Rila National Park ( Bulgarian : Национален парк „Рила“ ) is the largest national park in Bulgaria spanning an area of 810.46 km (312.92 sq mi; 200,270 acres) in the Rila mountain range in the south-west of the country.
100-467: It was established on 24 February 1992 to protect several ecosystems of national importance. Its altitude varies from 800 m (2,600 ft) near Blagoevgrad to 2,925 m (9,596 ft) at Musala Peak, the highest summit in the Balkan Peninsula . The park has 120 glacial lakes , including the prominent Seven Rila Lakes . Many rivers have their source in the national park, including
200-409: A cell wall . Newly dead animals may be covered by an exoskeleton . Fragmentation processes, which break through these protective layers, accelerate the rate of microbial decomposition. Animals fragment detritus as they hunt for food, as does passage through the gut. Freeze-thaw cycles and cycles of wetting and drying also fragment dead material. The chemical alteration of the dead organic matter
300-495: A food chain . Real systems are much more complex than this—organisms will generally feed on more than one form of food, and may feed at more than one trophic level. Carnivores may capture some prey that is part of a plant-based trophic system and others that are part of a detritus-based trophic system (a bird that feeds both on herbivorous grasshoppers and earthworms, which consume detritus). Real systems, with all these complexities, form food webs rather than food chains which present
400-619: A habitat . Ecosystem ecology is the "study of the interactions between organisms and their environment as an integrated system". The size of ecosystems can range up to ten orders of magnitude , from the surface layers of rocks to the surface of the planet. The Hubbard Brook Ecosystem Study started in 1963 to study the White Mountains in New Hampshire . It was the first successful attempt to study an entire watershed as an ecosystem. The study used stream chemistry as
500-614: A threshold beyond which a different regime of processes and structures predominates. When such thresholds are associated with a critical or bifurcation point , these regime shifts may also be referred to as critical transitions . Human activities that adversely affect ecological resilience such as reduction of biodiversity , exploitation of natural resources , pollution , land use , and anthropogenic climate change are increasingly causing regime shifts in ecosystems, often to less desirable and degraded conditions. Interdisciplinary discourse on resilience now includes consideration of
600-432: A basic feature of its normal function. The extent of damage can therefore be difficult to detect against this background variability. Nevertheless, the key to understanding damage and its importance is whether spill effects result in a downturn in breeding success, productivity, diversity and the overall functioning of the system. Spills are not the only pressure on marine habitats; chronic urban and industrial contamination or
700-609: A central role over a wide range, for example, in the slow development of soil from bare rock and the faster recovery of a community from disturbance . Disturbance also plays an important role in ecological processes. F. Stuart Chapin and coauthors define disturbance as "a relatively discrete event in time that removes plant biomass". This can range from herbivore outbreaks, treefalls, fires, hurricanes, floods, glacial advances , to volcanic eruptions . Such disturbances can cause large changes in plant, animal and microbe populations, as well as soil organic matter content. Disturbance
800-590: A conference organized by IMO. Meanwhile, IMO in 1965 set up a Subcommittee on Oil Pollution, under the auspices of its Maritime Safety committee, to address oil pollution issues. The threat of oil spills to marine life is recognised by those likely to be responsible for the pollution, such as the International Tanker Owners Pollution Federation: The marine ecosystem is highly complex and natural fluctuations in species composition , abundance and distribution are
900-507: A critical role in global nutrient cycling and ecosystem function. Phosphorus enters ecosystems through weathering . As ecosystems age this supply diminishes, making phosphorus-limitation more common in older landscapes (especially in the tropics). Calcium and sulfur are also produced by weathering, but acid deposition is an important source of sulfur in many ecosystems. Although magnesium and manganese are produced by weathering, exchanges between soil organic matter and living cells account for
1000-606: A diversity of approaches and scholarly debates. The challenge of applying the concept of ecological resilience to the context of sustainable development is that it sits at odds with conventional economic ideology and policy making. Resilience questions the free market model within which global markets operate. Inherent to the successful operation of a free market is specialisation which is required to achieve efficiency and increase productivity. This very act of specialisation weakens resilience by permitting systems to become accustomed to and dependent upon their prevailing conditions. In
1100-517: A faster recovery. More severe and more frequent disturbance result in longer recovery times. From one year to another, ecosystems experience variation in their biotic and abiotic environments. A drought , a colder than usual winter, and a pest outbreak all are short-term variability in environmental conditions. Animal populations vary from year to year, building up during resource-rich periods and crashing as they overshoot their food supply. Longer-term changes also shape ecosystem processes. For example,
SECTION 10
