77-666: In engineering , reliability, availability, maintainability and safety ( RAMS ) is used to characterize a product or system: This engineering-related article is a stub . You can help Misplaced Pages by expanding it . Engineering Engineering is the practice of using natural science , mathematics , and the engineering design process to solve technical problems, increase efficiency and productivity, and improve systems. Modern engineering comprises many subfields which include designing and improving infrastructure , machinery , vehicles , electronics , materials , and energy systems. The discipline of engineering encompasses
154-698: A broad range of more specialized fields of engineering , each with a more specific emphasis on particular areas of applied mathematics , applied science , and types of application. See glossary of engineering . The term engineering is derived from the Latin ingenium , meaning "cleverness". The American Engineers' Council for Professional Development (ECPD, the predecessor of ABET ) has defined "engineering" as: The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate
231-407: A commercial scale, such as the manufacture of commodity chemicals , specialty chemicals , petroleum refining , microfabrication , fermentation , and biomolecule production . Civil engineering is the design and construction of public and private works, such as infrastructure (airports, roads, railways, water supply, and treatment etc.), bridges, tunnels, dams, and buildings. Civil engineering
308-533: A count of 2,000. There were fewer than 50 engineering graduates in the U.S. before 1865. In 1870 there were a dozen U.S. mechanical engineering graduates, with that number increasing to 43 per year in 1875. In 1890, there were 6,000 engineers in civil, mining , mechanical and electrical. There was no chair of applied mechanism and applied mechanics at Cambridge until 1875, and no chair of engineering at Oxford until 1907. Germany established technical universities earlier. The foundations of electrical engineering in
385-420: A demand for machinery with metal parts, which led to the development of several machine tools . Boring cast iron cylinders with precision was not possible until John Wilkinson invented his boring machine , which is considered the first machine tool . Other machine tools included the screw cutting lathe , milling machine , turret lathe and the metal planer . Precision machining techniques were developed in
462-401: A force at the input, and when the input force is removed will remain motionless, "locked" by friction at whatever position they were left. Self-locking occurs mainly in those machines with large areas of sliding contact between moving parts: the screw , inclined plane , and wedge : A machine will be self-locking if and only if its efficiency η {\displaystyle \eta }
539-573: A machine (where 0 < η < 1 {\displaystyle 0<\eta \ <1} ) is defined as the ratio of power out to the power in, and is a measure of the frictional energy losses η ≡ P out P in P out = η P in {\displaystyle {\begin{aligned}\eta &\equiv {P_{\text{out}} \over P_{\text{in}}}\\P_{\text{out}}&=\eta P_{\text{in}}\end{aligned}}} As above,
616-400: A result, many engineers continue to learn new material throughout their careers. If multiple solutions exist, engineers weigh each design choice based on their merit and choose the solution that best matches the requirements. The task of the engineer is to identify, understand, and interpret the constraints on a design in order to yield a successful result. It is generally insufficient to build
693-419: A single applied force to do work against a single load force. Ignoring friction losses, the work done on the load is equal to the work done by the applied force. The machine can increase the amount of the output force, at the cost of a proportional decrease in the distance moved by the load. The ratio of the output to the applied force is called the mechanical advantage . Simple machines can be regarded as
770-411: A technically successful product, rather, it must also meet further requirements. Constraints may include available resources, physical, imaginative or technical limitations, flexibility for future modifications and additions, and other factors, such as requirements for cost, safety , marketability, productivity, and serviceability . By understanding the constraints, engineers derive specifications for
847-643: A testament to the ingenuity and skill of ancient civil and military engineers. Other monuments, no longer standing, such as the Hanging Gardens of Babylon and the Pharos of Alexandria , were important engineering achievements of their time and were considered among the Seven Wonders of the Ancient World . The six classic simple machines were known in the ancient Near East . The wedge and
