Misplaced Pages

Regnans

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#28971

121-514: Regnans mays refer to : Eucalyptus regnans , a species of Eucalyptus native to southeastern Australia. Regnans in Excelsis , a papal bull issued in 1570, declaring Queen Elizabeth I to be a heretic. Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Regnans . If an internal link led you here, you may wish to change

242-457: A lignotuber and hence cannot recover by reshooting after intense fire. Instead, it can only regenerate by seed, and is thus termed an obligate seeder. The seeds are held firmly in woody capsules (gumnuts) until the branchlets die and the capsules dry out. Seedlings require a high level of light, much more than reaches the forest floor when there is a well-developed understorey, and so seeds are not likely to germinate or develop into saplings unless

363-710: A Special Projects Officer for the Forests Commission Victoria , directed a search of official Victorian archives. It unearthed a forgotten report from more than a century earlier, one that had not been referred to in other accounts of the species up to that time. It was written on 21 February 1872, by the Inspector of State Forests, William Ferguson, and was addressed to the Assistant Commissioner of Lands and Surveys, Clement Hodgkinson . Ferguson had been instructed to explore and inspect

484-408: A decussate pattern, in which each node rotates by 1/4 (90°) as in the herb basil . The leaves of tricussate plants such as Nerium oleander form a triple helix. The leaves of some plants do not form helices. In some plants, the divergence angle changes as the plant grows. In orixate phyllotaxis, named after Orixa japonica , the divergence angle is not constant. Instead, it is periodic and follows

605-405: A diameter at breast height (DBH) of 6.88 metres (22 ft 7 in). Al Carder notes that in 1888 a cash reward of 100 pounds was offered there for the discovery of any tree measuring more than 400 feet (120 m). The fact that such a considerable reward was never claimed is taken as evidence that such large trees did not exist. Carder's historical research, however, revealed that the reward

726-669: A living tree had a DBH of 10.77 metres (35 ft 4 in), making E. regnans the third thickest species of tree after the Baobab ( Adansonia digitata ) and the Montezuma Cypress ( Taxodium mucronatum ). As a consequence of being both the tallest and thickest Australian trees, E. regnans is also the most massive; that title being currently held by an individual called the "Kermandie Queen" discovered 3.9 kilometres (2.4 mi) west of Geeveston , Tasmania which measures 76.99 metres (252 ft 7 in) in height and has

847-432: A new cohort developing from canopy-stored seedbanks. Despite this, natural variation in the spatial scale and frequency of wildfires meant that 30-60% of pre-European E. regnans forests would have been considered old growth (e.g. with living trees more than 120 years old). In addition, studies of older E. regnans forests have shown that low-intensity fires lead to the development of younger cohorts of trees without killing

968-515: A petiole like structure. Pseudopetioles occur in some monocotyledons including bananas , palms and bamboos . Stipules may be conspicuous (e.g. beans and roses ), soon falling or otherwise not obvious as in Moraceae or absent altogether as in the Magnoliaceae . A petiole may be absent (apetiolate), or the blade may not be laminar (flattened). The petiole mechanically links the leaf to

1089-463: A plant matures; as a case in point Eucalyptus species commonly have isobilateral, pendent leaves when mature and dominating their neighbors; however, such trees tend to have erect or horizontal dorsiventral leaves as seedlings, when their growth is limited by the available light. Other factors include the need to balance water loss at high temperature and low humidity against the need to absorb atmospheric carbon dioxide. In most plants, leaves also are

1210-419: A regular organization at the cellular scale. Specialized cells that differ markedly from surrounding cells, and which often synthesize specialized products such as crystals, are termed idioblasts . The epidermis is the outer layer of cells covering the leaf. It is covered with a waxy cuticle which is impermeable to liquid water and water vapor and forms the boundary separating the plant's inner cells from

1331-634: A retreat, Carder notes. Ferdinand von Mueller claimed to have personally measured one tree near the headwaters of the Yarra River at 122 metres (400 ft). Nurseryman David Boyle, claimed in 1862 to have measured a fallen tree in a deep gully in the Dandenongs at 119.5 metres (392 ft), and with a diameter at its broken tip that indicated it might have lost another eight metres (26 ft) of trunk when it broke, for 128 metres (420 ft). Von Mueller's early records also mention two trees on

SECTION 10

#1732776751029

1452-475: A scaffolding matrix imparting mechanical rigidity to leaves. Leaves are normally extensively vascularized and typically have networks of vascular bundles containing xylem , which supplies water for photosynthesis , and phloem , which transports the sugars produced by photosynthesis. Many leaves are covered in trichomes (small hairs) which have diverse structures and functions. The major tissue systems present are These three tissue systems typically form

1573-541: A severe dry season, some plants may shed their leaves until the dry season ends. In either case, the shed leaves may be expected to contribute their retained nutrients to the soil where they fall. In contrast, many other non-seasonal plants, such as palms and conifers, retain their leaves for long periods; Welwitschia retains its two main leaves throughout a lifetime that may exceed a thousand years. The leaf-like organs of bryophytes (e.g., mosses and liverworts ), known as phyllids , differ heavily morphologically from

1694-402: A single (sometimes more) primary vein in the centre of the leaf, referred to as the midrib or costa, which is continuous with the vasculature of the petiole. The secondary veins, also known as second order veins or lateral veins, branch off from the midrib and extend toward the leaf margins. These often terminate in a hydathode , a secretory organ, at the margin. In turn, smaller veins branch from

1815-578: A single leaf grows from each node, and when the stem is held straight, the leaves form a helix . The divergence angle is often represented as a fraction of a full rotation around the stem. A rotation fraction of 1/2 (a divergence angle of 180°) produces an alternate arrangement, such as in Gasteria or the fan-aloe Kumara plicatilis . Rotation fractions of 1/3 (divergence angles of 120°) occur in beech and hazel . Oak and apricot rotate by 2/5, sunflowers, poplar, and pear by 3/8, and in willow and almond

1936-533: A single point. In evolutionary terms, early emerging taxa tend to have dichotomous branching with reticulate systems emerging later. Veins appeared in the Permian period (299–252 mya), prior to the appearance of angiosperms in the Triassic (252–201 mya), during which vein hierarchy appeared enabling higher function, larger leaf size and adaption to a wider variety of climatic conditions. Although it