#17327729352581200-512: A forest ecosystem needs suitable interactions among climate conditions and bio-actions, and enough area. In addition, generally, the resilience of a forest system allows recovery from a relatively small scale of damage (such as lightning or landslide) of up to 10 percent of its area. The larger the scale of damage, the more difficult it is for the forest ecosystem to restore and maintain its balance. Deforestation also decreases biodiversity of both plant and animal life and can lead to an alteration of
1300-427: A function-based typology has been proposed to leverage the strengths of these different approaches into a unified system. Human activities are important in almost all ecosystems. Although humans exist and operate within ecosystems, their cumulative effects are large enough to influence external factors like climate. Ecosystems provide a variety of goods and services upon which people depend. Ecosystem goods include
1400-698: A general level, for example, tropical forests , temperate grasslands , and arctic tundra . There can be any degree of subcategories among ecosystem types that comprise a biome, e.g., needle-leafed boreal forests or wet tropical forests. Although ecosystems are most commonly categorized by their structure and geography, there are also other ways to categorize and classify ecosystems such as by their level of human impact (see anthropogenic biome ), or by their integration with social processes or technological processes or their novelty (e.g. novel ecosystem ). Each of these taxonomies of ecosystems tends to emphasize different structural or functional properties. None of these
1500-672: A means of monitoring ecosystem properties, and developed a detailed biogeochemical model of the ecosystem. Long-term research at the site led to the discovery of acid rain in North America in 1972. Researchers documented the depletion of soil cations (especially calcium) over the next several decades. Ecosystems can be studied through a variety of approaches—theoretical studies, studies monitoring specific ecosystems over long periods of time, those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation. Studies can be carried out at
1600-528: A more important role in moving nutrients around. This can be especially important as the soil thaws in the spring, creating a pulse of nutrients that become available. Decomposition rates are low under very wet or very dry conditions. Decomposition rates are highest in wet, moist conditions with adequate levels of oxygen. Wet soils tend to become deficient in oxygen (this is especially true in wetlands ), which slows microbial growth. In dry soils, decomposition slows as well, but bacteria continue to grow (albeit at
1700-406: A number of common, non random properties in the topology of their network. The carbon and nutrients in dead organic matter are broken down by a group of processes known as decomposition. This releases nutrients that can then be re-used for plant and microbial production and returns carbon dioxide to the atmosphere (or water) where it can be used for photosynthesis. In the absence of decomposition,
1800-421: A process known as denitrification . Mycorrhizal fungi which are symbiotic with plant roots, use carbohydrates supplied by the plants and in return transfer phosphorus and nitrogen compounds back to the plant roots. This is an important pathway of organic nitrogen transfer from dead organic matter to plants. This mechanism may contribute to more than 70 Tg of annually assimilated plant nitrogen, thereby playing
1900-490: A significant number of species is removed and their ecological function is lost. It has been estimated by the United Nations Food and Agriculture Organisation that over 70% of the world's fish stocks are either fully exploited or depleted which means overfishing threatens marine ecosystem resilience and this is mostly by rapid growth of fishing technology. One of the negative effects on marine ecosystems
2000-696: A significant portion of ecosystem fluxes. Potassium is primarily cycled between living cells and soil organic matter. Biodiversity plays an important role in ecosystem functioning. Ecosystem processes are driven by the species in an ecosystem, the nature of the individual species, and the relative abundance of organisms among these species. Ecosystem processes are the net effect of the actions of individual organisms as they interact with their environment. Ecological theory suggests that in order to coexist, species must have some level of limiting similarity —they must be different from one another in some fundamental way, otherwise, one species would competitively exclude
2100-408: A slower rate) even after soils become too dry to support plant growth. Ecosystems are dynamic entities. They are subject to periodic disturbances and are always in the process of recovering from past disturbances. When a perturbation occurs, an ecosystem responds by moving away from its initial state. The tendency of an ecosystem to remain close to its equilibrium state, despite that disturbance,
SECTION 20
#17327729352582200-464: A small effect on ecosystem function. Ecologically distinct species, on the other hand, have a much larger effect. Similarly, dominant species have a large effect on ecosystem function, while rare species tend to have a small effect. Keystone species tend to have an effect on ecosystem function that is disproportionate to their abundance in an ecosystem. An ecosystem engineer is any organism that creates, significantly modifies, maintains or destroys
2300-449: A turbid water regime, which provides reduced ecosystem services and can produce toxic algae blooms . The regime or state is dependent upon lake phosphorus cycles , and either regime can be resilient dependent upon the lake's ecology and management. Likewise, Mulga woodlands of Australia can exist in a grass-rich regime that supports sheep herding, or a shrub-dominated regime of no value for sheep grazing. Regime shifts are driven by