SECTION 10
#1732797826468924-909: A useful purpose. Examples of bioengineering research include bacteria engineered to produce chemicals, new medical imaging technology, portable and rapid disease diagnostic devices, prosthetics, biopharmaceuticals, and tissue-engineered organs. Interdisciplinary engineering draws from more than one of the principle branches of the practice. Historically, naval engineering and mining engineering were major branches. Other engineering fields are manufacturing engineering , acoustical engineering , corrosion engineering , instrumentation and control , aerospace , automotive , computer , electronic , information engineering , petroleum , environmental , systems , audio , software , architectural , agricultural , biosystems , biomedical , geological , textile , industrial , materials , and nuclear engineering . These and other branches of engineering are represented in
1001-644: A way to distinguish between those specializing in the construction of such non-military projects and those involved in the discipline of military engineering . The pyramids in ancient Egypt , ziggurats of Mesopotamia , the Acropolis and Parthenon in Greece, the Roman aqueducts , Via Appia and Colosseum, Teotihuacán , and the Brihadeeswarar Temple of Thanjavur , among many others, stand as
1078-652: Is M A compound = F out N F in1 {\displaystyle \mathrm {MA} _{\text{compound}}={F_{{\text{out}}N} \over F_{\text{in1}}}} Because the output force of each machine is the input of the next, F out1 = F in2 , F out2 = F in3 , … F out K = F in K + 1 {\displaystyle F_{\text{out1}}=F_{\text{in2}},\;F_{\text{out2}}=F_{\text{in3}},\,\ldots \;F_{{\text{out}}K}=F_{{\text{in}}K+1}} , this mechanical advantage
1155-513: Is a broad discipline that is often broken down into several sub-disciplines. Although an engineer will usually be trained in a specific discipline, he or she may become multi-disciplined through experience. Engineering is often characterized as having four main branches: chemical engineering, civil engineering, electrical engineering, and mechanical engineering. Chemical engineering is the application of physics, chemistry, biology, and engineering principles in order to carry out chemical processes on
1232-529: Is also given by M A compound = F out1 F in1 F out2 F in2 F out3 F in3 … F out N F in N {\displaystyle \mathrm {MA} _{\text{compound}}={F_{\text{out1}} \over F_{\text{in1}}}{F_{\text{out2}} \over F_{\text{in2}}}{F_{\text{out3}} \over F_{\text{in3}}}\ldots {F_{{\text{out}}N} \over F_{{\text{in}}N}}\,} Thus,
1309-734: Is associated with anything constructed on or within the Earth. This discipline applies geological sciences and engineering principles to direct or support the work of other disciplines such as civil engineering , environmental engineering , and mining engineering . Geological engineers are involved with impact studies for facilities and operations that affect surface and subsurface environments, such as rock excavations (e.g. tunnels ), building foundation consolidation, slope and fill stabilization, landslide risk assessment, groundwater monitoring, groundwater remediation , mining excavations, and natural resource exploration. One who practices engineering
1386-426: Is below 50%: η ≡ F out / F in d in / d out < 0.5 {\displaystyle \eta \equiv {\frac {F_{\text{out}}/F_{\text{in}}}{d_{\text{in}}/d_{\text{out}}}}<0.5} Whether a machine is self-locking depends on both the friction forces ( coefficient of static friction ) between its parts, and
1463-497: Is called an engineer , and those licensed to do so may have more formal designations such as Professional Engineer , Chartered Engineer , Incorporated Engineer , Ingenieur , European Engineer , or Designated Engineering Representative . In the engineering design process, engineers apply mathematics and sciences such as physics to find novel solutions to problems or to improve existing solutions. Engineers need proficient knowledge of relevant sciences for their design projects. As
1540-403: Is equal to the velocity ratio , the ratio of input velocity to output velocity M A ideal = F out F in = v in v out {\displaystyle \mathrm {MA} _{\text{ideal}}={F_{\text{out}} \over F_{\text{in}}}={v_{\text{in}} \over v_{\text{out}}}\,} The velocity ratio is also equal to
1617-428: Is the design and manufacture of physical or mechanical systems, such as power and energy systems, aerospace / aircraft products, weapon systems , transportation products, engines , compressors , powertrains , kinematic chains , vacuum technology, vibration isolation equipment, manufacturing , robotics, turbines, audio equipments, and mechatronics . Bioengineering is the engineering of biological systems for
