Rust is an iron oxide , a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture . Rust consists of hydrous iron(III) oxides (Fe 2 O 3 ·nH 2 O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH) 3 ), and is typically associated with the corrosion of refined iron .
111-431: Given sufficient time, any iron mass, in the presence of water and oxygen, could eventually convert entirely to rust. Surface rust is commonly flaky and friable , and provides no passivational protection to the underlying iron, unlike the formation of patina on copper surfaces. Rusting is the common term for corrosion of elemental iron and its alloys such as steel . Many other metals undergo similar corrosion, but
222-404: A de Broglie wave in the manner of light . That is, under the appropriate conditions, electrons and other matter would show properties of either particles or waves. The corpuscular properties of a particle are demonstrated when it is shown to have a localized position in space along its trajectory at any given moment. The wave-like nature of light is displayed, for example, when a beam of light
333-648: A charged droplet of oil from falling as a result of gravity. This device could measure the electric charge from as few as 1–150 ions with an error margin of less than 0.3%. Comparable experiments had been done earlier by Thomson's team, using clouds of charged water droplets generated by electrolysis, and in 1911 by Abram Ioffe , who independently obtained the same result as Millikan using charged microparticles of metals, then published his results in 1913. However, oil drops were more stable than water drops because of their slower evaporation rate, and thus more suited to precise experimentation over longer periods of time. Around
444-410: A fourth state of matter in which the mean free path of the particles is so long that collisions may be ignored. In 1883, not yet well-known German physicist Heinrich Hertz tried to prove that cathode rays are electrically neutral and got what he interpreted as a confident absence of deflection in electrostatic, as opposed to magnetic, field. However, as J. J. Thomson explained in 1897, Hertz placed
555-494: A friction that slows the electron. This force is caused by a back-reaction of the electron's own field upon itself. Photons mediate electromagnetic interactions between particles in quantum electrodynamics . An isolated electron at a constant velocity cannot emit or absorb a real photon; doing so would violate conservation of energy and momentum . Instead, virtual photons can transfer momentum between two charged particles. This exchange of virtual photons, for example, generates
666-560: A half-integer value, expressed in units of the reduced Planck constant , ħ . Being fermions , no two electrons can occupy the same quantum state , per the Pauli exclusion principle . Like all elementary particles, electrons exhibit properties of both particles and waves : They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have
777-467: A health hazard. Tougher substances, such as concrete , may also be mechanically ground down and reduced to finely divided mineral dust . However, such substances are not generally considered friable because of the degree of difficulty involved in breaking the substance's chemical bonds through mechanical means. Some substances, such as polyurethane foams, show an increase in friability with exposure to ultraviolet radiation, as in sunlight . Friable
888-419: A home workshop using simple materials such as a plastic bucket filled with an electrolyte consisting of washing soda dissolved in tap water , a length of rebar suspended vertically in the solution to act as an anode , another laid across the top of the bucket to act as a support for suspending the object, baling wire to suspend the object in the solution from the horizontal rebar, and a battery charger as
999-432: A hot-dipped 85 μm zinc coating. Under normal weather conditions, this will deteriorate at a rate of 1 μm per year, giving approximately 85 years of protection. Cathodic protection is a technique used to inhibit corrosion on buried or immersed structures by supplying an electrical charge that suppresses the electrochemical reaction. If correctly applied, corrosion can be stopped completely. In its simplest form, it
1110-449: A long period of time. Over time, the oxygen combines with the metal, forming new compounds collectively called rust, in a process called rusting. Rusting is an oxidation reaction specifically occurring with iron. Other metals also corrode via similar oxidation, but such corrosion is not called rusting. The main catalyst for the rusting process is water. Iron or steel structures might appear to be solid, but water molecules can penetrate
1221-471: A low voltage phone charger is a far safer source of DC current. The effects of hydrogen on global warming have also recently come under scrutiny. Rust may be treated with commercial products known as rust converter which contain tannic acid or phosphoric acid which combines with rust; removed with organic acids like citric acid and vinegar or the stronger hydrochloric acid ; or removed with chelating agents as in some commercial formulations or even