2057-409: A small leaf. Stipules may be lasting and not be shed (a stipulate leaf, such as in roses and beans ), or be shed as the leaf expands, leaving a stipule scar on the twig (an exstipulate leaf). The situation, arrangement, and structure of the stipules is called the "stipulation". Veins (sometimes referred to as nerves) constitute one of the most visible features of leaves. The veins in a leaf represent

2178-405: A specialized cell group known as the stomatal complex. The opening and closing of the stomatal aperture is controlled by the stomatal complex and regulates the exchange of gases and water vapor between the outside air and the interior of the leaf. Stomata therefore play the important role in allowing photosynthesis without letting the leaf dry out. In a typical leaf, the stomata are more numerous over

2299-642: A tendency to collapse on drying. This wood is highly regarded by builders, furniture makers and architects. Genetic comparison of logged stands and natural stands of mountain ash showed only minor differences in nuclear DNA between the two, with slightly stronger spatial genetic structure in the undisturbed treatment, higher levels of genetic differentiation in the logged treatment, and greater partitioning of genetic diversity among logged sites. However, analysis of chloroplast DNA showed more substantial differences, with higher levels of diversity in logged sites than burnt or undisturbed sites suggesting that chloroplast DNA

2420-718: A tree at Wallaby Catchment in Kinglake National Park was discovered to be 91.6 metres (301 ft) tall in 2000, however it perished in the Black Saturday bushfires of 2009. Historically, the tallest individual is claimed to be the Ferguson Tree, at 132.6 metres (435 ft), found in the Watts River region of Victoria in 1871 or 1872. This record is often disputed as unreliable, despite first-hand documentary evidence of it being measured on

2541-654: A type specimen, nor did he use the name Eucalyptus regnans on his many collections of "White Mountain Ash" at the Melbourne Herbarium. Victorian botanist Jim Willis selected a lectotype in 1967, one of the more complete collections of a specimen from the Dandenong Ranges , that von Mueller had noted was one "of the tall trees measured by Mr D. Boyle in March 1867." Eucalyptus regnans is widely known as

SECTION 20

#1732776751029

2662-483: A variety of patterns (venation) and form cylindrical bundles, usually lying in the median plane of the mesophyll , between the two layers of epidermis . This pattern is often specific to taxa, and of which angiosperms possess two main types, parallel and reticulate (net like). In general, parallel venation is typical of monocots, while reticulate is more typical of eudicots and magnoliids (" dicots "), though there are many exceptions. The vein or veins entering

2783-493: A well-established mid-storey and upper storey could store up to 2,844 tonnes per hectare (1,132.75 long ton/acre; 1,268.68 short ton/acre) of carbon. Eucalyptus regnans is the tallest of all flowering plants , and possibly the tallest of all plants , although no living specimens can make that claim. The tallest measured living specimen, named Centurion , stands 100.5 metres (330 feet) tall in Tasmania . Before

2904-422: Is a leaf-eating insect that can defoliate trees during major infestations such as one experienced at Powelltown in the early 1960s. Leaves and buds are eaten by the larvae and adults of the chrysomelid leaf beetle Chrysophtharta bimaculata . Stressed trees can be damaged by the eucalyptus longhorned borer ( Phoracantha semipunctata ), which burrows into the trunk, which exudes a red stain. Eucalypt weevils of

3025-462: Is a species of very tall forest tree that is native to the Australia states of Tasmania and Victoria . It is a straight-trunked tree with smooth grey bark, but with a stocking of rough brown bark at the base, glossy green, lance-shaped to curved adult leaves, flower buds in groups of between nine and fifteen, white flowers, and cup-shaped or conical fruit. It is the tallest of all flowering plants;

3146-428: Is approximately 0.8 to 2 cm per year, with half of the total stem diameter growth occurring in the first 90 years of life. A number of environmental factors influence the growth and maturation of E. regnans , with research showing that the amount of incident solar radiation is positively associated with height and stem diameter growth, and that the amount of sunlight received is strongly negatively correlated with

3267-460: Is called a stipe in ferns . The lamina is the expanded, flat component of the leaf which contains the chloroplasts . The sheath is a structure, typically at the base that fully or partially clasps the stem above the node, where the leaf is attached. Leaf sheathes typically occur in Poaceae (grasses) and Apiaceae (umbellifers). Between the sheath and the lamina, there may be a pseudopetiole ,

3388-453: Is easy to work and the grain is straight with long, clear sections without knots. The wood works reasonably well for steam-bending. Primary uses for sawn wood are furniture, flooring (where its very pale blonde colour is highly prized), panelling, veneer, plywood, window frames, and general construction. The wood has sometimes been used for wood wool and cooperage . However, the wood needs steam reconditioning for high value applications, due to

3509-415: Is grown in plantations in Australia and in other countries. Along with E. obliqua and E. delegatensis it is known in the timber industry as Tasmanian oak . Eucalyptus regnans is a broad-leaved, evergreen tree that typically grows to a height of 70–114 m (230–374 ft) but does not form a lignotuber . The crown is open and small in relation to the size of the rest of the tree. The trunk

3630-520: Is more natural haplotype diversity in the Central Highlands of Victoria than previously observed. More recently, next-generation sequencing of nuclear DNA identified very little population genetic structure throughout the range of the species, with a considerable proportion of the entire species genetic variation found within any given population of mountain ash. This suggests that gene flow is likely to be occurring over long distances, and that

3751-442: Is most suited to deep friable clay loam soils, often of volcanic origin; in areas of poorer soils, it can be confined to watercourses and valleys. Eucalyptus regnans is a very fast growing tree, with mean height growth rates in young (< 22 years old) stands ranging from 1 metre (3 ft 3 in) to 2 metres (6 ft 7 in) per year. In fact, some individuals grow at more than 2 metres (6 ft 7 in) per year for

Regnans - Misplaced Pages Continue

3872-455: Is often the sole or dominant overstorey tree in many locations, this can lead to the replacement of a tall wet open forest ecosystem with a dense low wattle shrubland, which obviously has large repercussions for community composition and function. Conversely, in the complete absence of fire (for hundreds of years), the cool temperate rainforest species that live in association with E. regnans may gradually replace it in gullies or other areas where