SECTION 20
#17327978264681694-664: Is traditionally broken into a number of sub-disciplines, including structural engineering , environmental engineering , and surveying . It is traditionally considered to be separate from military engineering . Electrical engineering is the design, study, and manufacture of various electrical and electronic systems, such as broadcast engineering , electrical circuits , generators , motors , electromagnetic / electromechanical devices, electronic devices , electronic circuits , optical fibers , optoelectronic devices , computer systems, telecommunications , instrumentation , control systems , and electronics . Mechanical engineering
1771-864: The Neo-Assyrian period (911–609) BC. The Egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the Great Pyramid of Giza . The earliest civil engineer known by name is Imhotep . As one of the officials of the Pharaoh , Djosèr , he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid ) at Saqqara in Egypt around 2630–2611 BC. The earliest practical water-powered machines,
1848-547: The Newcomen steam engine . Smeaton designed the third Eddystone Lighthouse (1755–59) where he pioneered the use of ' hydraulic lime ' (a form of mortar which will set under water) and developed a technique involving dovetailed blocks of granite in the building of the lighthouse. He is important in the history, rediscovery of, and development of modern cement , because he identified the compositional requirements needed to obtain "hydraulicity" in lime; work which led ultimately to
1925-455: The U.S. Army Corps of Engineers . The word "engine" itself is of even older origin, ultimately deriving from the Latin ingenium ( c. 1250 ), meaning "innate quality, especially mental power, hence a clever invention." Later, as the design of civilian structures, such as bridges and buildings, matured as a technical discipline, the term civil engineering entered the lexicon as
2002-528: The inclined plane (ramp) were known since prehistoric times. The wheel , along with the wheel and axle mechanism, was invented in Mesopotamia (modern Iraq) during the 5th millennium BC. The lever mechanism first appeared around 5,000 years ago in the Near East , where it was used in a simple balance scale , and to move large objects in ancient Egyptian technology . The lever was also used in
2079-514: The inclined plane ) and were able to calculate their (ideal) mechanical advantage. For example, Heron of Alexandria ( c. 10 –75 AD) in his work Mechanics lists five mechanisms that can "set a load in motion": lever , windlass , pulley , wedge , and screw , and describes their fabrication and uses. However the Greeks' understanding was limited to the statics of simple machines (the balance of forces), and did not include dynamics ,
2156-566: The shadoof water-lifting device, the first crane machine, which appeared in Mesopotamia c. 3000 BC , and then in ancient Egyptian technology c. 2000 BC . The earliest evidence of pulleys date back to Mesopotamia in the early 2nd millennium BC, and ancient Egypt during the Twelfth Dynasty (1991–1802 BC). The screw , the last of the simple machines to be invented, first appeared in Mesopotamia during
2233-639: The water wheel and watermill , first appeared in the Persian Empire , in what are now Iraq and Iran, by the early 4th century BC. Kush developed the Sakia during the 4th century BC, which relied on animal power instead of human energy. Hafirs were developed as a type of reservoir in Kush to store and contain water as well as boost irrigation. Sappers were employed to build causeways during military campaigns. Kushite ancestors built speos during
2310-412: The 14th century when an engine'er (literally, one who builds or operates a siege engine ) referred to "a constructor of military engines". In this context, now obsolete, an "engine" referred to a military machine, i.e. , a mechanical contraption used in war (for example, a catapult ). Notable examples of the obsolete usage which have survived to the present day are military engineering corps, e.g. ,
2387-426: The 1800s included the experiments of Alessandro Volta , Michael Faraday , Georg Ohm and others and the invention of the electric telegraph in 1816 and the electric motor in 1872. The theoretical work of James Maxwell (see: Maxwell's equations ) and Heinrich Hertz in the late 19th century gave rise to the field of electronics . The later inventions of the vacuum tube and the transistor further accelerated
Reliability, availability, maintainability and safety - Misplaced Pages Continue