SECTION 10
#17327945909071332-429: A lower mass and hence a longer de Broglie wavelength for a given energy. Electrons play an essential role in numerous physical phenomena, such as electricity , magnetism , chemistry , and thermal conductivity ; they also participate in gravitational , electromagnetic , and weak interactions . Since an electron has charge, it has a surrounding electric field ; if that electron is moving relative to an observer,
1443-464: A model of the electron – the Dirac equation , consistent with relativity theory, by applying relativistic and symmetry considerations to the hamiltonian formulation of the quantum mechanics of the electro-magnetic field. In order to resolve some problems within his relativistic equation, Dirac developed in 1930 a model of the vacuum as an infinite sea of particles with negative energy, later dubbed
1554-434: A much slower rate than normal, because the rust adheres to the surface of the metal in a protective layer. Designs using this material must include measures that avoid worst-case exposures since the material still continues to rust slowly even under near-ideal conditions. Galvanization consists of an application on the object to be protected of a layer of metallic zinc by either hot-dip galvanizing or electroplating . Zinc
1665-404: A negative one elementary electric charge . Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton . Quantum mechanical properties of the electron include an intrinsic angular momentum ( spin ) of
1776-456: A particle with a positive charge, such as the proton, and a repulsive force on a particle with a negative charge. The strength of this force in nonrelativistic approximation is determined by Coulomb's inverse square law . When an electron is in motion, it generates a magnetic field . The Ampère–Maxwell law relates the magnetic field to the mass motion of electrons (the current ) with respect to an observer. This property of induction supplies
1887-415: A power source in which the positive terminal is clamped to the anode and the negative terminal is clamped to the object to be treated which becomes the cathode . Hydrogen and oxygen gases are produced at the cathode and anode respectively. This mixture is flammable/explosive. Care should also be taken to avoid hydrogen embrittlement . Overvoltage also produces small amounts of ozone, which is highly toxic, so
1998-569: A problem, as expanding rust can fracture concrete from within. As a closely related example, iron clamps were used to join marble blocks during a restoration attempt of the Parthenon in Athens, Greece , in 1898, but caused extensive damage to the marble by the rusting and swelling of unprotected iron. The ancient Greek builders had used a similar fastening system for the marble blocks during construction, however, they also poured molten lead over
2109-413: A sample of tablets over a fixed time, using a rotating wheel with a baffle. The result is inspected for broken tablets, and the percentage of tablet mass lost through chipping. A typical specification will allow a non-zero percentage of chipping, and zero broken tablets. Electron The electron ( e , or β in nuclear reactions) is a subatomic particle with
2220-553: A single electron. This prohibition against more than one electron occupying the same quantum energy state became known as the Pauli exclusion principle . The physical mechanism to explain the fourth parameter, which had two distinct possible values, was provided by the Dutch physicists Samuel Goudsmit and George Uhlenbeck . In 1925, they suggested that an electron, in addition to the angular momentum of its orbit, possesses an intrinsic angular momentum and magnetic dipole moment . This
2331-540: A soft crumbling powder. A wide section of the industrialized American Midwest and American Northeast , once dominated by steel foundries , the automotive industry , and other manufacturers, has experienced harsh economic cutbacks that have caused the region to be dubbed the " Rust Belt ". In music, literature, and art, rust is associated with images of faded glory, neglect, decay, and ruin. Friable In materials science , friability ( / ˌ f r aɪ . ə ˈ b ɪ l ə t i / FRY -ə- BIL -ə-tee ),
SECTION 20
#17327945909072442-475: A solution of molasses . Rust is associated with the degradation of iron-based tools and structures. As rust has a much higher volume than the originating mass of iron, its buildup can also cause failure by forcing apart adjacent parts — a phenomenon sometimes known as "rust packing". It was the cause of the collapse of the Mianus river bridge in 1983, when the bearings rusted internally and pushed one corner of
2553-482: A solution that determined the location of an electron over time, this wave equation also could be used to predict the probability of finding an electron near a position, especially a position near where the electron was bound in space, for which the electron wave equations did not change in time. This approach led to a second formulation of quantum mechanics (the first by Heisenberg in 1925), and solutions of Schrödinger's equation, like Heisenberg's, provided derivations of