2400-468: A variety of approaches—theoretical studies, studies monitoring specific ecosystems over long periods of time, those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation. Biomes are general classes or categories of ecosystems. However, there is no clear distinction between biomes and ecosystems. Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of
2500-443: A variety of goods and services upon which people depend, and may be part of. Ecosystem goods include the "tangible, material products" of ecosystem processes such as water, food, fuel, construction material, and medicinal plants . Ecosystem services , on the other hand, are generally "improvements in the condition or location of things of value". These include things like the maintenance of hydrological cycles , cleaning air and water,
2600-522: A variety of scales, ranging from whole-ecosystem studies to studying microcosms or mesocosms (simplified representations of ecosystems). American ecologist Stephen R. Carpenter has argued that microcosm experiments can be "irrelevant and diversionary" if they are not carried out in conjunction with field studies done at the ecosystem scale. In such cases, microcosm experiments may fail to accurately predict ecosystem-level dynamics. Biomes are general classes or categories of ecosystems. However, there
2700-421: Is adaptive capacity , which is the property of an ecosystem that describes change in stability landscapes and resilience. Adaptive capacity in socio-ecological systems refers to the ability of humans to deal with change in their environment by observation, learning and altering their interactions. Resilience refers to ecosystem's stability and capability of tolerating disturbance and restoring itself. If
2800-418: Is a movement which causes wide concern in environmental and social forums and which Clive Hamilton describes as "the growth fetish". The purpose of ecological resilience that is proposed is ultimately about averting our extinction as Walker cites Holling in his paper: "[..] "resilience is concerned with [measuring] the probabilities of extinction” (1973, p. 20)". Becoming more apparent in academic writing
2900-431: Is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows. Ecosystems are controlled by external and internal factors . External factors such as climate , parent material which forms the soil and topography , control the overall structure of an ecosystem but are not themselves influenced by
3000-415: Is also dependent upon the resilience of terrestrial, aquatic and marine ecosystems. These include agriculture, deforestation, pollution, mining, recreation, overfishing, dumping of waste into the sea and climate change. Agriculture can be used as a significant case study in which the resilience of terrestrial ecosystems should be considered. The organic matter (elements carbon and nitrogen) in soil, which
3100-641: Is among the largest and most valuable protected areas in Europe . The International Union for Conservation of Nature (IUCN) has listed the park as Category II. Two of the four nature reserves are included in the UN list of Representative Protected Areas, and four of the nature reserves are included in the World Network of Biosphere Reserves under the UNESCO Man and Biosphere Programme. The park falls within
Rila National Park - Misplaced Pages Continue
3200-458: Is an international synthesis by over 1000 of the world's leading biological scientists that analyzes the state of the Earth's ecosystems and provides summaries and guidelines for decision-makers. The report identified four major categories of ecosystem services: provisioning, regulating, cultural and supporting services. It concludes that human activity is having a significant and escalating impact on
3300-442: Is consumed by animals while still alive and enters the plant-based trophic system. After plants and animals die, the organic matter contained in them enters the detritus-based trophic system. Ecosystem respiration is the sum of respiration by all living organisms (plants, animals, and decomposers) in the ecosystem. Net ecosystem production is the difference between gross primary production (GPP) and ecosystem respiration. In
3400-473: Is defined are closely interrelated in the way that they influence environmental policy-making, legislation and subsequently environmental management. The ability of ecosystems to recover from certain levels of environmental impact is not explicitly noted in legislation, however, because of ecosystem resilience, some levels of environmental impact associated with development are made permissible by environmental policy-making and ensuing legislation. Some examples of
3500-430: Is diminished. This leads to a reduction in soil fertility and productivity. More sustainable agricultural practices would take into account and estimate the resilience of the land and monitor and balance the input and output of organic matter. The term deforestation has a meaning that covers crossing the threshold of forest's resilience and losing its ability to return to its originally stable state. To recover itself,
3600-496: Is drawn by Perman et al. who use resilience to describe one of 6 concepts of sustainability ; "A sustainable state is one which satisfies minimum conditions for ecosystem resilience through time". Resilience science has been evolving over the past decade, expanding beyond ecology to reflect systems of thinking in fields such as economics and political science . And, as more and more people move into densely populated cities, using massive amounts of water, energy, and other resources,
3700-569: Is followed by succession, a "directional change in ecosystem structure and functioning resulting from biotically driven changes in resource supply." The frequency and severity of disturbance determine the way it affects ecosystem function. A major disturbance like a volcanic eruption or glacial advance and retreat leave behind soils that lack plants, animals or organic matter. Ecosystems that experience such disturbances undergo primary succession . A less severe disturbance like forest fires, hurricanes or cultivation result in secondary succession and