2464-603: The 36 licensed member institutions of the UK Engineering Council . New specialties sometimes combine with the traditional fields and form new branches – for example, Earth systems engineering and management involves a wide range of subject areas including engineering studies , environmental science , engineering ethics and philosophy of engineering . Aerospace engineering covers the design, development, manufacture and operational behaviour of aircraft , satellites and rockets . Marine engineering covers
2541-576: The 9th century. In 1206, Al-Jazari invented programmable automata / robots . He described four automaton musicians, including drummers operated by a programmable drum machine , where they could be made to play different rhythms and different drum patterns. Before the development of modern engineering, mathematics was used by artisans and craftsmen, such as millwrights , clockmakers , instrument makers and surveyors. Aside from these professions, universities were not believed to have had much practical significance to technology. A standard reference for
2618-546: The Antikythera mechanism, required sophisticated knowledge of differential gearing or epicyclic gearing , two key principles in machine theory that helped design the gear trains of the Industrial Revolution, and are widely used in fields such as robotics and automotive engineering . Ancient Chinese, Greek, Roman and Hunnic armies employed military machines and inventions such as artillery which
2695-484: The Bronze Age between 3700 and 3250 BC. Bloomeries and blast furnaces were also created during the 7th centuries BC in Kush. Ancient Greece developed machines in both civilian and military domains. The Antikythera mechanism , an early known mechanical analog computer , and the mechanical inventions of Archimedes , are examples of Greek mechanical engineering. Some of Archimedes' inventions, as well as
2772-654: The United States went to Josiah Willard Gibbs at Yale University in 1863; it was also the second PhD awarded in science in the U.S. Only a decade after the successful flights by the Wright brothers , there was extensive development of aeronautical engineering through development of military aircraft that were used in World War I . Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments. Engineering
2849-504: The applied force P in = F in v in {\displaystyle P_{\text{in}}=F_{\text{in}}v_{\text{in}}\!} . Therefore, F out v out = F in v in {\displaystyle F_{\text{out}}v_{\text{out}}=F_{\text{in}}v_{\text{in}}\,} So the mechanical advantage of an ideal machine M A ideal {\displaystyle \mathrm {MA} _{\text{ideal}}\,}
2926-409: The aviation pioneers around the start of the 20th century although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering. The first PhD in engineering (technically, applied science and engineering ) awarded in
3003-582: The classical simple machines above. By the late 1800s, Franz Reuleaux had identified hundreds of machine elements, calling them simple machines . Modern machine theory analyzes machines as kinematic chains composed of elementary linkages called kinematic pairs . The idea of a simple machine originated with the Greek philosopher Archimedes around the 3rd century BC, who studied the Archimedean simple machines: lever, pulley, and screw . He discovered
3080-571: The design, development, manufacture and operational behaviour of watercraft and stationary structures like oil platforms and ports . Computer engineering (CE) is a branch of engineering that integrates several fields of computer science and electronic engineering required to develop computer hardware and software . Computer engineers usually have training in electronic engineering (or electrical engineering ), software design , and hardware-software integration instead of only software engineering or electronic engineering. Geological engineering
3157-407: The development and large scale manufacturing of chemicals in new industrial plants. The role of the chemical engineer was the design of these chemical plants and processes. Aeronautical engineering deals with aircraft design process design while aerospace engineering is a more modern term that expands the reach of the discipline by including spacecraft design. Its origins can be traced back to
Reliability, availability, maintainability and safety - Misplaced Pages Continue
3234-418: The development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other engineering specialty. Chemical engineering developed in the late nineteenth century. Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to
3311-416: The distance ratio d in / d out {\displaystyle d_{\textrm {in}}/d_{\textrm {out}}} (ideal mechanical advantage). If both the friction and ideal mechanical advantage are high enough, it will self-lock. When a machine moves in the forward direction from point 1 to point 2, with the input force doing work on a load force, from conservation of energy