2664-481: A steel ship, automobile, or other equipment for long-term storage. Special anti-seize lubricant mixtures are available and are applied to metallic threads and other precision machined surfaces to protect them from rust. These compounds usually contain grease mixed with copper, zinc, or aluminium powder, and other proprietary ingredients. Bluing is a technique that can provide limited resistance to rusting for small steel items, such as firearms; for it to be successful,
2775-437: A surplus of the charge carrier, and which situation was a deficit. Between 1838 and 1851, British natural philosopher Richard Laming developed the idea that an atom is composed of a core of matter surrounded by subatomic particles that had unit electric charges . Beginning in 1846, German physicist Wilhelm Eduard Weber theorized that electricity was composed of positively and negatively charged fluids, and their interaction
2886-548: A water-displacing oil is rubbed onto the blued steel and other steel . Corrosion inhibitors, such as gas-phase or volatile inhibitors, can be used to prevent corrosion inside sealed systems. They are not effective when air circulation disperses them, and brings in fresh oxygen and moisture. Rust can be avoided by controlling the moisture in the atmosphere. An example of this is the use of silica gel packets to control humidity in equipment shipped by sea. Rust removal from small iron or steel objects by electrolysis can be done in
2997-407: Is a challenging problem of modern theoretical physics. The admission of the hypothesis of a finite radius of the electron is incompatible to the premises of the theory of relativity. On the other hand, a point-like electron (zero radius) generates serious mathematical difficulties due to the self-energy of the electron tending to infinity. Observation of a single electron in a Penning trap suggests
3108-467: Is a combination of the words electr ic and i on . The suffix - on which is now used to designate other subatomic particles, such as a proton or neutron, is in turn derived from electron. While studying electrical conductivity in rarefied gases in 1859, the German physicist Julius Plücker observed the radiation emitted from the cathode caused phosphorescent light to appear on the tube wall near
3219-661: Is achieved by attaching a sacrificial anode, thereby making the iron or steel the cathode in the cell formed. The sacrificial anode must be made from something with a more negative electrode potential than the iron or steel, commonly zinc, aluminium, or magnesium. The sacrificial anode will eventually corrode away, ceasing its protective action unless it is replaced in a timely manner. Cathodic protection can also be provided by using an applied electrical current. This would then be known as ICCP Impressed Current Cathodic Protection. Rust formation can be controlled with coatings, such as paint , lacquer , varnish , or wax tapes that isolate
3330-496: Is actually smaller than its true value, and the charge decreases with increasing distance from the electron. This polarization was confirmed experimentally in 1997 using the Japanese TRISTAN particle accelerator. Virtual particles cause a comparable shielding effect for the mass of the electron. The interaction with virtual particles also explains the small (about 0.1%) deviation of the intrinsic magnetic moment of
3441-459: Is an electrochemical process that begins with the transfer of electrons from iron to oxygen. The iron is the reducing agent (gives up electrons) while the oxygen is the oxidizing agent (gains electrons). The rate of corrosion is affected by water and accelerated by electrolytes , as illustrated by the effects of road salt on the corrosion of automobiles. The key reaction is the reduction of oxygen: Because it forms hydroxide ions , this process
Rust - Misplaced Pages Continue
3552-592: Is analogous to the rotation of the Earth on its axis as it orbits the Sun. The intrinsic angular momentum became known as spin , and explained the previously mysterious splitting of spectral lines observed with a high-resolution spectrograph ; this phenomenon is known as fine structure splitting. In his 1924 dissertation Recherches sur la théorie des quanta (Research on Quantum Theory), French physicist Louis de Broglie hypothesized that all matter can be represented as
3663-479: Is approximately 9.109 × 10 kg , or 5.489 × 10 Da . Due to mass–energy equivalence , this corresponds to a rest energy of 0.511 MeV (8.19 × 10 J) . The ratio between the mass of a proton and that of an electron is about 1836. Astronomical measurements show that the proton-to-electron mass ratio has held the same value, as is predicted by the Standard Model, for at least half
3774-410: Is exposed, and the corrosion process continues until either all of the iron is consumed or all of the oxygen, water, carbon dioxide or sulfur dioxide in the system are removed or consumed. When iron rusts, the oxides take up more volume than the original metal; this expansion can generate enormous forces, damaging structures made with iron. See economic effect for more details. The rusting of iron