3800-554: Is governed by three sets of factors—the physical environment (temperature, moisture, and soil properties), the quantity and quality of the dead material available to decomposers, and the nature of the microbial community itself. Temperature controls the rate of microbial respiration; the higher the temperature, the faster the microbial decomposition occurs. Temperature also affects soil moisture, which affects decomposition. Freeze-thaw cycles also affect decomposition—freezing temperatures kill soil microorganisms, which allows leaching to play
3900-405: Is no clear distinction between biomes and ecosystems. Biomes are always defined at a very general level. Ecosystems can be described at levels that range from very general (in which case the names are sometimes the same as those of biomes) to very specific, such as "wet coastal needle-leafed forests". Biomes vary due to global variations in climate . Biomes are often defined by their structure: at
4000-531: Is primarily achieved through bacterial and fungal action. Fungal hyphae produce enzymes that can break through the tough outer structures surrounding dead plant material. They also produce enzymes that break down lignin , which allows them access to both cell contents and the nitrogen in the lignin. Fungi can transfer carbon and nitrogen through their hyphal networks and thus, unlike bacteria, are not dependent solely on locally available resources. Decomposition rates vary among ecosystems. The rate of decomposition
4100-462: Is supposed to be recharged by multiple plants, is the main source of nutrients for crop growth. In response to global food demand and shortages , however, intensive agriculture practices including the application of herbicides to control weeds, fertilisers to accelerate and increase crop growth and pesticides to control insects, reduce plant biodiversity while the supply of organic matter to replenish soil nutrients and prevent surface runoff
Rila National Park - Misplaced Pages Continue
4200-485: Is termed its resistance . The capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function, structure, identity, and feedbacks is termed its ecological resilience . Resilience thinking also includes humanity as an integral part of the biosphere where we are dependent on ecosystem services for our survival and must build and maintain their natural capacities to withstand shocks and disturbances. Time plays
4300-404: Is that over the last half-century the stocks of coastal fish have had a huge reduction as a result of overfishing for its economic benefits. Blue fin tuna is at particular risk of extinction. Depletion of fish stocks results in lowered biodiversity and consequently imbalance in the food chain, and increased vulnerability to disease. In addition to overfishing, coastal communities are suffering
4400-422: Is the "best" classification. Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of the definition of ecosystems : a biotic component, an abiotic complex, the interactions between and within them, and the physical space they occupy. Different approaches to ecological classifications have been developed in terrestrial, freshwater and marine disciplines, and
4500-566: Is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and subsequently recovering. Such perturbations and disturbances can include stochastic events such as fires , flooding , windstorms , insect population explosions, and human activities such as deforestation , fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach
4600-428: Is the significance of the environment and resilience in sustainable development. Folke et al state that the likelihood of sustaining development is raised by "Managing for resilience" whilst Perman et al. propose that safeguarding the environment to "deliver a set of services" should be a "necessary condition for an economy to be sustainable". The growing application of resilience to sustainable development has produced
4700-726: The Rodope montane mixed forests terrestrial ecoregion of the Palearctic temperate broadleaf and mixed forest . Forests occupy 534.81 km (206.49 sq mi; 132,150 acres) or 66% of the total area. There are approximately 1,400 species of vascular plants , 282 species of mosses and 130 species of freshwater algae . The fauna is represented by 48 species of mammals , 99 species of birds , 20 species of reptiles and amphibia and 5 species of fish , as well as 2,934 species of invertebrates, of which 282 are endemic . Ecosystem An ecosystem (or ecological system )
4800-555: The resource inputs are generally controlled by external processes like climate and parent material, the availability of these resources within the ecosystem is controlled by internal factors like decomposition, root competition or shading. Other factors like disturbance, succession or the types of species present are also internal factors. Primary production is the production of organic matter from inorganic carbon sources. This mainly occurs through photosynthesis . The energy incorporated through this process supports life on earth, while
4900-401: The "shift towards ecological sustainability" as an alternative approach to that of sustainable development. Because climate change is a major and growing driver of biodiversity loss , and that biodiversity and ecosystem functions and services, significantly contribute to climate change adaptation , mitigation and disaster risk reduction, proponents of ecosystem-based adaptation suggest that
5000-435: The "tangible, material products" of ecosystem processes such as water, food, fuel, construction material, and medicinal plants . They also include less tangible items like tourism and recreation, and genes from wild plants and animals that can be used to improve domestic species. Ecosystem services , on the other hand, are generally "improvements in the condition or location of things of value". These include things like
