Some scientists say that avoiding meat and dairy foods is the single biggest way an individual can reduce their environmental impact. The widespread adoption of a vegetarian diet could cut food-related greenhouse gas emissions by 63% by 2050. China introduced new dietary guidelines in 2016 which aim to cut meat consumption by 50% and thereby reduce greenhouse gas emissions by 1   Gt per year by 2030. Overall, food accounts for

Drawdown (climate) - Misplaced Pages Continue

2688-456: Is not currently considered a realistic goal. Therefore, any comprehensive plan of adaptation to the effects of climate change , particularly the present and future effects of climate change on agriculture , must also consider livestock. Livestock activities also contribute disproportionately to land-use effects, since crops such as corn and alfalfa are cultivated to feed the animals. In 2010, enteric fermentation accounted for 43% of

2772-530: Is now a political solution to the problem of fluorinated gases from refrigerants . This is because many countries have ratified the Kigali Amendment . Carbon dioxide (CO 2 ) is the dominant emitted greenhouse gas. Methane ( CH 4 ) emissions almost have the same short-term impact. Nitrous oxide (N 2 O) and fluorinated gases (F-Gases) play a minor role. Livestock and manure produce 5.8% of all greenhouse gas emissions. But this depends on

2856-416: Is overcoming environmental objections when constructing new clean energy sources and making grid modifications. Climate change mitigation aims to sustain ecosystems to maintain human civilisation . This requires drastic cuts in greenhouse gas emissions . The Intergovernmental Panel on Climate Change (IPCC) defines mitigation (of climate change) as "a human intervention to reduce emissions or enhance

2940-488: Is possible to shift energy demand in time. Energy demand management and the use of smart grids make it possible to match the times when variable energy production is highest. Sector coupling can provide further flexibility. This involves coupling the electricity sector to the heat and mobility sector via power-to-heat -systems and electric vehicles. Energy storage helps overcome barriers to intermittent renewable energy. The most commonly used and available storage method

3024-495: Is re-emitted into the atmosphere by plant and soil respiration in the later stages of crop growth, causing more greenhouse gas emissions. In 2022, greenhouse gas emissions from rice cultivation were estimated at 5.7 billion tonnes CO2eq, representing 1.2% of total emissions. Within the agriculture sector, rice produces almost half the greenhouse gas emissions from croplands , some 30% of agricultural methane emissions , and 11% of agricultural nitrous oxide emissions. Methane

3108-725: Is released from rice fields subject to long-term flooding, as this inhibits the soil from absorbing atmospheric oxygen, resulting in anaerobic fermentation of organic matter in the soil. Emissions can be limited by planting new varieties, not flooding continuously, and removing straw. Agricultural activities emit the greenhouse gases carbon dioxide , methane and nitrous oxide . Activities such as tilling of fields, planting of crops, and shipment of products cause carbon dioxide emissions. Agriculture-related emissions of carbon dioxide account for around 11% of global greenhouse gas emissions. Farm practices such as reducing tillage, decreasing empty land, returning biomass residue of crops to

3192-436: Is significant: The agriculture, forestry and land use sectors contribute between 13% and 21% of global greenhouse gas emissions . Emissions come from direct greenhouse gas emissions (for example from rice production and livestock farming). And from indirect emissions. With regards to direct emissions, nitrous oxide and methane makeup over half of total greenhouse gas emissions from agriculture. Indirect emissions on

3276-509: Is the process of reducing the amount of energy required to provide products and services. Improved energy efficiency in buildings ("green buildings"), industrial processes and transportation could reduce the world's energy needs in 2050 by one third. This would help reduce global emissions of greenhouse gases. For example, insulating a building allows it to use less heating and cooling energy to achieve and maintain thermal comfort. Improvements in energy efficiency are generally achieved by adopting

3360-409: Is the second biggest agricultural methane source after livestock , with a near-term warming impact equivalent to the carbon dioxide emissions from all aviation . Government involvement in agricultural policy is limited due to the high demand for agricultural products like corn, wheat, and milk. The United States Agency for International Development's (USAID) global hunger and food security initiative,

3444-681: Is variable and can require electrical grid upgrades, such as using long-distance electricity transmission to group a range of power sources. Energy storage can also be used to even out power output, and demand management can limit power use when power generation is low. Cleanly generated electricity can usually replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Certain processes are more difficult to decarbonise, such as air travel and cement production . Carbon capture and storage (CCS) can be an option to reduce net emissions in these circumstances, although fossil fuel power plants with CCS technology