3993-520: Is straight with smooth, cream-coloured, greyish or brown bark with a stocking of more or less fibrous or flaky bark that extends up to 5–20 m (16–66 ft) at the base. The trunk typically reaches a diameter of 2.5 m (8 ft 2 in) at breast height ( DBH ). Young plants and coppice regrowth have glossy green, egg-shaped leaves that are held horizontally, 55–120 mm (2.2–4.7 in) long and 22–50 mm (0.87–1.97 in) wide and petiolate . Adult leaves are arranged alternately along

4114-513: Is substantial variation in the age at which individual trees develop viable seeds, which is largely the result of growth rates, tree size, incident solar radiation, and topographic aspect. Trees as young as 7 years old may contain mature fruit capsules, although this is unusual and most trees probably start producing seeds after 11 years of age. Similarly, there is considerable variation in the rate at which stands of E. regnans develop seed crops. Tree growth rates, stand age, and topography influence

4235-406: Is the more complex pattern, branching veins appear to be plesiomorphic and in some form were present in ancient seed plants as long as 250 million years ago. A pseudo-reticulate venation that is actually a highly modified penniparallel one is an autapomorphy of some Melanthiaceae , which are monocots; e.g., Paris quadrifolia (True-lover's Knot). In leaves with reticulate venation, veins form

4356-933: Is too large for the majority of gardens, but may be suitable for parks. Propagation is from seed, with the best germination rates being obtained by refrigerating for three weeks before sowing. Seed may be stored for several years if refrigerated and kept dry. Seedlings are grown in containers but are more prone to damping off than other eucalypts; they are highly susceptible to Phytophthora cinnamomi and P. nicotianae . Young plants are generally planted out once they are 8 or 9 months old. These are at risk of being eaten by grazing rabbits, wallabies and possums, which can destroy young plantations in severe cases. American horticulturist and entrepreneur Ellwood Cooper noted its rapid growth but demanding soil requirements in his 1876 work Forest Culture and Eucalyptus Trees . Eucalyptus regnans requires fertile soil with good drainage and annual rainfall of 1,000 millimetres (39 in) spread over

4477-641: The Cathedral Range in Victoria. These trees resemble mountain ash in appearance though they lack the paired inflorescences, and have the oil composition of red stringybark. Eucalyptus regnans occurs across a 700 km by 500 km region in the southern Australian states of Victoria and Tasmania. The species grows mostly in cool, mountainous areas that receive rainfall over 1,000 millimetres (39 in) per year. E. regnans reaches its highest elevations of about 1,100 metres (3,600 ft) ASL on

4598-522: The Errinundra Plateau in north-eastern Victoria, and its lowest elevations near sea-level in some southern parts of its Tasmanian distribution. In Victoria, stands of tall trees are found in the Otway , Dandenong , Yarra and Strzelecki ranges as well as Mount Disappointment and East Gippsland . However, the distribution is much reduced. Most of the E. regnans forest across Gippsland

4719-628: The Tasman Peninsula in Tasmania. It is not surprising that the populations with the highest level of hybridisation occur on islands, promontories and peninsulas, as these areas are likely to occur on the edge of the ecological niche of mountain ash, and the small patches of mountain ash still remaining at these sites are probably experiencing pollen swamping from the more dominant messmate trees. Hybrids between mountain ash and red stringybark ( Eucalyptus macrorhyncha ) have been observed in

4840-494: The diet of many animals . Correspondingly, leaves represent heavy investment on the part of the plants bearing them, and their retention or disposition are the subject of elaborate strategies for dealing with pest pressures, seasonal conditions, and protective measures such as the growth of thorns and the production of phytoliths , lignins , tannins and poisons . Deciduous plants in frigid or cold temperate regions typically shed their leaves in autumn, whereas in areas with

4961-424: The gymnosperms and angiosperms . Euphylls are also referred to as macrophylls or megaphylls (large leaves). A structurally complete leaf of an angiosperm consists of a petiole (leaf stalk), a lamina (leaf blade), stipules (small structures located to either side of the base of the petiole) and a sheath. Not every species produces leaves with all of these structural components. The proximal stalk or petiole

Regnans - Misplaced Pages Continue

5082-551: The phyllids of mosses and liverworts . Leaves are the most important organs of most vascular plants. Green plants are autotrophic , meaning that they do not obtain food from other living things but instead create their own food by photosynthesis . They capture the energy in sunlight and use it to make simple sugars , such as glucose and sucrose , from carbon dioxide and water. The sugars are then stored as starch , further processed by chemical synthesis into more complex organic molecules such as proteins or cellulose ,

5203-399: The plant shoots and roots . Vascular plants transport sucrose in a special tissue called the phloem . The phloem and xylem are parallel to each other, but the transport of materials is usually in opposite directions. Within the leaf these vascular systems branch (ramify) to form veins which supply as much of the leaf as possible, ensuring that cells carrying out photosynthesis are close to

5324-496: The 20th century. Much of the present woodchip harvest is exported to Japan. While the area of natural stands with large old trees is rapidly decreasing, substantial areas of regrowth exist and it is increasingly grown in plantations , the long, straight, fast growing trunks being much more commercially valuable than the old growth timber. It is a medium weight timber (about 680 kg/m or 1,150 lb/cu yd) and rather coarse (stringy) in texture. Gum veins are common. The wood

5445-462: The Central Highlands of Victoria. The possums use hollows in old trees for nesting and shelter and forage for arboreal arthropods under bark. The vegetation structure of these forests enables the possums to travel through them. Both Leadbeaters possums and yellow-bellied gliders feed on the sap from the trunks and branches. Koalas feed on the foliage, though it is not one of their preferred forage species. Yellow-tailed black-cockatoos nest in

5566-471: The Flora and Fauna Guarantee Act 1988 and its Regulations of 2011. The assessment criteria included, was there a demonstrated state of decline, has there been a reduction in distribution or has vegetation community altered markedly. Studies conducted by Murray Cunningham and David Ashton found that the re-growth habit of Eucalyptus regnans requires high light conditions, and the high nutrients contained in

5687-679: The amount of light they absorb to avoid or mitigate excessive heat, ultraviolet damage, or desiccation, or to sacrifice light-absorption efficiency in favor of protection from herbivory. For xerophytes the major constraint is not light flux or intensity , but drought. Some window plants such as Fenestraria species and some Haworthia species such as Haworthia tesselata and Haworthia truncata are examples of xerophytes. and Bulbine mesembryanthemoides . Leaves also function to store chemical energy and water (especially in succulents ) and may become specialized organs serving other functions, such as tendrils of peas and other legumes,

