A liquid-propellant rocket or liquid rocket uses a rocket engine burning liquid propellants . (Alternate approaches use gaseous or solid propellants .) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse ( I sp ) . This allows the volume of the propellant tanks to be relatively low.
129-824: The RS-25 , also known as the Space Shuttle Main Engine ( SSME ), is a liquid-fuel cryogenic rocket engine that was used on NASA 's Space Shuttle and is used on the Space Launch System (SLS). Designed and manufactured in the United States by Rocketdyne (later Pratt & Whitney Rocketdyne and Aerojet Rocketdyne ), the RS-25 burns cryogenic (very low temperature) liquid hydrogen and liquid oxygen propellants, with each engine producing 1,859 kN (418,000 lb f ) thrust at liftoff. Although RS-25 heritage traces back to
258-459: A cryogenic rocket engine , where the fuel and oxidizer, such as hydrogen and oxygen, are gases which have been liquefied at very low temperatures. Most designs of liquid rocket engines are throttleable for variable thrust operation. Some allow control of the propellant mixture ratio (ratio at which oxidizer and fuel are mixed). Some can be shut down and, with a suitable ignition system or self-igniting propellant, restarted. Hybrid rockets apply
387-623: A 15% reduction in fabrication time for the powerhead and a 22-month reduction in the time needed to produce a main combustion chamber. On 1 May 2020, NASA awarded a contract extension to manufacture 18 additional RS-25 engines, with associated services, for $ 1.79 billion, bringing the total SLS contract value to almost $ 3.5 billion. On 29 August 2022, Artemis I was delayed by a problem with engineering sensors on RS-25D #3 (serial number E2058) erroneously reporting that it hadn't chilled down to its ideal operating temperature. Liquid-fuel rocket Liquid rockets can be monopropellant rockets using
516-635: A German translation of a book by Tsiolkovsky of which "almost every page...was embellished by von Braun's comments and notes." Leading Soviet rocket-engine designer Valentin Glushko and rocket designer Sergey Korolev studied Tsiolkovsky's works as youths and both sought to turn Tsiolkovsky's theories into reality. From 1929 to 1930 in Leningrad Glushko pursued rocket research at the Gas Dynamics Laboratory (GDL), where
645-648: A book in 1923 suggesting the use of liquid propellants. In Germany, engineers and scientists became enthralled with liquid propulsion, building and testing them in the late 1920s within Opel RAK , the world's first rocket program, in Rüsselsheim. According to Max Valier 's account, Opel RAK rocket designer, Friedrich Wilhelm Sander launched two liquid-fuel rockets at Opel Rennbahn in Rüsselsheim on April 10 and April 12, 1929. These Opel RAK rockets have been
774-541: A chamber pressure of 3,172 psi (21,870 kPa). The three participating companies submitted their engine development bids in April 1971, with Rocketdyne being awarded the contract on July 13, 1971—although work did not begin on engine development until March 31, 1972, due to a legal challenge from P&W. Following the awarding of the contract, a preliminary design review was carried out in September 1972, followed by
903-403: A common shaft. Mixing of the fuel-rich hot gases in the turbine section and the liquid oxygen in the main pump can create a hazard and, to prevent this, the two sections are separated by a cavity that is continuously purged by the engine's helium supply during engine operation. Two seals minimize leakage into the cavity; one seal is located between the turbine section and the cavity, while the other
1032-491: A critical design review in September 1976 after which the engine's design was set and construction of the first set of flight-capable engines began. A final review of all the Space Shuttle's components, including the engines, was conducted in 1979. The design reviews operated in parallel with several test milestones, initial tests consisting of individual engine components which identified shortcomings with various areas of
1161-407: A fuel-rich layer is created at the combustion chamber wall. This reduces the temperature there, and downstream to the throat and even into the nozzle and permits the combustion chamber to be run at higher pressure, which permits a higher expansion ratio nozzle to be used which gives a higher I SP and better system performance. A liquid rocket engine often employs regenerative cooling , which uses
1290-682: A higher mass ratio, but are usually more reliable, and are therefore used widely in satellites for orbit maintenance. Thousands of combinations of fuels and oxidizers have been tried over the years. Some of the more common and practical ones are: One of the most efficient mixtures, oxygen and hydrogen , suffers from the extremely low temperatures required for storing liquid hydrogen (around 20 K or −253.2 °C or −423.7 °F) and very low fuel density (70 kg/m or 4.4 lb/cu ft, compared to RP-1 at 820 kg/m or 51 lb/cu ft), necessitating large tanks that must also be lightweight and insulating. Lightweight foam insulation on
1419-492: A hot-gas manifold cooling circuit. The gaseous hydrogen and liquid oxygen enter the chamber at the injector, which mixes the propellants. The mixture is ignited by the "Augmented Spark Igniter", an H 2 /O 2 flame at the center of the injector head. The main injector and dome assembly are welded to the hot-gas manifold, and the MCC is also bolted to the hot-gas manifold. The MCC comprises a structural shell made of Inconel 718 which
SECTION 10
#17327728345491548-600: A letter to El Comercio in Lima in 1927, claiming he had experimented with a liquid rocket engine while he was a student in Paris three decades earlier. Historians of early rocketry experiments, among them Max Valier , Willy Ley , and John D. Clark , have given differing amounts of credence to Paulet's report. Valier applauded Paulet's liquid-propelled rocket design in the Verein für Raumschiffahrt publication Die Rakete , saying
1677-503: A liquid or gaseous oxidizer to a solid fuel. The use of liquid propellants has a number of advantages: Use of liquid propellants can also be associated with a number of issues: Liquid rocket engines have tankage and pipes to store and transfer propellant, an injector system and one or more combustion chambers with associated nozzles . Typical liquid propellants have densities roughly similar to water, approximately 0.7 to 1.4 g/cm (0.025 to 0.051 lb/cu in). An exception
1806-786: A liquid-fueled rocket as understood in the modern context first appeared in 1903 in the book Exploration of the Universe with Rocket-Propelled Vehicles by the Russian rocket scientist Konstantin Tsiolkovsky . The magnitude of his contribution to astronautics is astounding, including the Tsiolkovsky rocket equation , multi-staged rockets, and using liquid oxygen and liquid hydrogen in liquid propellant rockets. Tsiolkovsky influenced later rocket scientists throughout Europe, like Wernher von Braun . Soviet search teams at Peenemünde found
1935-449: A mass of approximately 3.5 tonnes (7,700 pounds), and is capable of throttling between 67% and 109% of its rated power level in one-percent increments. Components of the RS-25 operate at temperatures ranging from −253 to 3,300 °C (−400 to 6,000 °F). The Space Shuttle used a cluster of three RS-25 engines mounted at the stern of the orbiter , with fuel drawn from the external tank . The engines were used for propulsion throughout