Drawdown (climate) - Misplaced Pages Continue

3528-460: The EU emissions trading scheme which covers around 40% of the EU greenhouse gas emissions. Almost 20% of greenhouse gas emissions come from the agriculture and forestry sector. To significantly reduce these emissions, annual investments in the agriculture sector need to increase to $ 260 billion by 2030. The potential benefits from these investments are estimated at about $ 4.3 trillion by 2030, offering

3612-924: The Shared Socioeconomic Pathways used by the Intergovernmental Panel on Climate Change , only SSP1 offers any realistic possibility of meeting the 1.5 °C (2.7 °F) target. Together with measures like a massive deployment of green technology , this pathway assumes animal-derived food will play a lower role in global diets relative to now. As a result, there have been calls for phasing out subsidies currently offered to livestock farmers in many places worldwide, and net zero transition plans now involve limits on total livestock headcounts, including substantial reductions of existing stocks in some countries with extensive animal agriculture sectors like Ireland. Yet, an outright end to human consumption of meat and/or animal products

3696-453: The albedo of the affected area increases, which can result in either warming or cooling effects depending on local conditions. Deforestation also affects regional carbon reuptake , which can result in increased concentrations of CO 2 , the dominant greenhouse gas. Land-clearing methods such as slash and burn compound these effects, as the burning of biomatter directly releases greenhouse gases and particulate matter such as soot into

3780-616: The greenhouse effect . This contributes to climate change . Most is carbon dioxide from burning fossil fuels : coal, oil, and natural gas. Human-caused emissions have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. Emissions in the 2010s averaged a record 56 billion tons (Gt) a year. In 2016, energy for electricity, heat and transport was responsible for 73.2% of GHG emissions. Direct industrial processes accounted for 5.2%, waste for 3.2% and agriculture, forestry and land use for 18.4%. Electricity generation and transport are major emitters. The largest single source

3864-827: The sinks of greenhouse gases ". It is possible to approach various mitigation measures in parallel. This is because there is no single pathway to limit global warming to 1.5 or 2 °C. There are four types of measures: The IPCC defined carbon dioxide removal as "Anthropogenic activities removing carbon dioxide (CO 2 ) from the atmosphere and durably storing it in geological, terrestrial, or ocean reservoirs, or in products. It includes existing and potential anthropogenic enhancement of biological or geochemical CO 2 sinks and direct air carbon dioxide capture and storage (DACCS), but excludes natural CO 2 uptake not directly caused by human activities." While solar radiation modification (SRM) could reduce surface temperatures, it temporarily masks climate change rather than addressing

3948-569: The 1990s. A different technology is concentrated solar power (CSP). This uses mirrors or lenses to concentrate a large area of sunlight on to a receiver. With CSP, the energy can be stored for a few hours. This provides supply in the evening. Solar water heating doubled between 2010 and 2019. Regions in the higher northern and southern latitudes have the greatest potential for wind power. Offshore wind farms are more expensive. But offshore units deliver more energy per installed capacity with less fluctuations. In most regions, wind power generation

4032-405: The 2022 IPCC report on mitigation. The abbreviation stands for "agriculture, forestry and other land use" The report described the economic mitigation potential from relevant activities around forests and ecosystems as follows: "the conservation, improved management, and restoration of forests and other ecosystems (coastal wetlands, peatlands , savannas and grasslands)". A high mitigation potential

4116-519: The Feed the Future project, is addressing food loss and waste. By addressing food loss and waste, greenhouse gas emission mitigation is also addressed. By only focusing on dairy systems of 20 value chains in 12 countries, food loss and waste could be reduced by 4-10%. These numbers are impactful and would mitigate greenhouse gas emissions while still feeding the population. Nitrous oxide emission comes from

4200-655: The ability of oceans and land sinks to absorb these gases. Short-lived climate pollutants (SLCPs) persist in the atmosphere for a period ranging from days to 15 years. Carbon dioxide can remain in the atmosphere for millennia. Short-lived climate pollutants include methane , hydrofluorocarbons (HFCs) , tropospheric ozone and black carbon . Scientists increasingly use satellites to locate and measure greenhouse gas emissions and deforestation. Earlier, scientists largely relied on or calculated estimates of greenhouse gas emissions and governments' self-reported data. The annual "Emissions Gap Report" by UNEP stated in 2022 that it