5808-421: The ash layer. These conditions are found typically following a high intensity wildfire, which are an infrequent, yet periodic feature of mountain ash forests. For this reason clearfelling – with the complete removal of all trees, followed by a high intensity fire and seeding – is used by the timber industry and forest scientists to ensure regeneration of harvested areas because it mimics

5929-583: The basic structural material in plant cell walls, or metabolized by cellular respiration to provide chemical energy to run cellular processes. The leaves draw water from the ground in the transpiration stream through a vascular conducting system known as xylem and obtain carbon dioxide from the atmosphere by diffusion through openings called stomata in the outer covering layer of the leaf ( epidermis ), while leaves are orientated to maximize their exposure to sunlight. Once sugar has been synthesized, it needs to be transported to areas of active growth such as

6050-458: The blade attaches directly to the stem. Subpetiolate leaves are nearly petiolate or have an extremely short petiole and may appear to be sessile. In clasping or decurrent leaves, the blade partially surrounds the stem. When the leaf base completely surrounds the stem, the leaves are said to be perfoliate , such as in Eupatorium perfoliatum . In peltate leaves, the petiole attaches to

6171-406: The blade inside the blade margin. In some Acacia species, such as the koa tree ( Acacia koa ), the petioles are expanded or broadened and function like leaf blades; these are called phyllodes . There may or may not be normal pinnate leaves at the tip of the phyllode. A stipule , present on the leaves of many dicotyledons , is an appendage on each side at the base of the petiole, resembling

SECTION 50

#1732776751029

6292-484: The conditions found after high intensity wildfire. Melbourne's forested water catchment areas, which provides water requiring little treatment, are composed of large areas E. regnans forest. The management of 157,000 hectares of Melbourne’s forested water catchments were vested in the Melbourne and Metropolitan Board of Works (MMBW) in 1891 with a closed catchment policy where timber harvesting and public access

6413-493: The discovery of Centurion, the tallest known specimen was Icarus Dream, which was rediscovered in Tasmania in January, 2005 and is 97 metres (318 ft) high. It was first measured by surveyors at 98.8 metres (324 ft) in 1962 but the documentation had been lost. A total of 16 living trees in Tasmania have been reliably measured in excess of 90 metres (300 ft). The Cumberland Scenic Reserve near Cambarville , became

6534-606: The early Devonian lycopsid Baragwanathia , first evolved as enations, extensions of the stem. True leaves or euphylls of larger size and with more complex venation did not become widespread in other groups until the Devonian period , by which time the carbon dioxide concentration in the atmosphere had dropped significantly. This occurred independently in several separate lineages of vascular plants, in progymnosperms like Archaeopteris , in Sphenopsida , ferns and later in

6655-651: The early 1960s they set up a new series of paired catchment experiments in wet mountain forests near Healesville to measure the long term impacts of timber harvesting and bushfire on water quality and quantity. It took another 10 years for the results to emerge more clearly. It was found that while timber harvesting had an impact, the most dramatic threat to stream flows remained catastrophic bushfires like those on Black Friday in 1939 or Black Saturday in 2009. In 2018, some researchers concluded that Mountain Ash forests in Victoria represent collapsing ecosystems. They coined

6776-558: The equivalents of the petioles and stipules of leaves. Because each leaflet can appear to be a simple leaf, it is important to recognize where the petiole occurs to identify a compound leaf. Compound leaves are a characteristic of some families of higher plants, such as the Fabaceae . The middle vein of a compound leaf or a frond , when it is present, is called a rachis . Leaves which have a petiole (leaf stalk) are said to be petiolate . Sessile (epetiolate) leaves have no petiole and

6897-657: The external world. The cuticle is in some cases thinner on the lower epidermis than on the upper epidermis, and is generally thicker on leaves from dry climates as compared with those from wet climates. The epidermis serves several functions: protection against water loss by way of transpiration , regulation of gas exchange and secretion of metabolic compounds. Most leaves show dorsoventral anatomy: The upper (adaxial) and lower (abaxial) surfaces have somewhat different construction and may serve different functions. The epidermis tissue includes several differentiated cell types; epidermal cells, epidermal hair cells ( trichomes ), cells in

7018-426: The first 20 years of their lives. However, growth rates slow with age, and eventually turn negative as old trees senesce and the tops of the canopy are damaged in high winds, lightning strikes or during fires. Mean tree height after 8 years is about 15 m, and after 22 years is about 33 m. After 50 years, trees are typically about 65 metres (213 ft) tall. In young stands (< 22 years old), mean stem diameter growth

7139-663: The first two to three pairs of leaves are arranged in opposite pairs along the stem, then alternate. Eucalyptus regnans was first formally described in 1871 by Victorian botanist Ferdinand von Mueller in the Annual Report of the Victorian Acclimatisation Society . He gave the specific epithet ( regnans ) from the Latin word meaning "ruling". Mueller noted that "[t]his species or variety, which might be called Eucalyptus regnans , represents

7260-416: The flowers are white. The fruit is a woody, cup-shaped or conical capsule 5–8 mm (0.20–0.31 in) long and 4–7 mm (0.16–0.28 in) wide on a pedicel 1–7 mm (0.039–0.276 in) long and usually with three valves near the level of the rim. The seeds are pyramid-shaped, 1.5–3 mm (0.059–0.118 in) long with the hilum at the end. Seedlings have kidney shaped cotyledons , and

7381-406: The fraction is 5/13. These arrangements are periodic. The denominator of the rotation fraction indicates the number of leaves in one period, while the numerator indicates the number of complete turns or gyres made in one period. For example: Most divergence angles are related to the sequence of Fibonacci numbers F n . This sequence begins 1, 1, 2, 3, 5, 8, 13; each term is the sum of

SECTION 60

#1732776751029

7502-563: The genus Gonipterus commonly damage E. regnans , while the tortoise beetle ( Paropsis atomaria ) is a common pest of plantations. A study carried out by environmental scientist Professor Brendan Mackey of the Australian National University in 2009 identified that mountain ash forests in Victoria’s Central Highlands are the best in the world at locking up carbon. Mackey and colleagues found