2064-517: A milestone that was reached on March 23, 1980, with the engine having undergone 110,253 seconds of testing by the time of STS-1 both on test stands at Stennis Space Center and installed on the Main Propulsion Test Article (MPTA). The first set of engines (2005, 2006 and 2007) was delivered to Kennedy Space Center in 1979 and installed on Columbia , before being removed in 1980 for further testing and reinstalled on
2193-404: A new design based on a high-pressure combustion chamber running around 3,000 psi (21,000 kPa), which increases the performance of the engine. Development began in 1970, when NASA released a request for proposal for 'Phase B' main engine concept studies, requiring development of a throttleable, staged combustion , de Laval-type engine. The request was based on the then-current design of
2322-467: A new research section was set up for the study of liquid-propellant and electric rocket engines . This resulted in the creation of ORM (from "Experimental Rocket Motor" in Russian) engines ORM-1 [ ru ] to ORM-52 [ ru ] . A total of 100 bench tests of liquid-propellant rockets were conducted using various types of fuel, both low and high-boiling and thrust up to 300 kg
2451-443: A number of pad failures (redundant set launch sequencer aborts, or RSLSs) and other issues during the course of the program: During the period preceding final Space Shuttle retirement , various plans for the remaining engines were proposed, ranging from them all being kept by NASA, to them all being given away (or sold for US$ 400,000–800,000 each) to various institutions such as museums and universities. This policy followed changes to
2580-450: A number of small diameter holes arranged in carefully constructed patterns through which the fuel and oxidizer travel. The speed of the flow is determined by the square root of the pressure drop across the injectors, the shape of the hole and other details such as the density of the propellant. The first injectors used on the V-2 created parallel jets of fuel and oxidizer which then combusted in
2709-662: A series of studies on high-pressure engines, developed from the successful J-2 engine used on the S-II and S-IVB upper stages of the Saturn V rocket during the Apollo program . The studies were conducted under a program to upgrade the Saturn V engines, which produced a design for a 350,000 lbf (1,600 kN) upper-stage engine known as the HG-3 . As funding levels for Apollo wound down
SECTION 20
#17327728345492838-418: A single type of propellant, or bipropellant rockets using two types of propellant. Tripropellant rockets using three types of propellant are rare. Liquid oxidizer propellants are also used in hybrid rockets , with some of the advantages of a solid rocket . Bipropellant liquid rockets use a liquid fuel such as liquid hydrogen or RP-1 , and a liquid oxidizer such as liquid oxygen . The engine may be
2967-576: A six-stage turbine powered by high-pressure liquid oxygen from the high-pressure oxidizer turbopump (HPOTP). It boosts the liquid oxygen's pressure from 0.7 to 2.9 MPa (100 to 420 psi), with the flow from the LPOTP then being supplied to the HPOTP. During engine operation, the pressure boost permits the high-pressure oxidizer pump to operate at high speeds without cavitating . The LPOTP, which measures approximately 450 by 450 mm (18 by 18 in),
3096-497: A subsequent flight. A total of 46 reusable RS-25 engines, each costing around US$ 40 million, were flown during the Space Shuttle program, with each new or overhauled engine entering the flight inventory requiring flight qualification on one of the test stands at Stennis Space Center prior to flight. Over the course of the Space Shuttle program, the RS-25 went through a series of upgrades, including combustion chamber changes, improved welds and turbopump changes in an effort to improve
3225-484: A thermal barrier between hot gaseous combustion products and the metallic shell. A TBC applied to the Inconel 718 shell during production could extend engine life and reduce cooling costs. Further, CMCs have been studied as a replacement for Ni-based superalloys and are composed of high-strength fibers (BN, C) continuously dispersed in a SiC matrix. An MCC composed of a CMC, though less studied and farther from fruition than
3354-410: A two-stage hot-gas turbine. It boosts the pressure of the liquid hydrogen from 1.9 to 45 MPa (276 to 6,515 psia), and operates at approximately 35,360 rpm with a power of 71,140 hp (53.05 MW ). The discharge flow from the turbopump is routed to, and through, the main valve and is then split into three flow paths. One path is through the jacket of the main combustion chamber, where the hydrogen
3483-399: A variety of engine cycles . Liquid propellants are often pumped into the combustion chamber with a lightweight centrifugal turbopump . Recently, some aerospace companies have used electric pumps with batteries. In simpler, small engines, an inert gas stored in a tank at a high pressure is sometimes used instead of pumps to force propellants into the combustion chamber. These engines may have
3612-428: A vehicle using liquid oxygen and gasoline as propellants. The rocket, which was dubbed "Nell", rose just 41 feet during a 2.5-second flight that ended in a cabbage field, but it was an important demonstration that rockets using liquid propulsion were possible. Goddard proposed liquid propellants about fifteen years earlier and began to seriously experiment with them in 1921. The German-Romanian Hermann Oberth published
3741-649: A wide range of flow rates. The pintle injector was used in the Apollo Lunar Module engines ( Descent Propulsion System ) and the Kestrel engine, it is currently used in the Merlin engine on Falcon 9 and Falcon Heavy rockets. The RS-25 engine designed for the Space Shuttle uses a system of fluted posts, which use heated hydrogen from the preburner to vaporize the liquid oxygen flowing through
3870-498: A working 350,000 lbf (1,600 kN) concept engine during the year) and Aerojet General's prior experience in developing the 1,500,000 lbf (6,700 kN) M-1 engine , Rocketdyne was forced to put a large amount of private money into the design process to allow the company to catch up to its competitors. By the time the contract was awarded, budgetary pressures meant that the shuttle's design had changed to its final orbiter, external tank, and two boosters configuration, and so
3999-423: Is liquid hydrogen which has a much lower density, while requiring only relatively modest pressure to prevent vaporization . The density and low pressure of liquid propellants permit lightweight tankage: approximately 1% of the contents for dense propellants and around 10% for liquid hydrogen. The increased tank mass is due to liquid hydrogen's low density and the mass of the required insulation. For injection into
RS-25 - Misplaced Pages Continue
4128-401: Is 100% open before the engine start. During engine operation, it is 100% open for throttle settings of 100 to 109%. For throttle settings between 65 and 100%, its position ranged from 66.4 to 100%. Each engine is installed with a gimbal bearing , a universal ball and socket joint which is bolted to the launch vehicle by its upper flange and to the engine by its lower flange. It represents