3885-428: Is generally a negative aspect of iron, a particular form of rusting, known as stable rust , causes the object to have a thin coating of rust over the top. If kept in low relative humidity, it makes the "stable" layer protective to the iron below, but not to the extent of other oxides such as aluminium oxide on aluminium . It was assumed that rust, made by dissolved oxygen with iron in the oceans, began to sink beneath
3996-455: Is in existence, the Coulomb force from the ambient electric field surrounding an electron causes a created positron to be attracted to the original electron, while a created electron experiences a repulsion. This causes what is called vacuum polarization . In effect, the vacuum behaves like a medium having a dielectric permittivity more than unity . Thus the effective charge of an electron
4107-570: Is one of humanity's earliest recorded experiences with electricity . In his 1600 treatise De Magnete , the English scientist William Gilbert coined the Neo-Latin term electrica , to refer to those substances with property similar to that of amber which attract small objects after being rubbed. Both electric and electricity are derived from the Latin ēlectrum (also the root of
4218-407: Is passed through parallel slits thereby creating interference patterns. In 1927, George Paget Thomson and Alexander Reid discovered the interference effect was produced when a beam of electrons was passed through thin celluloid foils and later metal films, and by American physicists Clinton Davisson and Lester Germer by the reflection of electrons from a crystal of nickel . Alexander Reid, who
4329-561: Is presented here; for detailed coverage, see the cross-referenced articles. Rust is permeable to air and water, therefore the interior metallic iron beneath a rust layer continues to corrode. Rust prevention thus requires coatings that preclude rust formation. Stainless steel forms a passivation layer of chromium(III) oxide . Similar passivation behavior occurs with magnesium , titanium , zinc , zinc oxides , aluminium , polyaniline , and other electroactive conductive polymers. Special " weathering steel " alloys such as Cor-Ten rust at
4440-611: Is sometimes used metaphorically to describe " brittle " personalities who can be "rubbed" by seemingly-minor stimuli to produce extreme emotional responses. A friable substance is any substance that can be reduced to fibers or finer particles by the action of a small amount of pressure or friction , such as rubbing or inadvertently brushing up against the substance. The term could also apply to any material that exhibits these properties, such as: Friable and indurated are terms used commonly in soft-rock geology , especially with sandstones , mudstones , and shales to describe how well
4551-407: Is strongly affected by the presence of acid. Likewise, the corrosion of most metals by oxygen is accelerated at low pH . Providing the electrons for the above reaction is the oxidation of iron that may be described as follows: The following redox reaction also occurs in the presence of water and is crucial to the formation of rust: In addition, the following multistep acid–base reactions affect
Rust - Misplaced Pages Continue
4662-457: Is traditionally used because it is cheap, adheres well to steel, and provides cathodic protection to the steel surface in case of damage of the zinc layer. In more corrosive environments (such as salt water), cadmium plating is preferred instead of the underlying protected metal. The protective zinc layer is consumed by this action, and thus galvanization provides protection only for a limited period of time. More modern coatings add aluminium to
4773-461: The Dirac sea . This led him to predict the existence of a positron, the antimatter counterpart of the electron. This particle was discovered in 1932 by Carl Anderson , who proposed calling standard electrons negatrons and using electron as a generic term to describe both the positively and negatively charged variants. In 1947, Willis Lamb , working in collaboration with graduate student Robert Retherford , found that certain quantum states of
4884-458: The Lamb shift observed in spectral lines . The Compton Wavelength shows that near elementary particles such as the electron, the uncertainty of the energy allows for the creation of virtual particles near the electron. This wavelength explains the "static" of virtual particles around elementary particles at a close distance. An electron generates an electric field that exerts an attractive force on
4995-476: The Standard Model of particle physics. Individual electrons can now be easily confined in ultra small ( L = 20 nm , W = 20 nm ) CMOS transistors operated at cryogenic temperature over a range of −269 °C (4 K ) to about −258 °C (15 K ). The electron wavefunction spreads in a semiconductor lattice and negligibly interacts with the valence band electrons, so it can be treated in