4284-478: The advantages of switching away from coal. The technology to curb methane leaks is widely available but it is not always used. Reducing demand for products and services that cause greenhouse gas emissions can help in mitigating climate change. One is to reduce demand by behavioural and cultural changes , for example by making changes in diet, especially the decision to reduce meat consumption, an effective action individuals take to fight climate change . Another

SECTION 50

#1732787365523

4368-413: The air. Land clearing can destroy the soil carbon sponge . Livestock produces the majority of greenhouse gas emissions from agriculture and demands around 30% of agricultural freshwater needs, while only supplying 18% of the global calorie intake. Animal-derived food plays a larger role in meeting human protein needs, yet is still a minority of supply at 39%, with crops providing the rest. Out of

4452-421: The atmosphere. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement 's goal of limiting global warming to below 2 °C. Solar energy and wind power can replace fossil fuels at the lowest cost compared to other renewable energy options. The availability of sunshine and wind

4536-478: The competitiveness of renewable energy. Wind and sun can provide large amounts of low-carbon energy at competitive production costs. The IPCC estimates that these two mitigation options have the largest potential to reduce emissions before 2030 at low cost. Solar photovoltaics (PV) has become the cheapest way to generate electricity in many regions of the world. The growth of photovoltaics has been close to exponential. It has about doubled every three years since

4620-437: The demand side, limiting food waste is an effective way to reduce food emissions. Changes to a diet less reliant on animal products such as plant-based diets are also effective. This could include milk substitutes and meat alternatives . Several methods are also under investigation to reduce the greenhouse gas emissions from livestock farming. These include genetic selection, introduction of methanotrophic bacteria into

4704-425: The emissions of wind or nuclear energy but are much less than coal. Burning natural gas produces around half the emissions of coal when used to generate electricity and around two-thirds the emissions of coal when used to produce heat. Natural gas combustion also produces less air pollution than coal. However, natural gas is a potent greenhouse gas in itself, and leaks during extraction and transportation can negate

4788-509: The findings of the research that led to the 2017 book was published as a 104-page PDF in 2020.   Climate change mitigation Climate change mitigation (or decarbonisation ) is action to limit the greenhouse gases in the atmosphere that cause climate change . Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources . Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO 2 ) from

4872-468: The foreword was written by ( hardback edition) Tom Steyer and ( paperback ) Prince Charles . The book describes solutions arranged in order by broad categories: energy, food, women and girls, buildings and cities, land use, transport, materials, and "coming attractions". The book provides a list of 100 potential solutions and ranks them by the potential amount of greenhouse gases each could cut, with cost estimates and short descriptions. A 2020 review of

4956-509: The grid requires a change of the energy system; this is necessary to ensure that the supply of electricity matches demand. There are various ways to make the electricity system more flexible. In many places, wind and solar generation are complementary on a daily and a seasonal scale. There is more wind during the night and in winter when solar energy production is low. Linking different geographical regions through long-distance transmission lines also makes it possible to reduce variability. It

5040-426: The higher goal, and the maximum efforts required for the lower goal. The interactive website lists nine sectors where immediate action is needed to limit catastrophic climate change. They are: Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming is a 2017 book created, written, and edited by Paul Hawken about climate change mitigation . Other writers include Katharine Wilkinson , and

5124-510: The increased use of synthetic and organic fertilizers. Fertilizers increase crop yield production and allow the crops to grow at a faster rate. Agricultural emissions of nitrous oxide make up 6% of the United States' greenhouse gas emissions; they have increased in concentration by 30% since 1980. While 6% may appear to be a small contribution, nitrous oxide is 300 times more effective at trapping heat per pound than carbon dioxide and has

SECTION 60

#1732787365523

5208-484: The land surface of the Earth. The global food system is responsible for one-third of the global anthropogenic GHG emissions , of which meat accounts for nearly 60%. Cows, sheep and other ruminants digest their food by enteric fermentation , and their burps are the main methane emissions from land use, land-use change, and forestry : together with methane and nitrous oxide from manure , this makes livestock