7623-448: The ground by chain at 114.3 metres (375 ft). The stump is commemorated with a plaque. That tree was about 1 metre (3.3 ft) shorter than Hyperion , the world's current tallest living tree, a coast redwood measuring 115.5 metres (379.1 ft). Some individuals attain much greater diameter; the largest known being "The Bulga Stump", a charred remnant near Tarra Bulga, South Gippsland district, Victoria, Australia which as

7744-493: The ground it measures 18 feet in diameter. At the extreme end where it has broken in its fall, it (the trunk) is 3 feet in diameter. This tree has been much burnt by fire, and I fully believe that before it fell it must have been more than 500 feet high. As it now lies it forms a complete bridge across a narrow ravine" .... William Ferguson, The Melbourne Age, 22 February 1872. It is also possible that individual trees will again attain such heights. Author Bob Beale has recorded that

7865-466: The ground with surveyor's tape by a senior forestry official (see below). Widespread agreement exists, however, that an exceptionally tall individual was reliably measured at 112.8 metres (370 ft) by theodolite in 1880 by a surveyor, George Cornthwaite, at Thorpdale , Victoria (the tree is known both as the Cornthwaite or Thorpdale Tree). When it was felled in 1881, Cornthwaite remeasured it on

7986-866: The ground, they are referred to as prostrate . Perennial plants whose leaves are shed annually are said to have deciduous leaves, while leaves that remain through winter are evergreens . Leaves attached to stems by stalks (known as petioles ) are called petiolate, and if attached directly to the stem with no petiole they are called sessile. Dicot leaves have blades with pinnate venation (where major veins diverge from one large mid-vein and have smaller connecting networks between them). Less commonly, dicot leaf blades may have palmate venation (several large veins diverging from petiole to leaf edges). Finally, some exhibit parallel venation. Monocot leaves in temperate climates usually have narrow blades, and usually parallel venation converging at leaf tips or edges. Some also have pinnate venation. The arrangement of leaves on

8107-407: The highest amount of carbon was contained in a forest located in the O'Shannassy River catchment, which held 1,867 tonnes per hectare (743.62 long ton/acre; 832.85 short ton/acre) of carbon. This area was a stand of unlogged mountain ash over 100 years old, which had had minimal human disturbance. They further calculated that a E. regnans -dominated forest with trees up to 250 years old and

8228-572: The hollows of old trees, in contrast to the Tasmanian wedge-tailed eagle ( Aquila audax fleayi ) that builds its nest of large sticks at the top of the trees. In a small area of rainforest in Yarra Ranges National Park in Victoria, nine epiphyte species were observed growing on Eucalyptus regnans , the most prevalent of these being the liverwort Bazzania adnexa . The spur-legged phasmid ( Didymuria violescens )

8349-443: The leaf from the petiole are called primary or first-order veins. The veins branching from these are secondary or second-order veins. These primary and secondary veins are considered major veins or lower order veins, though some authors include third order. Each subsequent branching is sequentially numbered, and these are the higher order veins, each branching being associated with a narrower vein diameter. In parallel veined leaves,

8470-523: The leaf veins form, and these have functional implications. Of these, angiosperms have the greatest diversity. Within these the major veins function as the support and distribution network for leaves and are correlated with leaf shape. For instance, the parallel venation found in most monocots correlates with their elongated leaf shape and wide leaf base, while reticulate venation is seen in simple entire leaves, while digitate leaves typically have venation in which three or more primary veins diverge radially from

8591-551: The leaves of vascular plants . In most cases, they lack vascular tissue, are only a single cell thick, and have no cuticle , stomata, or internal system of intercellular spaces. (The phyllids of the moss family Polytrichaceae are notable exceptions.) The phyllids of bryophytes are only present on the gametophytes , while in contrast the leaves of vascular plants are only present on the sporophytes . These can further develop into either vegetative or reproductive structures. Simple, vascularized leaves ( microphylls ), such as those of

8712-507: The leaves, stem, flower, and fruit collectively form the shoot system. In most leaves, the primary photosynthetic tissue is the palisade mesophyll and is located on the upper side of the blade or lamina of the leaf but in some species, including the mature foliage of Eucalyptus , palisade mesophyll is present on both sides and the leaves are said to be isobilateral. Most leaves are flattened and have distinct upper ( adaxial ) and lower ( abaxial ) surfaces that differ in color, hairiness,

8833-807: The lengthy generation times of the species has precluded the development of substantial genetic differentiation between Tasmania and the mainland. Further comparison of chloroplast and nuclear DNA markers confirmed the expectation of extensive pollen dispersal but limited seed dispersal, leading to patterns of strong differentiation in chloroplast markers and weak differentiation at nuclear markers. Genome-wide sequencing of numerous mountain ash populations suggests that hybridisation with messmate ( Eucalyptus obliqua ) occurs frequently, with all populations currently studied having at least one hybrid individual present. In many cases these hybrids show no obvious morphological signs of hybridisation, although some individuals do show intermediate phenotypes in characteristics such as

8954-498: The level of precipitation (although all areas studied still received more than 120 centimetres (47 in) of rainfall). In the absence of disturbance events such as high-intensity fire, individual trees can survive for hundreds of years, with the oldest known individuals identified as being 500 years old. Historically, low-frequency and high-intensity wildfires (ignited by lightning strikes) would prevent many stands from reaching this age, with fires killing mature overstorey trees and

9075-609: The link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Regnans&oldid=275466198 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Eucalyptus regnans Eucalyptus regnans , known variously as mountain ash (in Victoria), giant ash or swamp gum (in Tasmania), or stringy gum ,

9196-768: The loftiest tree in British Territory." However, until 1882 he considered the tree to be a form or variety of the Tasmanian black peppermint ( Eucalyptus amygdalina ) and called it thus, not using the binomial name Eucalyptus regnans until the Systematic Census of Australian Plants in 1882, and giving it a formal diagnosis in 1888 in Volume 1 of the Key to the System of Victorian Plants , where he describes it as "stupendously tall". Von Mueller did not designate

9317-453: The midvein and tertiary venation is sparse. The flower buds are arranged in leaf axils in groups of between nine and fifteen on one or two unbranched peduncles 4–14 mm (0.16–0.55 in) long, the individual buds on pedicels 3–7 mm (0.12–0.28 in) long. Mature buds are oval, 4–7 mm (0.16–0.28 in) long and 2–4 mm (0.079–0.157 in) wide with a rounded operculum . Flowering occurs from March to May and