5106-416: The absolute value of this function is squared , it gives the probability that a particle will be observed near a location—a probability density . Electrons are identical particles because they cannot be distinguished from each other by their intrinsic physical properties. In quantum mechanics, this means that a pair of interacting electrons must be able to swap positions without an observable change to
5217-414: The age of the universe . Electrons have an electric charge of −1.602 176 634 × 10 coulombs , which is used as a standard unit of charge for subatomic particles, and is also called the elementary charge . Within the limits of experimental accuracy, the electron charge is identical to the charge of a proton, but with the opposite sign. The electron is commonly symbolized by e , and
5328-726: The alloy of the same name ), which came from the Greek word for amber, ἤλεκτρον ( ēlektron ). In the early 1700s, French chemist Charles François du Fay found that if a charged gold-leaf is repulsed by glass rubbed with silk, then the same charged gold-leaf is attracted by amber rubbed with wool. From this and other results of similar types of experiments, du Fay concluded that electricity consists of two electrical fluids , vitreous fluid from glass rubbed with silk and resinous fluid from amber rubbed with wool. These two fluids can neutralize each other when combined. American scientist Ebenezer Kinnersley later also independently reached
5439-405: The double-slit experiment . The wave-like nature of the electron allows it to pass through two parallel slits simultaneously, rather than just one slit as would be the case for a classical particle. In quantum mechanics, the wave-like property of one particle can be described mathematically as a complex -valued function, the wave function , commonly denoted by the Greek letter psi ( ψ ). When
5550-462: The e / m ratio but did not take the step of interpreting their results as showing a new particle, while J. J. Thomson would subsequently in 1899 give estimates for the electron charge and mass as well: e ~ 6.8 × 10 esu and m ~ 3 × 10 g The name "electron" was adopted for these particles by the scientific community, mainly due to the advocation by G. F. FitzGerald , J. Larmor , and H. A. Lorentz . The term
5661-414: The muon and the tau , which are identical to the electron in charge, spin and interactions , but are more massive. Leptons differ from the other basic constituent of matter, the quarks , by their lack of strong interaction . All members of the lepton group are fermions because they all have half-odd integer spin; the electron has spin 1 / 2 . The invariant mass of an electron
SECTION 50
#17327945909075772-459: The spectral lines of the hydrogen atom. However, Bohr's model failed to account for the relative intensities of the spectral lines and it was unsuccessful in explaining the spectra of more complex atoms. Chemical bonds between atoms were explained by Gilbert Newton Lewis , who in 1916 proposed that a covalent bond between two atoms is maintained by a pair of electrons shared between them. Later, in 1927, Walter Heitler and Fritz London gave
5883-399: The spinon , the orbiton and the holon (or chargon). The electron can always be theoretically considered as a bound state of the three, with the spinon carrying the spin of the electron, the orbiton carrying the orbital degree of freedom and the chargon carrying the charge, but in certain conditions they can behave as independent quasiparticles . The issue of the radius of the electron
5994-599: The 1870s, the English chemist and physicist Sir William Crookes developed the first cathode-ray tube to have a high vacuum inside. He then showed in 1874 that the cathode rays can turn a small paddle wheel when placed in their path. Therefore, he concluded that the rays carried momentum. Furthermore, by applying a magnetic field, he was able to deflect the rays, thereby demonstrating that the beam behaved as though it were negatively charged. In 1879, he proposed that these properties could be explained by regarding cathode rays as composed of negatively charged gaseous molecules in
6105-477: The Coulomb force. Energy emission can occur when a moving electron is deflected by a charged particle, such as a proton. The deceleration of the electron results in the emission of Bremsstrahlung radiation. An inelastic collision between a photon (light) and a solitary (free) electron is called Compton scattering . This collision results in a transfer of momentum and energy between the particles, which modifies
6216-420: The atmosphere. The antiparticle of the electron is called the positron ; it is identical to the electron, except that it carries electrical charge of the opposite sign. When an electron collides with a positron , both particles can be annihilated , producing gamma ray photons . The ancient Greeks noticed that amber attracted small objects when rubbed with fur. Along with lightning , this phenomenon
6327-480: The beginning of the twentieth century, it was found that under certain conditions a fast-moving charged particle caused a condensation of supersaturated water vapor along its path. In 1911, Charles Wilson used this principle to devise his cloud chamber so he could photograph the tracks of charged particles, such as fast-moving electrons. By 1914, experiments by physicists Ernest Rutherford , Henry Moseley , James Franck and Gustav Hertz had largely established