5100-481: The absence of disturbance, net ecosystem production is equivalent to the net carbon accumulation in the ecosystem. Energy can also be released from an ecosystem through disturbances such as wildfire or transferred to other ecosystems (e.g., from a forest to a stream to a lake) by erosion . In aquatic systems , the proportion of plant biomass that gets consumed by herbivores is much higher than in terrestrial systems. In trophic systems, photosynthetic organisms are
SECTION 50
#17327729352585200-402: The amount of energy available to the ecosystem. Parent material determines the nature of the soil in an ecosystem, and influences the supply of mineral nutrients. Topography also controls ecosystem processes by affecting things like microclimate , soil development and the movement of water through a system. For example, ecosystems can be quite different if situated in a small depression on
5300-504: The amount of light available, the amount of leaf area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), the rate at which carbon dioxide can be supplied to the chloroplasts to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying out photosynthesis. Energy and carbon enter ecosystems through photosynthesis, are incorporated into living tissue, transferred to other organisms that feed on
5400-457: The biodiversity of the world ecosystems, reducing both their resilience and biocapacity . The report refers to natural systems as humanity's "life-support system", providing essential ecosystem services. The assessment measures 24 ecosystem services and concludes that only four have shown improvement over the last 50 years, 15 are in serious decline, and five are in a precarious condition. Ecological resilience In ecology , resilience
5500-408: The carbon makes up much of the organic matter in living and dead biomass, soil carbon and fossil fuels . It also drives the carbon cycle , which influences global climate via the greenhouse effect . Through the process of photosynthesis, plants capture energy from light and use it to combine carbon dioxide and water to produce carbohydrates and oxygen . The photosynthesis carried out by all
5600-425: The cleaning of cargo tanks. In the 1950s, the normal practice was simply to wash the tanks out with water and then pump the resulting mixture of oil and water into the sea. OILPOL 54 prohibited the dumping of oily wastes within a certain distance from land and in 'special areas' where the danger to the environment was especially acute. In 1962 the limits were extended by means of an amendment adopted at
5700-522: The climatic conditions of an entire area. According to the IPCC Sixth Assessment Report , carbon emissions due to land use and land use changes predominantly come from deforestation, thereby increasing the long-term exposure of forest ecosystems to drought and other climate change-induced damages. Deforestation can also lead to species extinction, which can have a domino effect particularly when keystone species are removed or when
5800-432: The combustion of fossil fuels, ammonia gas which evaporates from agricultural fields which have had fertilizers applied to them, and dust. Anthropogenic nitrogen inputs account for about 80% of all nitrogen fluxes in ecosystems. When plant tissues are shed or are eaten, the nitrogen in those tissues becomes available to animals and microbes. Microbial decomposition releases nitrogen compounds from dead organic matter in
5900-407: The concept of sustainable development is no longer adequate in assisting policy development fit for today's global challenges and objectives. This is because the concept of sustainable development is "based on weak sustainability " which doesn't take account of the reality of "limits to earth's resilience". Ross draws on the impact of climate change on the global agenda as a fundamental factor in
6000-418: The concept to draw attention to the importance of transfers of materials between organisms and their environment. He later refined the term, describing it as "The whole system, ... including not only the organism-complex, but also the whole complex of physical factors forming what we call the environment". Tansley regarded ecosystems not simply as natural units, but as "mental isolates". Tansley later defined
6100-505: The consideration of ecosystem resilience within legislation include: The theoretical basis for many of the ideas central to climate resilience have actually existed since the 1960s. Originally an idea defined for strictly ecological systems, resilience in ecology was initially outlined by C.S. Holling as the capacity for ecological systems and relationships within those systems to persist and absorb changes to " state variables , driving variables, and parameters." This definition helped form
SECTION 60
#17327729352586200-403: The dead organic matter would accumulate in an ecosystem, and nutrients and atmospheric carbon dioxide would be depleted. Decomposition processes can be separated into three categories— leaching , fragmentation and chemical alteration of dead material. As water moves through dead organic matter, it dissolves and carries with it the water-soluble components. These are then taken up by organisms in
6300-447: The definition of ecosystems : a biotic component, an abiotic complex, the interactions between and within them, and the physical space they occupy. Biotic factors of the ecosystem are living things; such as plants, animals, and bacteria, while abiotic are non-living components; such as water, soil and atmosphere. Plants allow energy to enter the system through photosynthesis , building up plant tissue. Animals play an important role in