5292-402: The large-scale use of carbon dioxide removal methods over the 21st century. There are concerns about over-reliance on these technologies, and their environmental impacts. But ecosystem restoration and reduced conversion are among the mitigation tools that can yield the most emissions reductions before 2030. Land-based mitigation options are referred to as "AFOLU mitigation options" in

5376-428: The largest share of consumption-based greenhouse gas emissions. It is responsible for nearly 20% of the global carbon footprint. Almost 15% of all anthropogenic greenhouse gas emissions have been attributed to the livestock sector. A shift towards plant-based diets would help to mitigate climate change. In particular, reducing meat consumption would help to reduce methane emissions. If high-income nations switched to

5460-554: The main source of greenhouse gas emissions from agriculture. The IPCC Sixth Assessment Report in 2022 stated that: "Diets high in plant protein and low in meat and dairy are associated with lower GHG emissions. [...] Where appropriate, a shift to diets with a higher share of plant protein , moderate intake of animal-source foods and reduced intake of saturated fats could lead to substantial decreases in GHG emissions. Benefits would also include reduced land occupation and nutrient losses to

5544-655: The meeting noted those countries represent six of the top 15 methane emitters globally. Israel also joined the initiative. The energy system includes the delivery and use of energy. It is the main emitter of carbon dioxide (CO 2 ). Rapid and deep reductions in the carbon dioxide and other greenhouse gas emissions from the energy sector are necessary to limit global warming to well below 2 °C. IPCC recommendations include reducing fossil fuel consumption, increasing production from low- and zero carbon energy sources, and increasing use of electricity and alternative energy carriers. Nearly all scenarios and strategies involve

5628-402: The other hand come from the conversion of non-agricultural land such as forests into agricultural land. Furthermore, there is also fossil fuel consumption for transport and fertilizer production. For example, the manufacture and use of nitrogen fertilizer contributes around 5% of all global greenhouse gas emissions. Livestock farming is a major source of greenhouse gas emissions. At

5712-495: The other hand, environmental and security risks could outweigh the benefits. The construction of new nuclear reactors currently takes about 10 years. This is much longer than scaling up the deployment of wind and solar. And this timing gives rise to credit risks. However nuclear may be much cheaper in China. China is building a significant number of new power plants. As of 2019 the cost of extending nuclear power plant lifetimes

5796-512: The pledges for 2030. The rise would be 2.1 °C with the achievement of the long-term targets too. Full achievement of all announced targets would mean the rise in global temperature will peak at 1.9 °C and go down to 1.8 °C by the year 2100. Experts gather information about climate pledges in the Global Climate Action Portal - Nazca . The scientific community is checking their fulfilment. There has not been

5880-404: The root cause, which is greenhouse gases. SRM would work by altering how much solar radiation the Earth absorbs. Examples include reducing the amount of sunlight reaching the surface, reducing the optical thickness and lifetime of clouds, and changing the ability of the surface to reflect radiation. The IPCC describes SRM as a climate risk reduction strategy or supplementary option rather than

5964-439: The rumen, vaccines, feeds, diet modification and grazing management. Between 2010 and 2019, agriculture, forestry and land use contributed between 13% and 21% to global greenhouse gas emissions. Nitrous oxide and methane make up over half of total greenhouse gas emissions from agriculture. In 2020, it was estimated that the food system as a whole contributed 37% of total greenhouse gas emissions and that this figure

6048-437: The same service. Another way is to reduce the amount of service used. An example of this would be to drive less. Energy conservation is at the top of the sustainable energy hierarchy . When consumers reduce wastage and losses they can conserve energy. The upgrading of technology as well as the improvements to operations and maintenance can result in overall efficiency improvements. Efficient energy use (or energy efficiency )

6132-402: The same time, livestock farming is affected by climate change . Farm animals' digestive systems can be put into two categories: monogastric and ruminant . Ruminant cattle for beef and dairy rank high in greenhouse gas emissions. In comparison, monogastric, or pigs and poultry-related foods, are lower. The consumption of the monogastric types may yield less emissions. Monogastric animals have