6438-471: The bridge anchored by gravity alone. Reinforced concrete is also vulnerable to rust damage. Internal pressure caused by expanding corrosion of concrete-covered steel and iron can cause the concrete to spall , creating severe structural problems. It is one of the most common failure modes of reinforced concrete bridges and buildings. Rust is a commonly used metaphor for slow decay due to neglect, since it gradually converts robust iron and steel metal into
6549-402: The cathode; and the region of the phosphorescent light could be moved by application of a magnetic field. In 1869, Plücker's student Johann Wilhelm Hittorf found that a solid body placed in between the cathode and the phosphorescence would cast a shadow upon the phosphorescent region of the tube. Hittorf inferred that there are straight rays emitted from the cathode and that the phosphorescence
6660-553: The charge carriers were much heavier hydrogen or nitrogen atoms. Schuster's estimates would subsequently turn out to be largely correct. In 1892 Hendrik Lorentz suggested that the mass of these particles (electrons) could be a consequence of their electric charge. While studying naturally fluorescing minerals in 1896, the French physicist Henri Becquerel discovered that they emitted radiation without any exposure to an external energy source. These radioactive materials became
6771-587: The coating as zinc-alume ; aluminium will migrate to cover scratches and thus provide protection for a longer period. These approaches rely on the aluminium and zinc oxides protecting a once-scratched surface, rather than oxidizing as a sacrificial anode as in traditional galvanized coatings. In some cases, such as very aggressive environments or long design life, both zinc and a coating are applied to provide enhanced corrosion protection. Typical galvanization of steel products that are to be subjected to normal day-to-day weathering in an outside environment consists of
SECTION 60
#17327945909076882-450: The component rock fragments are held together. Examples: The term friable is also used to describe tumors in medicine. This is an important determination because tumors that are easily torn apart have a higher risk of malignancy and metastasis . Examples: Friability testing is a laboratory technique used by the pharmaceutical industry to test the durability of tablets during transit. This testing involves repeatedly dropping
6993-588: The concept of an indivisible quantity of electric charge to explain the chemical properties of atoms. Irish physicist George Johnstone Stoney named this charge "electron" in 1891, and J. J. Thomson and his team of British physicists identified it as a particle in 1897 during the cathode-ray tube experiment . Electrons participate in nuclear reactions , such as nucleosynthesis in stars , where they are known as beta particles . Electrons can be created through beta decay of radioactive isotopes and in high-energy collisions, for instance, when cosmic rays enter
7104-448: The condition of being friable , describes the tendency of a solid substance to break into smaller pieces under stress or contact, especially by rubbing . The opposite of friable is indurate . Substances that are designated hazardous, such as asbestos or crystalline silica , are often said to be friable if small particles are easily dislodged and become airborne , and hence respirable (able to enter human lungs ), thereby posing
7215-406: The course of rust formation: as do the following dehydration equilibria: From the above equations, it is also seen that the corrosion products are dictated by the availability of water and oxygen. With limited dissolved oxygen, iron(II)-containing materials are favoured, including FeO and black lodestone or magnetite (Fe 3 O 4 ). High oxygen concentrations favour ferric materials with
7326-430: The deflecting electrodes in a highly-conductive area of the tube, resulting in a strong screening effect close to their surface. The German-born British physicist Arthur Schuster expanded upon Crookes's experiments by placing metal plates parallel to the cathode rays and applying an electric potential between the plates. The field deflected the rays toward the positively charged plate, providing further evidence that
7437-427: The effects of quantum mechanics ; in reality, the so-called classical electron radius has little to do with the true fundamental structure of the electron. There are elementary particles that spontaneously decay into less massive particles. An example is the muon , with a mean lifetime of 2.2 × 10 seconds, which decays into an electron, a muon neutrino and an electron antineutrino . The electron, on
7548-454: The electron from the Bohr magneton (the anomalous magnetic moment ). The extraordinarily precise agreement of this predicted difference with the experimentally determined value is viewed as one of the great achievements of quantum electrodynamics . The apparent paradox in classical physics of a point particle electron having intrinsic angular momentum and magnetic moment can be explained by