3388-490: The efficiency of a compound machine is also the product of the efficiencies of the series of simple machines that form it η compound = η 1 η 2 … η N . {\displaystyle \eta _{\text{compound}}=\eta _{1}\eta _{2}\ldots \;\eta _{N}.} In many simple machines, if the load force F out {\displaystyle F_{\textrm {out}}} on
3465-482: The elementary "building blocks" of which all more complicated machines (sometimes called "compound machines" ) are composed. For example, wheels, levers, and pulleys are all used in the mechanism of a bicycle . The mechanical advantage of a compound machine is just the product of the mechanical advantages of the simple machines of which it is composed. Although they continue to be of great importance in mechanics and applied science, modern mechanics has moved beyond
3542-421: The first commercial piston steam engine in 1712, was not known to have any scientific training. The application of steam-powered cast iron blowing cylinders for providing pressurized air for blast furnaces lead to a large increase in iron production in the late 18th century. The higher furnace temperatures made possible with steam-powered blast allowed for the use of more lime in blast furnaces , which enabled
3619-409: The first half of the 19th century. These included the use of gigs to guide the machining tool over the work and fixtures to hold the work in the proper position. Machine tools and machining techniques capable of producing interchangeable parts lead to large scale factory production by the late 19th century. The United States Census of 1850 listed the occupation of "engineer" for the first time with
3696-423: The geometry of the machine. For example, the mechanical advantage and distance ratio of the lever is equal to the ratio of its lever arms . The mechanical advantage can be greater or less than one: In the screw , which uses rotational motion, the input force should be replaced by the torque , and the velocity by the angular velocity the shaft is turned. All real machines have friction, which causes some of
3773-704: The inclined plane, and it was included with the other simple machines. The complete dynamic theory of simple machines was worked out by Italian scientist Galileo Galilei in 1600 in Le Meccaniche ( On Mechanics ), in which he showed the underlying mathematical similarity of the machines as force amplifiers. He was the first to explain that simple machines do not create energy , only transform it. The classic rules of sliding friction in machines were discovered by Leonardo da Vinci (1452–1519), but were unpublished and merely documented in his notebooks, and were based on pre-Newtonian science such as believing friction
3850-445: The input arm backwards against the input force. These are called reversible , non-locking or overhauling machines, and the backward motion is called overhauling . However, in some machines, if the frictional forces are high enough, no amount of load force can move it backwards, even if the input force is zero. This is called a self-locking , nonreversible , or non-overhauling machine. These machines can only be set in motion by
3927-406: The input force to the next. For example, a bench vise consists of a lever (the vise's handle) in series with a screw, and a simple gear train consists of a number of gears ( wheels and axles ) connected in series. The mechanical advantage of a compound machine is the ratio of the output force exerted by the last machine in the series divided by the input force applied to the first machine, that
SECTION 50
#17327978264684004-534: The input force. A simple machine with no friction or elasticity is called an ideal machine . Due to conservation of energy , in an ideal simple machine, the power output (rate of energy output) at any time P out {\displaystyle P_{\text{out}}} is equal to the power input P in {\displaystyle P_{\text{in}}} P out = P in {\displaystyle P_{\text{out}}=P_{\text{in}}\!} The power output equals
4081-430: The input power to be dissipated as heat. If P fric {\displaystyle P_{\text{fric}}\,} is the power lost to friction, from conservation of energy P in = P out + P fric {\displaystyle P_{\text{in}}=P_{\text{out}}+P_{\text{fric}}} The mechanical efficiency η {\displaystyle \eta } of
4158-519: The invention of Portland cement . Applied science led to the development of the steam engine. The sequence of events began with the invention of the barometer and the measurement of atmospheric pressure by Evangelista Torricelli in 1643, demonstration of the force of atmospheric pressure by Otto von Guericke using the Magdeburg hemispheres in 1656, laboratory experiments by Denis Papin , who built experimental model steam engines and demonstrated