9438-498: The mountain ash, due to the resemblance of its wood to that of the northern hemisphere ash ( Fraxinus ). Swamp gum is a name given to it in Tasmania, as well as stringy gum in northern Tasmania. Other common names include white mountain ash, giant ash, stringy gum, swamp gum and Tasmanian oak. Von Mueller called it the "Giant gum-tree" and "Spurious blackbutt" in his 1888 Key to the System of Victorian Plants . The timber has been known as "Tasmanian oak", because early settlers likened

9559-426: The nearby Black Spur Range, one alive and measuring 128 metres (420 ft) and another fallen tree said to measure 146 metres (479 ft), but these were either based on hearsay or uncertain reliability. David Boyle also reported that a tree at Cape Otway measured 158 metres (518 ft), but this too was based on hearsay. None, however, had been verified by direct documentation until 1982 when Ken Simpendorfer,

9680-552: The number of stomata (pores that intake and output gases), the amount and structure of epicuticular wax and other features. Leaves are mostly green in color due to the presence of a compound called chlorophyll which is essential for photosynthesis as it absorbs light energy from the sun . A leaf with lighter-colored or white patches or edges is called a variegated leaf . Leaves can have many different shapes, sizes, textures and colors. The broad, flat leaves with complex venation of flowering plants are known as megaphylls and

9801-564: The oil gland density in leaves and the structure and height of rough bark on the trunk. Morphology is generally now considered to be a poor method of identifying hybrid individuals as it does not always accurately reflect the genetic makeup of an individual. A good example of this is a population of purported mountain ash on Wilson's Promontory in Victoria, which are morphologically more similar to mountain ash but genetically much more closely related to messmate. Other populations with high levels of hybridisation include those on Bruny Island and

9922-502: The parent trees, which leads to the presence of multiple age classes in old-growth forests . As E. regnans forests mature, they start to develop characteristics that are representative of old-growth stands, such as large hollows, long strips of decorticating bark, an abundance of tree ferns and rainforest trees, buttressing at the base of E. regnans trunks, large clumps of mistletoe in the canopy, large fallen logs, and thick mats of moisture-retaining mosses. Eucalyptus regnans lacks

10043-404: The photosynthetic organelles , the chloroplasts , to light and to increase the absorption of carbon dioxide while at the same time controlling water loss. Their surfaces are waterproofed by the plant cuticle and gas exchange between the mesophyll cells and the atmosphere is controlled by minute (length and width measured in tens of μm) openings called stomata which open or close to regulate

10164-412: The plant and provides the route for transfer of water and sugars to and from the leaf. The lamina is typically the location of the majority of photosynthesis. The upper ( adaxial ) angle between a leaf and a stem is known as the axil of the leaf. It is often the location of a bud . Structures located there are called "axillary". External leaf characteristics, such as shape, margin, hairs, the petiole, and

10285-434: The presence of stipules and glands, are frequently important for identifying plants to family, genus or species levels, and botanists have developed a rich terminology for describing leaf characteristics. Leaves almost always have determinate growth. They grow to a specific pattern and shape and then stop. Other plant parts like stems or roots have non-determinate growth, and will usually continue to grow as long as they have

10406-410: The previous two. Rotation fractions are often quotients F n / F n + 2 of a Fibonacci number by the number two terms later in the sequence. This is the case for the fractions 1/2, 1/3, 2/5, 3/8, and 5/13. The ratio between successive Fibonacci numbers tends to the golden ratio φ = (1 + √5)/2 . When a circle is divided into two arcs whose lengths are in the ratio 1:φ , the angle formed by

10527-465: The primary organs responsible for transpiration and guttation (beads of fluid forming at leaf margins). Leaves can also store food and water , and are modified accordingly to meet these functions, for example in the leaves of succulent plants and in bulb scales. The concentration of photosynthetic structures in leaves requires that they be richer in protein , minerals , and sugars than, say, woody stem tissues. Accordingly, leaves are prominent in

10648-429: The primary veins run parallel and equidistant to each other for most of the length of the leaf and then converge or fuse (anastomose) towards the apex. Usually, many smaller minor veins interconnect these primary veins, but may terminate with very fine vein endings in the mesophyll. Minor veins are more typical of angiosperms, which may have as many as four higher orders. In contrast, leaves with reticulate venation have

10769-416: The products of photosynthesis (photosynthate) from the cells where it takes place, while major veins are responsible for its transport outside of the leaf. At the same time water is being transported in the opposite direction. The number of vein endings is very variable, as is whether second order veins end at the margin, or link back to other veins. There are many elaborate variations on the patterns that

10890-429: The protective spines of cacti and the insect traps in carnivorous plants such as Nepenthes and Sarracenia . Leaves are the fundamental structural units from which cones are constructed in gymnosperms (each cone scale is a modified megaphyll leaf known as a sporophyll) and from which flowers are constructed in flowering plants . The internal organization of most kinds of leaves has evolved to maximize exposure of

11011-714: The rate exchange of carbon dioxide (CO 2 ), oxygen (O 2 ) and water vapor into and out of the internal intercellular space system. Stomatal opening is controlled by the turgor pressure in a pair of guard cells that surround the stomatal aperture. In any square centimeter of a plant leaf, there may be from 1,000 to 100,000 stomata. The shape and structure of leaves vary considerably from species to species of plant, depending largely on their adaptation to climate and available light, but also to other factors such as grazing animals (such as deer), available nutrients, and ecological competition from other plants. Considerable changes in leaf type occur within species, too, for example as

11132-515: The rate of development of seed crops in stands, leading to strong variation in the timing of seed crop viability, however, the mean age of reproductive viability appears to be about 21 years. As E. regnans seeds are not stored in soil seedbanks, the regeneration of the forest depends on the presence of canopy-stored seed crops. With two or more frequent fires occurring in less than the time to stand reproductive viability, E. regnans can become locally extinct due to poor regeneration. As E. regnans

11253-535: The resources to do so. The type of leaf is usually characteristic of a species (monomorphic), although some species produce more than one type of leaf (dimorphic or polymorphic ). The longest leaves are those of the Raffia palm , R. regalis which may be up to 25 m (82 ft) long and 3 m (9.8 ft) wide. The terminology associated with the description of leaf morphology is presented, in illustrated form, at Wikibooks . Where leaves are basal, and lie on