7659-560: The electron has an intrinsic magnetic moment along its spin axis. It is approximately equal to one Bohr magneton , which is a physical constant that is equal to 9.274 010 0657 (29) × 10 J⋅T . The orientation of the spin with respect to the momentum of the electron defines the property of elementary particles known as helicity . The electron has no known substructure . Nevertheless, in condensed matter physics , spin–charge separation can occur in some materials. In such cases, electrons 'split' into three independent particles,
7770-456: The energy states of an electron in a hydrogen atom that were equivalent to those that had been derived first by Bohr in 1913, and that were known to reproduce the hydrogen spectrum. Once spin and the interaction between multiple electrons were describable, quantum mechanics made it possible to predict the configuration of electrons in atoms with atomic numbers greater than hydrogen. In 1928, building on Wolfgang Pauli's work, Paul Dirac produced
7881-448: The first high-energy particle collider was ADONE , which began operations in 1968. This device accelerated electrons and positrons in opposite directions, effectively doubling the energy of their collision when compared to striking a static target with an electron. The Large Electron–Positron Collider (LEP) at CERN , which was operational from 1989 to 2000, achieved collision energies of 209 GeV and made important measurements for
7992-406: The formation of virtual photons in the electric field generated by the electron. These photons can heuristically be thought of as causing the electron to shift about in a jittery fashion (known as zitterbewegung ), which results in a net circular motion with precession . This motion produces both the spin and the magnetic moment of the electron. In atoms, this creation of virtual photons explains
8103-568: The full explanation of the electron-pair formation and chemical bonding in terms of quantum mechanics . In 1919, the American chemist Irving Langmuir elaborated on the Lewis's static model of the atom and suggested that all electrons were distributed in successive "concentric (nearly) spherical shells, all of equal thickness". In turn, he divided the shells into a number of cells each of which contained one pair of electrons. With this model Langmuir
8214-421: The hydrogen atom, which should have the same energy, were shifted in relation to each other; the difference came to be called the Lamb shift . About the same time, Polykarp Kusch , working with Henry M. Foley , discovered the magnetic moment of the electron is slightly larger than predicted by Dirac's theory. This small difference was later called anomalous magnetic dipole moment of the electron. This difference
8325-452: The iron from the environment. Large structures with enclosed box sections, such as ships and modern automobiles, often have a wax-based product (technically a "slushing oil") injected into these sections. Such treatments usually also contain rust inhibitors. Covering steel with concrete can provide some protection to steel because of the alkaline pH environment at the steel–concrete interface. However, rusting of steel in concrete can still be
8436-448: The iron joints for protection from seismic shocks as well as from corrosion. This method was successful for the 2500-year-old structure, but in less than a century the crude repairs were in imminent danger of collapse. When only temporary protection is needed for storage or transport, a thin layer of oil, grease or a special mixture such as Cosmoline can be applied to an iron surface. Such treatments are extensively used when " mothballing "
8547-426: The laboratory with the use of ferroxyl indicator solution . The solution detects both Fe ions and hydroxyl ions. Formation of Fe ions and hydroxyl ions are indicated by blue and pink patches respectively. Because of the widespread use and importance of iron and steel products, the prevention or slowing of rust is the basis of major economic activities in a number of specialized technologies. A brief overview of methods
8658-489: The magnetic field and the electron velocity. This centripetal force causes the electron to follow a helical trajectory through the field at a radius called the gyroradius . The acceleration from this curving motion induces the electron to radiate energy in the form of synchrotron radiation. The energy emission in turn causes a recoil of the electron, known as the Abraham–Lorentz–Dirac Force , which creates
8769-516: The magnetic field that drives an electric motor . The electromagnetic field of an arbitrary moving charged particle is expressed by the Liénard–Wiechert potentials , which are valid even when the particle's speed is close to that of light ( relativistic ). When an electron is moving through a magnetic field, it is subject to the Lorentz force that acts perpendicularly to the plane defined by