4257-472: Is a relatively low speed oscillation, the engine must be designed with enough pressure drop across the injectors to render the flow largely independent of the chamber pressure. This pressure drop is normally achieved by using at least 20% of the chamber pressure across the injectors. Nevertheless, particularly in larger engines, a high speed combustion oscillation is easily triggered, and these are not well understood. These high speed oscillations tend to disrupt
4386-524: Is applied to the liquid (and sometimes the two propellants are mixed), then it is expelled through a small hole, where it forms a cone-shaped sheet that rapidly atomizes. Goddard's first liquid engine used a single impinging injector. German scientists in WWII experimented with impinging injectors on flat plates, used successfully in the Wasserfall missile. To avoid instabilities such as chugging, which
4515-408: Is between the pump section and cavity. Loss of helium pressure in this cavity results in automatic engine shutdown. The low-pressure fuel turbopump (LPFTP) is an axial-flow pump driven by a two-stage turbine powered by gaseous hydrogen. It boosts the pressure of the liquid hydrogen from 30 to 276 psia (0.2 to 1.9 MPa) and supplies it to the high-pressure fuel turbopump (HPFTP). During engine operation,
4644-405: Is connected to the vehicle propellant ducting and supported in a fixed position by being mounted on the launch vehicle's structure. Then, mounted before the HPOTP, is the pogo oscillation suppression system accumulator. For use, it is pre-and post-charged with He and charged with gaseous O 2 from the heat exchanger, and, not having any membrane, it operates by continuously recirculating
4773-680: Is less explosive than LH 2 . Many non-cryogenic bipropellants are hypergolic (self igniting). For storable ICBMs and most spacecraft, including crewed vehicles, planetary probes, and satellites, storing cryogenic propellants over extended periods is unfeasible. Because of this, mixtures of hydrazine or its derivatives in combination with nitrogen oxides are generally used for such applications, but are toxic and carcinogenic . Consequently, to improve handling, some crew vehicles such as Dream Chaser and Space Ship Two plan to use hybrid rockets with non-toxic fuel and oxidizer combinations. The injector implementation in liquid rockets determines
4902-402: Is lined with a copper - silver - zirconium alloy called NARloy-Z, developed specifically for the RS-25 in the 1970s. Around 390 channels are machined into the liner wall to carry liquid hydrogen through the liner to provide MCC cooling, as the temperature in the combustion chamber reaches 3300 °C (6000 °F) during flight – higher than the boiling point of iron . An alternative for
5031-418: Is made of titanium alloy. The low-pressure oxygen and low-pressure fuel turbopumps were mounted 180° apart on the orbiter's aft fuselage thrust structure. The lines from the low-pressure turbopumps to the high-pressure turbopumps contain flexible bellows that enable the low-pressure turbopumps to remain stationary while the rest of the engine is gimbaled for thrust vector control, and also to prevent damage to
5160-399: Is not as high as that of RP1. This makes it specially attractive for reusable launch systems because higher density allows for smaller motors, propellant tanks and associated systems. LNG also burns with less or no soot (less or no coking) than RP1, which eases reusability when compared with it, and LNG and RP1 burn cooler than LH 2 so LNG and RP1 do not deform the interior structures of
5289-445: Is one of the few substances sufficiently pyrophoric to ignite on contact with cryogenic liquid oxygen . The enthalpy of combustion , Δ c H°, is −5,105.70 ± 2.90 kJ/mol (−1,220.29 ± 0.69 kcal/mol). Its easy ignition makes it particularly desirable as a rocket engine ignitor . May be used in conjunction with triethylborane to create triethylaluminum-triethylborane, better known as TEA-TEB. The idea of
RS-25 - Misplaced Pages Continue
5418-433: Is tapped off and sent to the oxidizer heat exchanger . The liquid oxygen flows through an anti-flood valve that prevents it from entering the heat exchanger until sufficient heat is present for the heat exchanger to utilize the heat contained in the gases discharged from the HPOTP turbine, converting the liquid oxygen to gas. The gas is sent to a manifold and then routed to pressurize the liquid oxygen tank. Another path enters
5547-475: Is then discharged into the main combustion chamber. A second hydrogen flow path from the main fuel valve is through the engine nozzle (to cool the nozzle). It then joins the third flow path from the chamber coolant valve. This combined flow is then directed to the fuel and oxidizer pre-burners. The HPFTP is approximately 550 by 1,100 mm (22 by 43 in) in size and is attached to the hot-gas manifold by flanges. The oxidizer and fuel pre-burners are welded to
5676-417: Is used in-flight to purge the engine and provides pressure for actuating engine valves within the propellant management system and during emergency shutdowns. During entry, on the Space Shuttle, any remaining helium was used to purge the engines during reentry and for repressurization. The history of the RS-25 traces back to the 1960s when NASA 's Marshall Space Flight Center and Rocketdyne were conducting
5805-481: Is used to cool the chamber walls. It is then routed from the main combustion chamber to the LPFTP, where it is used to drive the LPFTP turbine. A small portion of the flow from the LPFTP is then directed to a common manifold from all three engines to form a single path to the liquid hydrogen tank to maintain pressurization. The remaining hydrogen passes between the inner and outer walls of the hot-gas manifold to cool it and
5934-763: The Me 163 Komet in 1944-45, also used a Walter-designed liquid rocket engine, the Walter HWK 109-509 , which produced up to 1,700 kgf (16.7 kN) thrust at full power. After World War II the American government and military finally seriously considered liquid-propellant rockets as weapons and began to fund work on them. The Soviet Union did likewise, and thus began the Space Race . In 2010s 3D printed engines started being used for spaceflight. Examples of such engines include SuperDraco used in launch escape system of
6063-641: The Michoud Assembly Facility ; they will be installed in the Space Station Processing Facility at Kennedy beginning with Artemis III . Once the remaining RS-25Ds are exhausted, they are to be replaced with a cheaper, expendable version designated the RS-25E. In 2023, Aerojet Rocketdyne reported reductions in manufacturing time and labour requirements during manufacturing of new-production RS-25 engines, such as
6192-507: The Opel RAK.1 , on liquid-fuel rockets. By May 1929, the engine produced a thrust of 200 kg (440 lb.) "for longer than fifteen minutes and in July 1929, the Opel RAK collaborators were able to attain powered phases of more than thirty minutes for thrusts of 300 kg (660-lb.) at Opel's works in Rüsselsheim," again according to Max Valier's account. The Great Depression brought an end to