11374-452: The river. These trees average about ten per acre: their size, sometimes, is enormous. Many of the trees that have fallen by decay and by bush fires measure 350 feet in length, with girth in proportion. In one instance I measured with the tape line one huge specimen that lay prostrate across a tributary of the Watts and found it to be 435 feet from the roots to the top of its trunk. At 5 feet from

11495-446: The secondary veins, known as tertiary or third order (or higher order) veins, forming a dense reticulate pattern. The areas or islands of mesophyll lying between the higher order veins, are called areoles . Some of the smallest veins (veinlets) may have their endings in the areoles, a process known as areolation. These minor veins act as the sites of exchange between the mesophyll and the plant's vascular system. Thus, minor veins collect

11616-455: The sequence 180°, 90°, 180°, 270°. Two basic forms of leaves can be described considering the way the blade (lamina) is divided. A simple leaf has an undivided blade. However, the leaf may be dissected to form lobes, but the gaps between lobes do not reach to the main vein. A compound leaf has a fully subdivided blade, each leaflet of the blade being separated along a main or secondary vein. The leaflets may have petiolules and stipels,

11737-478: The services of experienced bushmen to be able to guide them and conduct an effective search. Only one expedition actually penetrated one of the strongholds of E. regnans at Mount Baw Baw but its search was rendered ineffectual by cold and snow and managed to measure only a single living tree – the New Turkey Tree: 99.4 metres (326 ft) – before appalling conditions forced

11858-427: The site of Victoria's tallest trees, in 1939, including one measured at 92 metres (302 ft) high, following the extensive Black Friday bushfires . A severe storm in 1959 blew down 13 of the trees and the tallest tree was reduced to a height of 84 metres (276 ft) after it lost part of its crown. The height of this tree was cited as 81.5 metres (267 ft) in 2002 following further storm damage in 1973. In 2000,

11979-454: The smaller arc is the golden angle , which is 1/φ × 360° ≈ 137.5° . Because of this, many divergence angles are approximately 137.5° . In plants where a pair of opposite leaves grows from each node, the leaves form a double helix. If the nodes do not rotate (a rotation fraction of zero and a divergence angle of 0°), the two helices become a pair of parallel lines, creating a distichous arrangement as in maple or olive trees. More common in

12100-571: The species had persisted in these areas during the Last Glacial Maximum and recolonised others. There was some sharing of haplotypes between populations of the Otway Ranges and north-western Tasmania, suggesting this was the most likely area for gene flow between the mainland and Tasmania in the past. Further analysis of the same chloroplast genetic markers by researchers at The Australian National University suggests that there

12221-953: The species that bear them, the majority, as broad-leaved or megaphyllous plants, which also include acrogymnosperms and ferns . In the lycopods , with different evolutionary origins, the leaves are simple (with only a single vein) and are known as microphylls . Some leaves, such as bulb scales, are not above ground. In many aquatic species, the leaves are submerged in water. Succulent plants often have thick juicy leaves, but some leaves are without major photosynthetic function and may be dead at maturity, as in some cataphylls and spines . Furthermore, several kinds of leaf-like structures found in vascular plants are not totally homologous with them. Examples include flattened plant stems called phylloclades and cladodes , and flattened leaf stems called phyllodes which differ from leaves both in their structure and origin. Some structures of non-vascular plants look and function much like leaves. Examples include

12342-421: The stem is known as phyllotaxis . A large variety of phyllotactic patterns occur in nature: In the simplest mathematical models of phyllotaxis , the apex of the stem is represented as a circle. Each new node is formed at the apex, and it is rotated by a constant angle from the previous node. This angle is called the divergence angle . The number of leaves that grow from a node depends on the plant species. When

12463-429: The stems, the same shade of glossy green on both sides, lance-shaped to broadly lance-shaped or sickle-shaped, 90–230 mm (3.5–9.1 in) long and 15–50 mm (0.59–1.97 in) wide, tapering to a reddish petiole 8–25 mm (0.31–0.98 in) long. The upper and lower surfaces of the leaves are dotted with numerous tiny, circular or irregularly-shaped oil glands. Secondary leaf veins arise at an acute angle from

12584-547: The stomatal complex; guard cells and subsidiary cells. The epidermal cells are the most numerous, largest, and least specialized and form the majority of the epidermis. They are typically more elongated in the leaves of monocots than in those of dicots . Chloroplasts are generally absent in epidermal cells, the exception being the guard cells of the stomata . The stomatal pores perforate the epidermis and are surrounded on each side by chloroplast-containing guard cells, and two to four subsidiary cells that lack chloroplasts, forming

12705-409: The strength of its wood that of English oak ( Quercus robur ). The brown barrel ( Eucalyptus fastigata ) is a close relative of mountain ash, with the two sharing the rare trait in eucalypts of paired inflorescences arising from axillary buds. Botanist Ian Brooker classified the two in the series Regnantes . The latter species differs in having brown fibrous bark all the way up its trunk, and

12826-511: The surrounding air , promoting cooling. Functionally, in addition to carrying out photosynthesis, the leaf is the principal site of transpiration , providing the energy required to draw the transpiration stream up from the roots, and guttation . Many conifers have thin needle-like or scale-like leaves that can be advantageous in cold climates with frequent snow and frost. These are interpreted as reduced from megaphyllous leaves of their Devonian ancestors. Some leaf forms are adapted to modulate

12947-570: The tallest measured living specimen, named Centurion , stands 100 metres (328 feet) tall in Tasmania. It often grows in pure stands in tall wet forest, sometimes with rainforest understorey, and in temperate, high rainfall areas with deep loam soils. A large number of the trees have been logged, including some of the tallest known. This species of eucalypt does not possess a lignotuber and is often killed by bushfire, regenerating from seed. Mature forests dominated by E. regnans have been found to store more carbon than any other forest known. The species

13068-681: The tallest trees in the Black Spur Range now measure about 85 metres (279 ft) but – due to major bushfires in the 1920s and 30s – are less than 80 years old and have been growing consistently at the rate of about 1 metre (3.3 ft) a year. A Eucalyptus regnans stand in the Orokonui Ecosanctuary near Dunedin , New Zealand , where E. regnans is an introduced species , contains that country's tallest measured tree, standing 80.5 metres (264 ft) high in 2012. A Eucalyptus regnans in