6400-541: The dispersive nature of the oceans and adaptive nature and ability for marine life to process the marine debris and contaminants. However, waste dumping threatens marine ecosystems by poisoning marine life and eutrophication . According to the International Maritime Organisation oil spills can have serious effects on marine life. The OILPOL Convention recognized that most oil pollution resulted from routine shipboard operations such as
6500-599: The disturbance is of sufficient magnitude or duration, a threshold may be reached where the ecosystem undergoes a regime shift , possibly permanently. Sustainable use of environmental goods and services requires understanding and consideration of the resilience of the ecosystem and its limits. However, the elements which influence ecosystem resilience are complicated. For example, various elements such as the water cycle , fertility, biodiversity , plant diversity and climate, interact fiercely and affect different systems. There are many areas where human activity impacts upon and
6600-655: The ecosystem or to gradual disruption of biotic processes and degradation of abiotic conditions of the ecosystem. Once the original ecosystem has lost its defining features, it is considered "collapsed ". Ecosystem restoration can contribute to achieving the Sustainable Development Goals . An ecosystem (or ecological system) consists of all the organisms and the abiotic pools (or physical environment) with which they interact. The biotic and abiotic components are linked together through nutrient cycles and energy flows. "Ecosystem processes" are
6700-528: The ecosystem. Internal factors are controlled, for example, by decomposition , root competition, shading, disturbance, succession, and the types of species present. While the resource inputs are generally controlled by external processes, the availability of these resources within the ecosystem is controlled by internal factors. Therefore, internal factors not only control ecosystem processes but are also controlled by them. Ecosystems are dynamic entities—they are subject to periodic disturbances and are always in
6800-662: The event of unanticipated shocks; this dependency reduces the ability of the system to adapt to these changes. Correspondingly; Perman et al. note that; "Some economic activities appear to reduce resilience, so that the level of disturbance to which the ecosystem can be subjected to without parametric change taking place is reduced". Berkes and Folke table a set of principles to assist with "building resilience and sustainability" which consolidate approaches of adaptive management , local knowledge-based management practices and conditions for institutional learning and self-organisation. More recently, it has been suggested by Andrea Ross that
6900-482: The evolution of novel characteristics. This new perspective of resilience as a concept that inherently works synergistically with elements of uncertainty and entropy first began to facilitate changes in the field of adaptive management and environmental resources, through work whose basis was built by Holling and colleagues yet again. By the mid 1970s, resilience began gaining momentum as an idea in anthropology , culture theory , and other social sciences . There
7000-717: The exploitation of the resources they provide are also serious threats. The Woods Hole Oceanographic Institution calls nutrient pollution the most widespread, chronic environmental problem in the coastal ocean. The discharges of nitrogen, phosphorus, and other nutrients come from agriculture, waste disposal, coastal development, and fossil fuel use. Once nutrient pollution reaches the coastal zone, it stimulates harmful overgrowths of algae, which can have direct toxic effects and ultimately result in low-oxygen conditions. Certain types of algae are toxic. Overgrowths of these algae result in harmful algal blooms , which are more colloquially referred to as "red tides" or "brown tides". Zooplankton eat
7100-421: The flow of energy through a lake was the primary driver of the ecosystem. Hutchinson's students, brothers Howard T. Odum and Eugene P. Odum , further developed a "systems approach" to the study of ecosystems. This allowed them to study the flow of energy and material through ecological systems. Ecosystems are controlled by both external and internal factors. External factors, also called state factors, control
7200-458: The forests of eastern North America still show legacies of cultivation which ceased in 1850 when large areas were reverted to forests. Another example is the methane production in eastern Siberian lakes that is controlled by organic matter which accumulated during the Pleistocene . Ecosystems continually exchange energy and carbon with the wider environment . Mineral nutrients, on
7300-602: The foundation for the notion of ecological equilibrium : the idea that the behavior of natural ecosystems is dictated by a homeostatic drive towards some stable set point. Under this school of thought (which maintained quite a dominant status during this time period), ecosystems were perceived to respond to disturbances largely through negative feedback systems – if there is a change, the ecosystem would act to mitigate that change as much as possible and attempt to return to its prior state. As greater amounts of scientific research in ecological adaptation and natural resource management
7400-406: The impacts of growing numbers of large commercial fishing vessels in causing reductions of small local fishing fleets. Many local lowland rivers which are sources of fresh water have become degraded because of the inflows of pollutants and sediments. Dumping both depends upon ecosystem resilience whilst threatening it. Dumping of sewage and other contaminants into the ocean is often undertaken for