6321-685: The Space Shuttle Solid Rocket Boosters (SRBs), which committed the shuttle to the launch. At launch, the engines would be operating at 100% RPL, throttling up to 104.5% immediately following liftoff. The engines would maintain this power level until around T+40 seconds, where they would be throttled back to around 70% to reduce aerodynamic loads on the shuttle stack as it passed through the region of maximum dynamic pressure, or max. q . The engines would then be throttled back up until around T+8 minutes, at which point they would be gradually throttled back down to 67% to prevent
6450-579: The Space Shuttle external tank led to the Space Shuttle Columbia 's destruction , as a piece broke loose, damaged its wing and caused it to break up on atmospheric reentry . Liquid methane/LNG has several advantages over LH 2 . Its performance (max. specific impulse ) is lower than that of LH 2 but higher than that of RP1 (kerosene) and solid propellants, and its higher density, similarly to other hydrocarbon fuels, provides higher thrust to volume ratios than LH 2 , although its density
6579-401: The 1960s, its concerted development began in the 1970s with the first flight, STS-1 , on April 12, 1981. The RS-25 has undergone upgrades over its operational history to improve the engine's thrust, reliability, safety, and maintenance load. The engine produces a specific impulse ( I sp ) of 452 seconds (4.43 kN-sec/kg) in vacuum, or 366 seconds (3.59 kN-sec/kg) at sea level, has
SECTION 50
#17327728345496708-626: The Ares I and Ares V rockets, the RS-25 was to be replaced with a single J-2X engine for the Ares I second stage and six modified RS-68 engines (which was based on both the SSME and Apollo-era J-2 engine) on the Ares V core stage; this meant that the RS-25 would be retired along with the Shuttle fleet. In 2010, however, NASA was directed to halt the Constellation program, and with it development of
6837-524: The Ares I and Ares V, instead of focusing on building a new heavy-lift launcher. On 14 September 2011, following the retirement of the Space Shuttle , NASA announced that it would be developing a new launch vehicle, known as the Space Launch System (SLS), to replace the shuttle fleet. The design for the SLS features the RS-25 as part of its core stage , with different versions of the rocket being equipped with between three and five engines. The initial flights of
6966-565: The HG-3 was cancelled as well as the upgraded F-1 engines already being tested. It was the design for the HG-3 that would form the basis for the RS-25. Meanwhile, in 1967, the US Air Force funded a study into advanced rocket propulsion systems for use during Project Isinglass , with Rocketdyne asked to investigate aerospike engines and Pratt & Whitney (P&W) to research more efficient conventional de Laval nozzle -type engines. At
7095-513: The HPOTP and HPFTP turbines depends on the position of the corresponding oxidizer and fuel pre-burner oxidizer valves. These valves are positioned by the engine controller, which uses them to throttle the flow of liquid oxygen to the pre-burners and, thus, control engine thrust. The oxidizer and fuel pre-burner oxidizer valves increase or decrease the liquid oxygen flow, thus increasing or decreasing pre-burner chamber pressure, HPOTP and HPFTP turbine speed, and liquid oxygen and gaseous hydrogen flow into
7224-457: The HPOTP second-stage pre-burner pump to boost the liquid oxygen's pressure from 30 to 51 MPa (4,300 psia to 7,400 psia). It passes through the oxidizer pre-burner oxidizer valve into the oxidizer pre-burner and through the fuel pre-burner oxidizer valve into the fuel pre-burner. The HPOTP measures approximately 600 by 900 mm (24 by 35 in). It is attached by flanges to the hot-gas manifold. The HPOTP turbine and HPOTP pumps are mounted on
7353-528: The MEC operates five hydraulically actuated propellant valves on each engine; the oxidizer pre-burner oxidizer, fuel pre-burner oxidizer, main oxidizer, main fuel, and chamber coolant valves. In an emergency, the valves can be fully closed by using the engine's helium supply system as a backup actuation system. In the Space Shuttle, the main oxidizer and fuel bleed valves were used after shutdown to dump any residual propellant, with residual liquid oxygen venting through
7482-534: The MPS hardware from Space Shuttles Atlantis and Endeavour in their core stages. The SLS's propellants are supplied to the engines from the rocket's core stage, which consists of a modified Space Shuttle external tank with the MPS plumbing and engines at its aft, and an interstage structure at the top. For the first two Artemis missions, the engines are installed on the SLS core stage in Building 103 of
7611-726: The ORM engines, including the engine for the rocket powered interceptor, the Bereznyak-Isayev BI-1 . At RNII Tikhonravov worked on developing oxygen/alcohol liquid-propellant rocket engines. Ultimately liquid propellant rocket engines were given a low priority during the late 1930s at RNII, however the research was productive and very important for later achievements of the Soviet rocket program. Peruvian Pedro Paulet , who had experimented with rockets throughout his life in Peru , wrote
7740-529: The Opel RAK activities. After working for the German military in the early 1930s, Sander was arrested by Gestapo in 1935, when private rocket-engineering became forbidden in Germany. He was convicted of treason to 5 years in prison and forced to sell his company, he died in 1938. Max Valier's (via Arthur Rudolph and Heylandt), who died while experimenting in 1930, and Friedrich Sander's work on liquid-fuel rockets
7869-424: The RS-25 injector design instead went to a lot of effort to vaporize the propellant prior to injection into the combustion chamber. Although many other features were used to ensure that instabilities could not occur, later research showed that these other features were unnecessary, and the gas phase combustion worked reliably. Testing for stability often involves the use of small explosives. These are detonated within
SECTION 60
#17327728345497998-489: The Space Launch System are throttled to 109% power during normal flight, while new RS-25 engines produced for the Space Launch System are to be run at 111% throttle, with 113% power being tested. These increases in throttle level made a significant difference to the thrust produced by the engine: Specifying power levels over 100% may seem nonsensical, but there was a logic behind it. The 100% level does not mean
8127-526: The Space Shuttle program. Subsequent flights will make use of a simplified RS-25E engine called the Production Restart, which is under testing and development. The RS-25 engine consists of pumps, valves, and other components working in concert to produce thrust . Fuel ( liquid hydrogen ) and oxidizer ( liquid oxygen ) from the Space Shuttle's external tank entered the orbiter at the umbilical disconnect valves and from there flowed through
8256-495: The Space Shuttle which featured two reusable stages, the orbiter and a crewed fly-back booster, and required one engine which would be able to power both vehicles via two different nozzles (12 booster engines with 550,000 lbf (2,400 kN) sea level thrust each and 3 orbiter engines with 632,000 lbf (2,810 kN) vacuum thrust each). Rocketdyne, P&W and Aerojet General were selected to receive funding although, given P&W's already-advanced development (demonstrating