6216-849: The slow carbon cycle. Methane is a short lived greenhouse gas that is produced by decaying organic matter and livestock, as well as fossil fuel extraction. Land use changes can also impact precipitation patterns and the reflectivity of the surface of the Earth . It is possible to cut emissions from agriculture by reducing food waste , switching to a more plant-based diet (also referred to as low-carbon diet ), and by improving farming processes. Various policies can encourage climate change mitigation. Carbon pricing systems have been set up that either tax CO 2 emissions or cap total emissions and trade emission credits . Fossil fuel subsidies can be eliminated in favor of clean energy subsidies , and incentives offered for installing energy efficiency measures or switching to electric power sources. Another issue

6300-416: The soil, and increasing the use of cover crops can reduce carbon emissions. Methane emissions from livestock are the number one contributor to agricultural greenhouse gases globally. Livestock are responsible for 14.5% of total anthropogenic greenhouse gas emissions. One cow alone will emit 220 pounds of methane per year. While the residence time of methane is much shorter than that of carbon dioxide, it

6384-466: The surrounding environment, while at the same time providing health benefits and reducing mortality from diet-related non-communicable diseases." According to a 2022 study quickly stopping animal agriculture would provide half the GHG emission reduction needed to meet the Paris Agreement goal of limiting global warming to 2 °C. There are calls to phase out livestock subsidies as part of

6468-542: The time frame used to calculate the global warming potential of the respective gas. Greenhouse gas (GHG) emissions are measured in CO 2 equivalents . Scientists determine their CO 2 equivalents from their global warming potential (GWP). This depends on their lifetime in the atmosphere. There are widely used greenhouse gas accounting methods that convert volumes of methane, nitrous oxide and other greenhouse gases to carbon dioxide equivalents . Estimates largely depend on

6552-670: The total greenhouse gas emissions from all agricultural activity in the world. The meat from ruminants has a higher carbon equivalent footprint than other meats or vegetarian sources of protein based on a global meta-analysis of lifecycle assessment studies. Small ruminants such as sheep and goats contribute approximately 475 million tons of carbon dioxide equivalent to GHG emissions, which constitutes around 6.5% of world agriculture sector emissions. Methane production by animals, principally ruminants, makes up an estimated 15-20% of global production of methane. Worldwide, livestock production occupies 70% of all land used for agriculture or 30% of

6636-401: The tropics, where clearing of land for agriculture is one of the main causes. One forest conservation strategy is to transfer rights over land from public ownership to its indigenous inhabitants. Land concessions often go to powerful extractive companies. Conservation strategies that exclude and even evict humans, called fortress conservation , often lead to more exploitation of the land. This

6720-527: The words of Secretary-General of the United Nations António Guterres : "Main emitters must drastically cut emissions starting this year". Climate Action Tracker described the situation on 9 November 2021 as follows. The global temperature will rise by 2.7 °C by the end of the century with current policies and by 2.9 °C with nationally adopted policies. The temperature will rise by 2.4 °C if countries only implement

6804-481: The world should focus on broad-based economy-wide transformations and not incremental change. In 2022, the Intergovernmental Panel on Climate Change (IPCC) released its Sixth Assessment Report on climate change. It warned that greenhouse gas emissions must peak before 2025 at the latest and decline 43% by 2030 to have a good chance of limiting global warming to 1.5 °C (2.7 °F). Or in

6888-411: Was compiled by a team of more than 200 scholars, scientists, policymakers, business leaders, and activists and is now online. The team measured and modeled each solution's carbon impact through the year 2050, its total and net cost to society, and its total lifetime savings. Project Drawdown uses different scenarios to assess what different changes to global climate efforts might look like. Scenario 1 shows

6972-399: Was necessary to almost halve emissions. "To get on track for limiting global warming to 1.5°C, global annual GHG emissions must be reduced by 45 per cent compared with emissions projections under policies currently in place in just eight years, and they must continue to decline rapidly after 2030, to avoid exhausting the limited remaining atmospheric carbon budget ." The report commented that

7056-657: Was on course to increase by 30–40% by 2050 due to population growth and dietary change. In 2010, agriculture, forestry and land-use change were estimated to contribute 20–25% of global annual emissions. Agriculture contributes to greenhouse gas increases through land use in four main ways: Together, these agricultural processes comprise 54% of methane emissions , roughly 80% of nitrous oxide emissions, and virtually all carbon dioxide emissions tied to land use. Land cover has changed majorly since 1750, as humans have deforested temperate regions . When forests and woodlands are cleared to make room for fields and pastures ,

#522477