7500-399: The interaction of fire , herbivory , and variable rainfall. Either state can be resilient dependent upon management. Ecologists Brian Walker , C S Holling and others describe four critical aspects of resilience: latitude , resistance , precariousness , and panarchy . The first three can apply both to a whole system or the sub-systems that make it up. Closely linked to resilience
7600-412: The interactions of humans and ecosystems via socio-ecological systems, and the need for shift from the maximum sustainable yield paradigm to environmental resource management and ecosystem management , which aim to build ecological resilience through "resilience analysis, adaptive resource management, and adaptive governance". Ecological resilience has inspired other fields and continues to challenge
7700-691: The landscape, versus one present on an adjacent steep hillside. Other external factors that play an important role in ecosystem functioning include time and potential biota , the organisms that are present in a region and could potentially occupy a particular site. Ecosystems in similar environments that are located in different parts of the world can end up doing things very differently simply because they have different pools of species present. The introduction of non-native species can cause substantial shifts in ecosystem function. Unlike external factors, internal factors in ecosystems not only control ecosystem processes but are also controlled by them. While
7800-423: The living and dead plant matter, and eventually released through respiration. The carbon and energy incorporated into plant tissues (net primary production) is either consumed by animals while the plant is alive, or it remains uneaten when the plant tissue dies and becomes detritus . In terrestrial ecosystems , the vast majority of the net primary production ends up being broken down by decomposers . The remainder
7900-408: The maintenance of hydrological cycles, cleaning air and water, the maintenance of oxygen in the atmosphere, crop pollination and even things like beauty, inspiration and opportunities for research. While material from the ecosystem had traditionally been recognized as being the basis for things of economic value, ecosystem services tend to be taken for granted. The Millennium Ecosystem Assessment
8000-405: The maintenance of oxygen in the atmosphere, crop pollination and even things like beauty, inspiration and opportunities for research. Many ecosystems become degraded through human impacts, such as soil loss , air and water pollution , habitat fragmentation , water diversion , fire suppression , and introduced species and invasive species . These threats can lead to abrupt transformation of
8100-433: The movement of matter and energy through the system, by feeding on plants and on one another. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter , decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and microbes. Ecosystems provide
8200-491: The need to combine these disciplines to consider the resilience of urban ecosystems and cities is of paramount importance. The interdependence of ecological and social systems has gained renewed recognition since the late 1990s by academics including Berkes and Folke and developed further in 2002 by Folke et al. As the concept of sustainable development has evolved beyond the 3 pillars of sustainable development to place greater political emphasis on economic development. This
8300-537: The other hand, are mostly cycled back and forth between plants, animals, microbes and the soil. Most nitrogen enters ecosystems through biological nitrogen fixation , is deposited through precipitation, dust, gases or is applied as fertilizer . Most terrestrial ecosystems are nitrogen-limited in the short term making nitrogen cycling an important control on ecosystem production. Over the long term, phosphorus availability can also be critical. Macronutrients which are required by all plants in large quantities include
8400-509: The other. Despite this, the cumulative effect of additional species in an ecosystem is not linear: additional species may enhance nitrogen retention, for example. However, beyond some level of species richness, additional species may have little additive effect unless they differ substantially from species already present. This is the case for example for exotic species . The addition (or loss) of species that are ecologically similar to those already present in an ecosystem tends to only have
8500-403: The overall structure of an ecosystem and the way things work within it, but are not themselves influenced by the ecosystem. On broad geographic scales, climate is the factor that "most strongly determines ecosystem processes and structure". Climate determines the biome in which the ecosystem is embedded. Rainfall patterns and seasonal temperatures influence photosynthesis and thereby determine
8600-405: The plants in an ecosystem is called the gross primary production (GPP). About half of the gross GPP is respired by plants in order to provide the energy that supports their growth and maintenance. The remainder, that portion of GPP that is not used up by respiration, is known as the net primary production (NPP). Total photosynthesis is limited by a range of environmental factors. These include
8700-585: The primary nutrients (which are most limiting as they are used in largest amounts): Nitrogen, phosphorus, potassium. Secondary major nutrients (less often limiting) include: Calcium, magnesium, sulfur. Micronutrients required by all plants in small quantities include boron, chloride, copper, iron, manganese, molybdenum, zinc. Finally, there are also beneficial nutrients which may be required by certain plants or by plants under specific environmental conditions: aluminum, cobalt, iodine, nickel, selenium, silicon, sodium, vanadium. Until modern times, nitrogen fixation