8385-577: The advantage of self igniting, reliably and with less chance of hard starts. In the 1940s, the Russians began to start engines with hypergols, to then switch over to the primary propellants after ignition. This was also used on the American F-1 rocket engine on the Apollo program . Ignition with a pyrophoric agent: Triethylaluminium ignites on contact with air and will ignite and/or decompose on contact with water, and with any other oxidizer—it
8514-427: The application of a TBC, could offer unprecedented levels of engine efficiency. The engine's nozzle is 121 in (3.1 m) long with a diameter of 10.3 inches (0.26 m) at its throat and 90.7 inches (2.30 m) at its exit. The nozzle is a bell-shaped extension bolted to the main combustion chamber, referred to as a de Laval nozzle . The RS-25 nozzle has an unusually large expansion ratio (about 69:1) for
8643-547: The army research station that designed the V-2 rocket weapon for the Nazis. By the late 1930s, use of rocket propulsion for crewed flight began to be seriously experimented with, as Germany's Heinkel He 176 made the first crewed rocket-powered flight using a liquid rocket engine, designed by German aeronautics engineer Hellmuth Walter on June 20, 1939. The only production rocket-powered combat aircraft ever to see military service,
8772-505: The center of the posts and this improves the rate and stability of the combustion process; previous engines such as the F-1 used for the Apollo program had significant issues with oscillations that led to destruction of the engines, but this was not a problem in the RS-25 due to this design detail. Valentin Glushko invented the centripetal injector in the early 1930s, and it has been almost universally used in Russian engines. Rotational motion
8901-517: The chamber coolant valve. The fuel passing through the MCC cooling system then passes back through the LPFTP turbine before being routed either to the fuel tank pressurization system or to the hot gas manifold cooling system (from where it passes into the MCC). Fuel in the nozzle cooling and chamber coolant valve systems is then sent via pre-burners into the HPFTP turbine and HPOTP before being reunited again in
9030-443: The chamber during operation, and causes an impulsive excitation. By examining the pressure trace of the chamber to determine how quickly the effects of the disturbance die away, it is possible to estimate the stability and redesign features of the chamber if required. For liquid-propellant rockets, four different ways of powering the injection of the propellant into the chamber are in common use. Fuel and oxidizer must be pumped into
9159-415: The chamber pressure. At sea level, a nozzle of this ratio would normally undergo flow separation of the jet from the nozzle, which would cause control difficulties and could even mechanically damage the vehicle. However, to aid the engine's operation Rocketdyne engineers varied the angle of the nozzle walls from the theoretical optimum for thrust, reducing it near the exit. This raises the pressure just around
9288-420: The chamber. This gave quite poor efficiency. Injectors today classically consist of a number of small holes which aim jets of fuel and oxidizer so that they collide at a point in space a short distance away from the injector plate. This helps to break the flow up into small droplets that burn more easily. The main types of injectors are The pintle injector permits good mixture control of fuel and oxidizer over
9417-442: The charge gas. A number of baffles of various types are present inside the accumulator to control sloshing and turbulence, which is useful of itself and also to prevent the escape of gas into the low-pressure oxidizer duct to be ingested in the HPOTP. The HPOTP consists of two single-stage centrifugal pumps (the main pump and a pre-burner pump) mounted on a common shaft and driven by a two-stage, hot-gas turbine. The main pump boosts
9546-553: The combustion chamber against the pressure of the hot gasses being burned, and engine power is limited by the rate at which propellant can be pumped into the combustion chamber. For atmospheric or launcher use, high pressure, and thus high power, engine cycles are desirable to minimize gravity drag . For orbital use, lower power cycles are usually fine. Selecting an engine cycle is one of the earlier steps to rocket engine design. A number of tradeoffs arise from this selection, some of which include: Injectors are commonly laid out so that
9675-416: The combustion chamber, the propellant pressure at the injectors needs to be greater than the chamber pressure. This is often achieved with a pump. Suitable pumps usually use centrifugal turbopumps due to their high power and light weight, although reciprocating pumps have been employed in the past. Turbopumps are usually lightweight and can give excellent performance; with an on-Earth weight well under 1% of
9804-409: The combustion process is then self-sustaining. The pre-burners produce the fuel-rich hot gases that pass through the turbines to generate the power needed to operate the high-pressure turbopumps. The oxidizer pre-burner's outflow drives a turbine that is connected to the HPOTP and to the oxidizer pre-burner pump. The fuel pre-burner's outflow drives a turbine that is connected to the HPFTP. The speed of
9933-489: The conclusion of the study, P&W put forward a proposal for a 250,000 lb f engine called the XLR-129 , which used a two-position expanding nozzle to provide increased efficiency over a wide range of altitudes. In January 1969 NASA awarded contracts to General Dynamics, Lockheed, McDonnell Douglas, and North American Rockwell to initiate the early development of the Space Shuttle. As part of these 'Phase A' studies,
10062-433: The construction of RS-25 engines to be used in SLS missions is the use of advanced structural ceramics, such as thermal barrier coatings (TBCs) and ceramic-matrix composites (CMCs). These materials possess significantly lower thermal conductivities than metallic alloys, thus allowing more efficient combustion and reducing the cooling requirements. TBCs are thin ceramic oxide layers deposited on metallic components, acting as
10191-412: The controller; giving redundancy to the system. The failure of controller system A automatically leads to a switch-over to controller system B without impeding operational capabilities; the subsequent failure of controller system B would provide a graceful shutdown of the engine. Within each system (A and B), the two M68000s operate in lock-step , thereby enabling each system to detect failures by comparing
10320-546: The design, including the HPFTP, HPOTP, valves, nozzle, and fuel pre-burners. The individual engine component tests were followed by the first test of a complete engine (0002) on March 16, 1977, after its final assembly line was established in the main Rocketdyne factory in Canoga Park, Los Angeles . NASA specified that, prior to the Shuttle's first flight, the engines must have undergone at least 65,000 seconds of testing,