13189-639: The term 'hidden collapse' meaning an ecosystem that gives a superficial appearance of being intact but has lost key elements. At their research sites they found that between 1997 and 2011, up to 50% of large old-cavity trees (trees with big holes that serve as nest sites for animals and birds) had been lost and there had also been a significant decline in the numbers of birds and tree dwelling marsupials such as possums and gliders. They identified fast and slow drivers of change: fire, logging, and climate change , and indicated that Mountain Ash forests would be replaced with Acacia -dominated woodlands. Eucalyptus regnans

13310-632: The transportation system. Typically leaves are broad, flat and thin (dorsiventrally flattened), thereby maximising the surface area directly exposed to light and enabling the light to penetrate the tissues and reach the chloroplasts , thus promoting photosynthesis. They are arranged on the plant so as to expose their surfaces to light as efficiently as possible without shading each other, but there are many exceptions and complications. For instance, plants adapted to windy conditions may have pendent leaves, such as in many willows and eucalypts . The flat, or laminar, shape also maximizes thermal contact with

13431-501: The trees succumb to age rather than fire. Thus it is clear that E. regnans forests rely on a particular frequency and intensity of fires for maintenance of the ecosystem attributes. As contemporary fire regimes have been highly modified since European occupation of Australia, there is a clear risk to E. regnans forests in many regions. The majority of the endangered Leadbeater’s possum population lives in mountain ash forests ( Eucalyptus regnans , E. delegatensis and E. nitens ) in

13552-556: The understorey is opened up to allow light to reach the ground. As high-intensity fires tend to kill all parent trees, after fire there is a massive release of seed from drying capsules, which take advantage of the available light and the nutrients in the ash bed. Seedling densities of up to 2,500,000 per hectare (1,000,000/acre) have been recorded after a major fire. Through time there is a strong stand thinning effect and natural stem density reduction eventually leads to mature tree densities of about 30 to 40 per hectare (12 to 16/acre). There

13673-544: The urban area of Greytown was measured at 32.8 metres (108 ft) in 2011. Eucalyptus regnans is valued for its timber , and has been harvested in very large quantities. Aside from being logged in its natural range, it is grown in plantations in New Zealand and Chile, and to a limited extent, in South Africa and Zimbabwe. Primary uses are sawlogging and woodchipping . It was a major source of newsprint in

13794-462: The vascular structure of the organ, extending into the leaf via the petiole and providing transportation of water and nutrients between leaf and stem, and play a crucial role in the maintenance of leaf water status and photosynthetic capacity. They also play a role in the mechanical support of the leaf. Within the lamina of the leaf, while some vascular plants possess only a single vein, in most this vasculature generally divides (ramifies) according to

13915-540: The watershed of the Watts River and reported trees in great number and exceptional size in areas where loggers had not yet reached. Ferguson wrote a letter to the editor in the Melbourne Age newspaper. "Some places, where the trees are fewer and at a lower altitude, the timber is much larger in diameter, averaging from 6 to 10 feet and frequently trees to 15 feet in diameter are met with on alluvial flats near

14036-535: The year, and has poor tolerance to temperatures below −7 °C (19 °F) or drought. Outside Australia, plantations have been successfully established in New Zealand , South Africa , Kenya , and Tanzania . axil A leaf ( pl. : leaves ) is a principal appendage of the stem of a vascular plant , usually borne laterally above ground and specialized for photosynthesis . Leaves are collectively called foliage , as in "autumn foliage", while

14157-1142: Was cleared for farmland between 1860 and 1880, and in the Otway Ranges between 1880 and 1900, while severe bushfires hit in 1851, 1898 and 1939. In Tasmania, E. regnans is found in the Huon and Derwent River valleys in the southeast of the state. In the Otways, the species is found in wet forest in pure stands or growing in association with mountain grey gum ( Eucalyptus cypellocarpa ), messmate ( E. obliqua ) and Victorian blue gum ( E. globulus subsp. bicostata ). Other trees it grows with include manna gum ( Eucalyptus viminalis ), shining gum ( E. nitens ), myrtle beech ( Nothofagus cunninghamii ) and silver wattle ( Acacia dealbata ) The mountain ash-dominated forest can be interspersed with rainforest understory, with such species as southern sassafras ( Atherosperma moschatum ), celery-top pine ( Phyllocladus aspleniifolius ), leatherwood ( Eucryphia lucida ) and horizontal ( Anodopetalum biglandulosum ). The mountain ash

14278-746: Was entering the system via the use of non-local seed in the regeneration process. E. regnans forests are particularly susceptible to destruction by bushfire, and, to a lesser extent, timber harvesting. Opposition to logging of wet forests by clearfelling has grown very strong in recent years (particularly opposition to woodchipping). It is a controversial debate with strong opinions both for and against timber harvesting. Several applications have been made to Victoria's Flora and Fauna Guarantee (FFG) Scientific Advisory Committee to list mountain ash forests as an endangered vegetation community. The committee rejected an application in 2017 as being ineligible and that it did not satisfy at least one criterion set out in

14399-433: Was long classified as a subspecies of E. regnans . The series lies in the section Eucalyptus of the subgenus Eucalyptus within the genus Eucalyptus . Genetic testing across its range of chloroplast DNA yielded 41 haplotypes , divided broadly into Victorian and Tasmanian groups, but also showing distinct profiles for some areas such as East Gippsland , and north-eastern and south-eastern Tasmania, suggesting

14520-479: Was not permitted. These areas are now included in the Yarra Ranges National Park . There has been a long running political campaign to add more areas to create the Great Forest National Park . Water yields from catchments fall significantly for 20 to 40 years if trees are killed by bushfire or timber harvesting. The MMBW began research into forest cover on water supplies as early as 1948. In

14641-477: Was offered under conditions that made it highly unlikely to be collected. First, it was made in the depths of winter and applied only for a very short time. Next, the tree had to be measured by an accredited surveyor. Since loggers had already taken the largest trees from the most accessible Victorian forests, finding very tall trees then would have demanded an arduous trek into remote wilderness and at considerable altitude. In turn, that meant that searchers also needed

#28971