4235-474: The limits within which a viable object or system may be produced and operated. Simple machines A simple machine is a mechanical device that changes the direction or magnitude of a force . In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term refers to the six classical simple machines that were defined by Renaissance scientists: A simple machine uses
4312-423: The machine is high enough in relation to the input force F in {\displaystyle F_{\textrm {in}}} , the machine will move backwards, with the load force doing work on the input force. So these machines can be used in either direction, with the driving force applied to either input point. For example, if the load force on a lever is high enough, the lever will move backwards, moving
4389-400: The magnitude of the force by a factor, the mechanical advantage M A = F out F in {\displaystyle \mathrm {MA} ={F_{\text{out}} \over F_{\text{in}}}} that can be calculated from the machine's geometry and friction. Simple machines do not contain a source of energy , so they cannot do more work than they receive from
4466-429: The mechanical advantage is always less than the velocity ratio by the product with the efficiency η {\displaystyle \eta } . So a machine that includes friction will not be able to move as large a load as a corresponding ideal machine using the same input force. A compound machine is a machine formed from a set of simple machines connected in series with the output force of one providing
4543-425: The mechanical advantage of the compound machine is equal to the product of the mechanical advantages of the series of simple machines that form it M A compound = M A 1 M A 2 … M A N {\displaystyle \mathrm {MA} _{\text{compound}}=\mathrm {MA} _{1}\mathrm {MA} _{2}\ldots \mathrm {MA} _{N}} Similarly,
4620-563: The power is equal to the product of force and velocity, so F out v out = η F in v in {\displaystyle F_{\text{out}}v_{\text{out}}=\eta F_{\text{in}}v_{\text{in}}} Therefore, M A = F out F in = η v in v out {\displaystyle \mathrm {MA} ={F_{\text{out}} \over F_{\text{in}}}=\eta {v_{\text{in}} \over v_{\text{out}}}} So in non-ideal machines,
4697-479: The power to weight ratio of steam engines made practical steamboats and locomotives possible. New steel making processes, such as the Bessemer process and the open hearth furnace, ushered in an area of heavy engineering in the late 19th century. One of the most famous engineers of the mid-19th century was Isambard Kingdom Brunel , who built railroads, dockyards and steamships. The Industrial Revolution created
SECTION 60
#17327978264684774-430: The principle of mechanical advantage in the lever. Archimedes' famous remark with regard to the lever: "Give me a place to stand on, and I will move the Earth," ( Greek : δῶς μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω ) expresses his realization that there was no limit to the amount of force amplification that could be achieved by using mechanical advantage. Later Greek philosophers defined the classic five simple machines (excluding
4851-748: The ratio of the distances covered in any given period of time v out v in = d out d in {\displaystyle {v_{\text{out}} \over v_{\text{in}}}={d_{\text{out}} \over d_{\text{in}}}} Therefore, the mechanical advantage of an ideal machine is also equal to the distance ratio , the ratio of input distance moved to output distance moved M A ideal = F out F in = d in d out {\displaystyle \mathrm {MA} _{\text{ideal}}={F_{\text{out}} \over F_{\text{in}}}={d_{\text{in}} \over d_{\text{out}}}\,} This can be calculated from
4928-434: The rise of engineering as a profession in the 18th century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering, the fields then known as the mechanic arts became incorporated into engineering. Canal building was an important engineering work during the early phases of the Industrial Revolution. John Smeaton
5005-426: The same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property. Engineering has existed since ancient times, when humans devised inventions such as the wedge, lever, wheel and pulley, etc. The term engineering is derived from the word engineer , which itself dates back to
5082-470: The state of mechanical arts during the Renaissance is given in the mining engineering treatise De re metallica (1556), which also contains sections on geology, mining, and chemistry. De re metallica was the standard chemistry reference for the next 180 years. The science of classical mechanics , sometimes called Newtonian mechanics, formed the scientific basis of much of modern engineering. With