10449-467: The engine and residual liquid hydrogen venting through the liquid hydrogen fill and drain valves. After the dump was completed, the valves closed and remained closed for the remainder of the mission. A coolant control valve is mounted on the combustion chamber coolant bypass duct of each engine. The engine controller regulates the amount of gaseous hydrogen allowed to bypass the nozzle coolant loop, thus controlling its temperature. The chamber coolant valve
10578-474: The engine as much. This means that engines that burn LNG can be reused more than those that burn RP1 or LH 2 . Unlike engines that burn LH 2 , both RP1 and LNG engines can be designed with a shared shaft with a single turbine and two turbopumps, one each for LOX and LNG/RP1. In space, LNG does not need heaters to keep it liquid, unlike RP1. LNG is less expensive, being readily available in large quantities. It can be stored for more prolonged periods of time, and
10707-643: The engine had "amazing power" and that his plans were necessary for future rocket development. Hermann Oberth would name Paulet as a pioneer in rocketry in 1965. Wernher von Braun would also describe Paulet as "the pioneer of the liquid fuel propulsion motor" and stated that "Paulet helped man reach the Moon ". Paulet was later approached by Nazi Germany , being invited to join the Astronomische Gesellschaft to help develop rocket technology, though he refused to assist after discovering that
10836-400: The engine was only required to power the orbiter during ascent. During the year-long 'Phase B' study period, Rocketdyne was able to make use of their experience developing the HG-3 engine to design their SSME proposal, producing a prototype by January 1971. The engine made use of a new Rocketdyne-developed copper - zirconium alloy (called NARloy-Z) and was tested on February 12, 1971, producing
10965-406: The engine's functions (through the use of valves) and monitors its performance. Built by Honeywell Aerospace , each MEC originally comprised two redundant Honeywell HDC-601 computers, later upgraded to a system composed of two doubly redundant Motorola 68000 (M68000) processors (for a total of four M68000s per controller). Having the controller installed on the engine itself greatly simplifies
11094-561: The engine's performance and reliability and so reduce the amount of maintenance required after use. As a result, several versions of the RS-25 were used during the program: The most obvious effects of the upgrades the RS-25 received through the Space Shuttle program were the improvements in engine throttle. Whilst the FMOF engine had a maximum output of 100% RPL, Block II engines could throttle as high as 109% or 111% in an emergency, with usual flight performance being 104.5%. Existing engines used on
11223-426: The engine's thrust vector to be altered, thus steering the vehicle into the correct orientation. The comparatively large gimbal range is necessary to correct for the pitch momentum that occurs due to the constantly shifting center of mass as the vehicle burns fuel in flight and after booster separation. The bearing assembly is approximately 290 by 360 mm (11 by 14 in), has a mass of 105 lb (48 kg), and
11352-415: The engine, the propellants flow through low-pressure fuel and oxidizer turbopumps (LPFTP and LPOTP), and from there into high-pressure turbopumps (HPFTP and HPOTP). From these HPTPs the propellants take different routes through the engine. The oxidizer is split into four separate paths: to the oxidizer heat exchanger , which then splits into the oxidizer tank pressurization and pogo suppression systems; to
11481-430: The first European, and after Goddard the world's second, liquid-fuel rockets in history. In his book "Raketenfahrt" Valier describes the size of the rockets as of 21 cm in diameter and with a length of 74 cm, weighing 7 kg empty and 16 kg with fuel. The maximum thrust was 45 to 50 kp, with a total burning time of 132 seconds. These properties indicate a gas pressure pumping. The main purpose of these tests
11610-482: The fuel or less commonly the oxidizer to cool the chamber and nozzle. Ignition can be performed in many ways, but perhaps more so with liquid propellants than other rockets a consistent and significant ignitions source is required; a delay of ignition (in some cases as small as a few tens of milliseconds) can cause overpressure of the chamber due to excess propellant. A hard start can even cause an engine to explode. Generally, ignition systems try to apply flames across
11739-506: The gas side boundary layer of the engine, and this can cause the cooling system to rapidly fail, destroying the engine. These kinds of oscillations are much more common on large engines, and plagued the development of the Saturn V , but were finally overcome. Some combustion chambers, such as those of the RS-25 engine, use Helmholtz resonators as damping mechanisms to stop particular resonant frequencies from growing. To prevent these issues
11868-542: The head of GIRD. On 17 August 1933, Mikhail Tikhonravov launched the first Soviet liquid-propelled rocket (the GIRD-9), fueled by liquid oxygen and jellied gasoline. It reached an altitude of 400 metres (1,300 ft). In January 1933 Tsander began development of the GIRD-X rocket. This design burned liquid oxygen and gasoline and was one of the first engines to be regeneratively cooled by the liquid oxygen, which flowed around
11997-427: The hot gas manifold, from where it passes into the MCC injectors. Once in the injectors, the propellants are mixed and injected into the main combustion chamber where they are ignited. The ejection of the burning propellant mixture through the throat and bell of the engine's nozzle creates the thrust. The low-pressure oxidizer turbopump (LPOTP) is an axial-flow pump which operates at approximately 5,150 rpm driven by
12126-462: The hot-gas manifold. The fuel and oxidizer enter the pre-burners and are mixed so that efficient combustion can occur. The augmented spark igniter is a small combination chamber located in the center of the injector of each pre-burner. Two dual-redundant spark igniters are activated by the engine controller and are used during the engine start sequence to initiate combustion in each pre-burner. They are turned off after approximately three seconds because
12255-479: The injector surface, with a mass flow of approximately 1% of the full mass flow of the chamber. Safety interlocks are sometimes used to ensure the presence of an ignition source before the main valves open; however reliability of the interlocks can in some cases be lower than the ignition system. Thus it depends on whether the system must fail safe, or whether overall mission success is more important. Interlocks are rarely used for upper, uncrewed stages where failure of
12384-443: The inner wall of the combustion chamber before entering it. Problems with burn-through during testing prompted a switch from gasoline to less energetic alcohol. The final missile, 2.2 metres (7.2 ft) long by 140 millimetres (5.5 in) in diameter, had a mass of 30 kilograms (66 lb), and it was anticipated that it could carry a 2 kilograms (4.4 lb) payload to an altitude of 5.5 kilometres (3.4 mi). The GIRD X rocket