8800-413: The primary producers. The organisms that consume their tissues are called primary consumers or secondary producers — herbivores . Organisms which feed on microbes ( bacteria and fungi ) are termed microbivores . Animals that feed on primary consumers— carnivores —are secondary consumers. Each of these constitutes a trophic level. The sequence of consumption—from plant to herbivore, to carnivore—forms
8900-419: The process of recovering from some past disturbance. The tendency of an ecosystem to remain close to its equilibrium state, despite that disturbance, is termed its resistance . The capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function, structure, identity, and feedbacks is termed its ecological resilience . Ecosystems can be studied through
9000-418: The resilience of vulnerable human populations and the ecosystem services upon which they depend are critical factors for sustainable development in a changing climate. Scientific research associated with resilience is beginning to play a role in influencing policy-making and subsequent environmental decision making. This occurs in a number of ways: Ecological resilience and the thresholds by which resilience
9100-628: The river that carries the most water entirely within the Balkans (the Maritsa river) and the longest river entirely within Bulgaria (the Iskar river). The national park occupies territory of 4 of the 28 provinces of the country: Sofia , Kyustendil , Blagoevgrad and Pazardzhik . It includes four nature reserves : Parangalitsa , Central Rila Reserve , Ibar and Skakavitsa . Rila National Park
9200-611: The soil, react with mineral soil, or are transported beyond the confines of the ecosystem (and are considered lost to it). Newly shed leaves and newly dead animals have high concentrations of water-soluble components and include sugars , amino acids and mineral nutrients. Leaching is more important in wet environments and less important in dry ones. Fragmentation processes break organic material into smaller pieces, exposing new surfaces for colonization by microbes. Freshly shed leaf litter may be inaccessible due to an outer layer of cuticle or bark , and cell contents are protected by
9300-511: The soil, where plants, fungi, and bacteria compete for it. Some soil bacteria use organic nitrogen-containing compounds as a source of carbon, and release ammonium ions into the soil. This process is known as nitrogen mineralization . Others convert ammonium to nitrite and nitrate ions, a process known as nitrification . Nitric oxide and nitrous oxide are also produced during nitrification. Under nitrogen-rich and oxygen-poor conditions, nitrates and nitrites are converted to nitrogen gas ,
9400-483: The spatial extent of ecosystems using the term " ecotope ". G. Evelyn Hutchinson , a limnologist who was a contemporary of Tansley's, combined Charles Elton 's ideas about trophic ecology with those of Russian geochemist Vladimir Vernadsky . As a result, he suggested that mineral nutrient availability in a lake limited algal production . This would, in turn, limit the abundance of animals that feed on algae. Raymond Lindeman took these ideas further to suggest that
9500-400: The toxic algae and begin passing the toxins up the food chain, affecting edibles like clams, and ultimately working their way up to seabirds, marine mammals, and humans. The result can be illness and sometimes death. There is increasing awareness that a greater understanding and emphasis of ecosystem resilience is required to reach the goal of sustainable development . A similar conclusion
9600-421: The transfers of energy and materials from one pool to another. Ecosystem processes are known to "take place at a wide range of scales". Therefore, the correct scale of study depends on the question asked. The term "ecosystem" was first used in 1935 in a publication by British ecologist Arthur Tansley . The term was coined by Arthur Roy Clapham , who came up with the word at Tansley's request. Tansley devised
9700-444: The way they interpret resilience, e.g. supply chain resilience . The IPCC Sixth Assessment Report defines resilience as, “not just the ability to maintain essential function, identity and structure, but also the capacity for transformation.” The IPCC considers resilience both in terms of ecosystem recovery as well as the recovery and adaptation of human societies to natural disasters. The concept of resilience in ecological systems
9800-434: Was conducted, it became clear that oftentimes, natural systems were subjected to dynamic, transient behaviors that changed how they reacted to significant changes in state variables: rather than work back towards a predetermined equilibrium, the absorbed change was harnessed to establish a new baseline to operate under. Rather than minimize imposed changes, ecosystems could integrate and manage those changes, and use them to fuel
9900-593: Was first introduced by the Canadian ecologist C.S. Holling in order to describe the persistence of natural systems in the face of changes in ecosystem variables due to natural or anthropogenic causes. Resilience has been defined in two ways in ecological literature: The second definition has been termed ‘ecological resilience’, and it presumes the existence of multiple stable states or regimes. For example, some shallow temperate lakes can exist within either clear water regime, which provides many ecosystem services , or
10000-679: Was the major source of nitrogen for ecosystems. Nitrogen-fixing bacteria either live symbiotically with plants or live freely in the soil. The energetic cost is high for plants that support nitrogen-fixing symbionts—as much as 25% of gross primary production when measured in controlled conditions. Many members of the legume plant family support nitrogen-fixing symbionts. Some cyanobacteria are also capable of nitrogen fixation. These are phototrophs , which carry out photosynthesis. Like other nitrogen-fixing bacteria, they can either be free-living or have symbiotic relationships with plants. Other sources of nitrogen include acid deposition produced through
#257742