5159-481: The tradeoff between force and distance, or the concept of work . During the Renaissance the dynamics of the mechanical powers , as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading eventually to the new concept of mechanical work. In 1586 Flemish engineer Simon Stevin derived the mechanical advantage of
5236-414: The transition from charcoal to coke . These innovations lowered the cost of iron, making horse railways and iron bridges practical. The puddling process , patented by Henry Cort in 1784 produced large scale quantities of wrought iron. Hot blast , patented by James Beaumont Neilson in 1828, greatly lowered the amount of fuel needed to smelt iron. With the development of the high pressure steam engine,
5313-587: The use of a piston, which he published in 1707. Edward Somerset, 2nd Marquess of Worcester published a book of 100 inventions containing a method for raising waters similar to a coffee percolator . Samuel Morland , a mathematician and inventor who worked on pumps, left notes at the Vauxhall Ordinance Office on a steam pump design that Thomas Savery read. In 1698 Savery built a steam pump called "The Miner's Friend". It employed both vacuum and pressure. Iron merchant Thomas Newcomen , who built
5390-467: The velocity of the load v out {\displaystyle v_{\text{out}}\,} multiplied by the load force P out = F out v out {\displaystyle P_{\text{out}}=F_{\text{out}}v_{\text{out}}\,} . Similarly the power input from the applied force is equal to the velocity of the input point v in {\displaystyle v_{\text{in}}\,} multiplied by
5467-630: The view of the simple machines as the ultimate building blocks of which all machines are composed, which arose in the Renaissance as a neoclassical amplification of ancient Greek texts. The great variety and sophistication of modern machine linkages, which arose during the Industrial Revolution , is inadequately described by these six simple categories. Various post-Renaissance authors have compiled expanded lists of "simple machines", often using terms like basic machines , compound machines , or machine elements to distinguish them from
5544-426: The way they function is similar mathematically. In each machine, a force F in {\displaystyle F_{\text{in}}} is applied to the device at one point, and it does work moving a load F out {\displaystyle F_{\text{out}}} at another point. Although some machines only change the direction of the force, such as a stationary pulley, most machines multiply
5621-644: Was a steam jack driven by a steam turbine , described in 1551 by Taqi al-Din Muhammad ibn Ma'ruf in Ottoman Egypt . The cotton gin was invented in India by the 6th century AD, and the spinning wheel was invented in the Islamic world by the early 11th century, both of which were fundamental to the growth of the cotton industry . The spinning wheel was also a precursor to the spinning jenny , which
5698-522: Was a key development during the early Industrial Revolution in the 18th century. The earliest programmable machines were developed in the Muslim world. A music sequencer , a programmable musical instrument , was the earliest type of programmable machine. The first music sequencer was an automated flute player invented by the Banu Musa brothers, described in their Book of Ingenious Devices , in
5775-498: Was an ethereal fluid. They were rediscovered by Guillaume Amontons (1699) and were further developed by Charles-Augustin de Coulomb (1785). If a simple machine does not dissipate energy through friction, wear or deformation, then energy is conserved and it is called an ideal simple machine. In this case, the power into the machine equals the power out, and the mechanical advantage can be calculated from its geometric dimensions. Although each machine works differently mechanically,
5852-611: Was developed by the Greeks around the 4th century BC, the trireme , the ballista and the catapult . In the Middle Ages, the trebuchet was developed. The earliest practical wind-powered machines, the windmill and wind pump , first appeared in the Muslim world during the Islamic Golden Age , in what are now Iran, Afghanistan, and Pakistan, by the 9th century AD. The earliest practical steam-powered machine
5929-505: Was the first self-proclaimed civil engineer and is often regarded as the "father" of civil engineering. He was an English civil engineer responsible for the design of bridges, canals, harbors, and lighthouses. He was also a capable mechanical engineer and an eminent physicist . Using a model water wheel, Smeaton conducted experiments for seven years, determining ways to increase efficiency. Smeaton introduced iron axles and gears to water wheels. Smeaton also made mechanical improvements to
#467532