12513-451: The interlock would cause loss of mission, but are present on the RS-25 engine, to shut the engines down prior to liftoff of the Space Shuttle. In addition, detection of successful ignition of the igniter is surprisingly difficult, some systems use thin wires that are cut by the flames, pressure sensors have also seen some use. Methods of ignition include pyrotechnic , electrical (spark or hot wire), and chemical. Hypergolic propellants have
12642-519: The involved companies selected an upgraded version of the XLR-129, developing 415,000 lbf (1,850 kN), as the baseline engine for their designs. This design can be found on many of the planned Shuttle versions right up to the final decision. However, since NASA was interested in pushing the state of the art in every way they decided to select a much more advanced design in order to "force an advancement of rocket engine technology". They called for
12771-399: The liquid oxygen's pressure from 2.9 to 30 MPa (420 to 4,350 psi) while operating at approximately 28,120 rpm, giving a power output of 23,260 hp (17.34 MW ). The HPOTP discharge flow splits into several paths, one of which drives the LPOTP turbine. Another path is to, and through, the main oxidizer valve and enters the main combustion chamber. Another small flow path
12900-425: The low-pressure oxidizer turbopump (LPOTP); to the high-pressure oxidizer pre-burner, from which it is split into the HPFTP turbine and HPOTP before being reunited in the hot gas manifold and sent on to the main combustion chamber (MCC); or directly into the main combustion chamber (MCC) injectors. Meanwhile, fuel flows through the main fuel valve into regenerative cooling systems for the nozzle and MCC, or through
13029-504: The main combustion chamber, which increases or decreases engine thrust. The oxidizer and fuel pre-burner valves operate together to throttle the engine and maintain a constant 6.03:1 propellant mixture ratio. The main oxidizer and main fuel valves control the flow of liquid oxygen and liquid hydrogen into the engine and are controlled by each engine controller. When an engine is operating, the main valves are fully open. The engine's main combustion chamber (MCC) receives fuel-rich hot gas from
13158-502: The maximum physical power level attainable, rather it was a specification decided on during engine development—the expected rated power level. When later studies indicated the engine could operate safely at levels above 100%, these higher levels became standard. Maintaining the original relationship of power level to physical thrust helped reduce confusion, as it created an unvarying fixed relationship so that test data (or operational data from past or future missions) can be easily compared. If
13287-481: The new launch vehicle are making use of previously flown Block II RS-25D engines, with NASA keeping such engines in a "purged safe" environment at Stennis Space Center, "along with all of the ground systems required to maintain them." For Artemis I, the RS-25D units with serial numbers E2045, E2056, E2058, and E2060 from all three orbiters were used. They were installed on the core stage by November 6, 2019. For Artemis II,
13416-443: The nozzle is the engine attach point to the orbiter-supplied heat shield. Thermal protection is necessary because of the exposure portions of the nozzles experience during the launch, ascent, on-orbit and entry phases of a mission. The insulation consists of four layers of metallic batting covered with a metallic foil and screening. Each engine is equipped with a main engine controller (MEC), an integrated computer which controls all of
13545-482: The orbiter being transferred to the Vehicle Assembly Building . If necessary the engines could be changed on the pad. The engines, drawing propellant from the Space Shuttle external tank (ET) via the orbiter's main propulsion system (MPS), were ignited at T−6.6 seconds prior to liftoff (with each ignition staggered by 120 ms ), which allowed their performance to be checked prior to ignition of
13674-456: The orbiter's main propulsion system (MPS) feed lines; whereas in the Space Launch System (SLS), fuel and oxidizer from the rocket's core stage flow directly into the MPS lines. Once in the MPS lines, the fuel and oxidizer each branch out into separate paths to each engine (three on the Space Shuttle, four on the SLS). In each branch, pre-valves then allow the propellants to enter the engine. Once in
13803-516: The orbiter. The engines, which were of the first manned orbital flight (FMOF) configuration and certified for operation at 100% rated power level (RPL), were operated in a twenty-second flight readiness firing on February 20, 1981, and, after inspection, declared ready for flight. Each Space Shuttle had three RS-25 engines, installed in the aft structure of the Space Shuttle orbiter in the Orbiter Processing Facility prior to
13932-434: The percentage of the theoretical performance of the nozzle that can be achieved. A poor injector performance causes unburnt propellant to leave the engine, giving poor efficiency. Additionally, injectors are also usually key in reducing thermal loads on the nozzle; by increasing the proportion of fuel around the edge of the chamber, this gives much lower temperatures on the walls of the nozzle. Injectors can be as simple as
14061-496: The planned configurations of the Constellation program 's Ares V cargo-launch vehicle and Ares I crew-launch vehicle rockets, which had been planned to use the RS-25 in their first and second stages respectively. While these configurations had initially seemed worthwhile, as they would use then-current technology following the shuttle's retirement in 2010, the plan had several drawbacks: Following several design changes to
14190-399: The power level was increased, and that new value was said to be 100%, then all previous data and documentation would either require changing or cross-checking against what physical thrust corresponded to 100% power level on that date. Engine power level affects engine reliability, with studies indicating the probability of an engine failure increasing rapidly with power levels over 104.5%, which
14319-410: The pressure boost provided by the LPFTP permits the HPFTP to operate at high speeds without cavitating. The LPFTP operates at around 16,185 rpm , and is approximately 450 by 600 mm (18 by 24 in) in size. It is connected to the vehicle propellant ducting and is supported in a fixed position by being mounted to the launch vehicle's structure. The HPFTP is a three-stage centrifugal pump driven by
14448-576: The project was destined for weaponization and never shared the formula for his propellant. According to filmmaker and researcher Álvaro Mejía, Frederick I. Ordway III would later attempt to discredit Paulet's discoveries in the context of the Cold War and in an effort to shift the public image of von Braun away from his history with Nazi Germany. The first flight of a liquid-propellant rocket took place on March 16, 1926 at Auburn, Massachusetts , when American professor Dr. Robert H. Goddard launched
14577-406: The pumps when loads were applied to them. The liquid-hydrogen line from the LPFTP to the HPFTP is insulated to prevent the formation of liquid air. In addition to fuel and oxidizer systems, the launch vehicle's main propulsion system is also equipped with a helium system consisting of ten storage tanks in addition to various regulators, check valves, distribution lines, and control valves. The system
14706-404: The rim to an absolute pressure between 4.6 and 5.7 psi (32 and 39 kPa), and prevents flow separation. The inner part of the flow is at much lower pressure, around 2 psi (14 kPa) or less. The inner surface of each nozzle is cooled by liquid hydrogen flowing through brazed stainless steel tube wall coolant passages. On the Space Shuttle, a support ring welded to the forward end of
14835-405: The seafloor, were delivered to Honeywell Aerospace for examination and analysis. One controller was broken open on one side, and both were severely corroded and damaged by marine life. Both units were disassembled and the memory units flushed with deionized water . After they were dried and vacuum baked , data from these units was retrieved for forensic examination. To control the engine's output,
14964-503: The signal levels on the buses of the two M68000 processors within that system. If differences are encountered between the two buses, then an interrupt is generated and control turned over to the other system. Because of subtle differences between M68000s from Motorola and the second source manufacturer TRW , each system uses M68000s from the same manufacturer (for instance system A would have two Motorola CPUs while system B would have two CPUs manufactured by TRW). Memory for block I controllers
15093-521: The spacecraft ascent, with total thrust increased by two solid rocket boosters and the orbiter's two AJ10 orbital maneuvering system engines. Following each flight, the RS-25 engines were removed from the orbiter, inspected, refurbished, and then reused on another mission. Four RS-25 engines are installed on each Space Launch System, housed in the engine section at the base of the core stage, and expended after use. The first four Space Launch System flights use modernized and refurbished engines built for
15222-542: The stack exceeding 3 g of acceleration as it became progressively lighter due to propellant consumption. The engines were then shut down, a procedure known as main engine cutoff (MECO), at around T+8.5 minutes. After each flight the engines would be removed from the orbiter and transferred to the Space Shuttle Main Engine Processing Facility (SSMEPF), where they would be inspected and refurbished in preparation for reuse on
15351-403: The tankage mass can be acceptable. The major components of a rocket engine are therefore the combustion chamber (thrust chamber), pyrotechnic igniter , propellant feed system, valves, regulators, propellant tanks and the rocket engine nozzle . For feeding propellants to the combustion chamber, liquid-propellant engines are either pressure-fed or pump-fed , with pump-fed engines working in
15480-401: The thrust interface between the engine and the launch vehicle, supporting 7,480 lb (3,390 kg) of engine weight and withstanding over 500,000 lbf (2,200,000 N) of thrust. As well as providing a means to attach the engine to the launch vehicle, the gimbal bearing allows the engine to be pivoted (or "gimballed") around two axes of freedom with a range of ±10.5°. This motion allows
15609-523: The thrust. Indeed, overall thrust to weight ratios including a turbopump have been as high as 155:1 with the SpaceX Merlin 1D rocket engine and up to 180:1 with the vacuum version. Instead of a pump, some designs use a tank of a high-pressure inert gas such as helium to pressurize the propellants. These rockets often provide lower delta-v because the mass of the pressurant tankage reduces performance. In some designs for high altitude or vacuum use
15738-617: The units with serial numbers E2047, E2059, E2062, and E2063 will be used. They were installed on the core stage by September 25, 2023. In addition to the RS-25Ds, the SLS program makes use of the Main Propulsion Systems (MPS, the "plumbing" feeding the engines) from the three remaining shuttle orbiters for testing purposes (having been removed as part of the orbiters' decommissioning), with the first two launches ( Artemis I and Artemis II ) originally predicted to make use of
15867-430: The wiring between the engine and the launch vehicle, because all the sensors and actuators are connected directly to only the controller, each MEC then being connected to the orbiter's general purpose computers (GPCs) or the SLS's avionics suite via its own engine interface unit (EIU). Using a dedicated system also simplifies the software and thus improves its reliability. Two independent dual-CPU computers, A and B, form
15996-620: Was achieved. During this period in Moscow , Fredrich Tsander – a scientist and inventor – was designing and building liquid rocket engines which ran on compressed air and gasoline. Tsander investigated high-energy fuels including powdered metals mixed with gasoline. In September 1931 Tsander formed the Moscow based ' Group for the Study of Reactive Motion ', better known by its Russian acronym "GIRD". In May 1932, Sergey Korolev replaced Tsander as
16125-552: Was confiscated by the German military, the Heereswaffenamt and integrated into the activities under General Walter Dornberger in the early and mid-1930s in a field near Berlin. Max Valier was a co-founder of an amateur research group, the VfR , working on liquid rockets in the early 1930s, and many of whose members eventually became important rocket technology pioneers, including Wernher von Braun . Von Braun served as head of
16254-561: Was launched on 25 November 1933 and flew to a height of 80 meters. In 1933 GDL and GIRD merged and became the Reactive Scientific Research Institute (RNII). At RNII Gushko continued the development of liquid propellant rocket engines ОРМ-53 to ОРМ-102, with ORM-65 [ ru ] powering the RP-318 rocket-powered aircraft . In 1938 Leonid Dushkin replaced Glushko and continued development of
16383-503: Was of the plated-wire type, which functions in a manner similar to magnetic core memory and retains data even after power is turned off. Block II controllers used conventional CMOS static RAM . The controllers were designed to be tough enough to survive the forces of launch and proved to be extremely resilient to damage. During the investigation of the Challenger accident the two MECs (from engines 2020 and 2021), recovered from
16512-592: Was to develop the liquid rocket-propulsion system for a Gebrüder-Müller-Griessheim aircraft under construction for a planned flight across the English channel. Also spaceflight historian Frank H. Winter , curator at National Air and Space Museum in Washington, DC, confirms the Opel group was working, in addition to their solid-fuel rockets used for land-speed records and the world's first crewed rocket-plane flights with
16641-502: Was why power levels above 104.5% were retained for contingency use only. During the course of the Space Shuttle program, a total of 46 RS-25 engines were used (with one extra RS-25D being built but never used). During the 135 missions, for a total of 405 individual engine-missions, Pratt & Whitney Rocketdyne reports a 99.95% reliability rate, with the only in-flight SSME failure occurring during Space Shuttle Challenger 's STS-51-F mission. The engines, however, did suffer from
#548451