8880-494: The microscopic pits and cracks in any exposed metal. The hydrogen atoms present in water molecules can combine with other elements to form acids, which will eventually cause more metal to be exposed. If chloride ions are present, as is the case with saltwater, the corrosion is likely to occur more quickly. Meanwhile, the oxygen atoms combine with metallic atoms to form the destructive oxide compound. These iron compounds are brittle and crumbly and replace strong metallic iron, reducing
8991-426: The negatively charged particles produced by radioactive materials, by heated materials and by illuminated materials were universal. Thomson measured m / e for cathode ray "corpuscles", and made good estimates of the charge e , leading to value for the mass m , finding a value 1400 times less massive than the least massive ion known: hydrogen. In the same year Emil Wiechert and Walter Kaufmann also calculated
9102-459: The nominal formulae Fe(OH) 3− x O x ⁄ 2 . The nature of rust changes with time, reflecting the slow rates of the reactions of solids. Furthermore, these complex processes are affected by the presence of other ions, such as Ca , which serve as electrolytes which accelerate rust formation, or combine with the hydroxides and oxides of iron to precipitate a variety of Ca, Fe, O, OH species. The onset of rusting can also be detected in
9213-1001: The observer will observe it to generate a magnetic field . Electromagnetic fields produced from other sources will affect the motion of an electron according to the Lorentz force law . Electrons radiate or absorb energy in the form of photons when they are accelerated. Laboratory instruments are capable of trapping individual electrons as well as electron plasma by the use of electromagnetic fields. Special telescopes can detect electron plasma in outer space. Electrons are involved in many applications, such as tribology or frictional charging, electrolysis, electrochemistry, battery technologies, electronics , welding , cathode-ray tubes , photoelectricity, photovoltaic solar panels, electron microscopes , radiation therapy , lasers , gaseous ionization detectors , and particle accelerators . Interactions involving electrons with other subatomic particles are of interest in fields such as chemistry and nuclear physics . The Coulomb force interaction between
9324-430: The other hand, is thought to be stable on theoretical grounds: the electron is the least massive particle with non-zero electric charge, so its decay would violate charge conservation . The experimental lower bound for the electron's mean lifetime is 6.6 × 10 years, at a 90% confidence level . As with all particles, electrons can act as waves. This is called the wave–particle duality and can be demonstrated using
9435-406: The passivating ferrous oxide layer to rust results from the combined action of two agents, usually oxygen and water. Other degrading solutions are sulfur dioxide in water and carbon dioxide in water. Under these corrosive conditions, iron hydroxide species are formed. Unlike ferrous oxides, the hydroxides do not adhere to the bulk metal. As they form and flake off from the surface, fresh iron
9546-551: The photon, have symmetric wave functions instead. In the case of antisymmetry, solutions of the wave equation for interacting electrons result in a zero probability that each pair will occupy the same location or state. This is responsible for the Pauli exclusion principle , which precludes any two electrons from occupying the same quantum state. This principle explains many of the properties of electrons. For example, it causes groups of bound electrons to occupy different orbitals in an atom, rather than all overlapping each other in
9657-456: The positive protons within atomic nuclei and the negative electrons without allows the composition of the two known as atoms . Ionization or differences in the proportions of negative electrons versus positive nuclei changes the binding energy of an atomic system. The exchange or sharing of the electrons between two or more atoms is the main cause of chemical bonding . In 1838, British natural philosopher Richard Laming first hypothesized
9768-452: The positron is symbolized by e . The electron has an intrinsic angular momentum or spin of ħ / 2 . This property is usually stated by referring to the electron as a spin-1/2 particle. For such particles the spin magnitude is ħ / 2 , while the result of the measurement of a projection of the spin on any axis can only be ± ħ / 2 . In addition to spin,
9879-403: The rays carried negative charge. By measuring the amount of deflection for a given electric and magnetic field , in 1890 Schuster was able to estimate the charge-to-mass ratio of the ray components. However, this produced a value that was more than a thousand times greater than what was expected, so little credence was given to his calculations at the time. This is because it was assumed that
9990-402: The resulting oxides are not commonly called "rust". Several forms of rust are distinguishable both visually and by spectroscopy , and form under different circumstances. Other forms of rust include the result of reactions between iron and chloride in an environment deprived of oxygen. Rebar used in underwater concrete pillars , which generates green rust , is an example. Although rusting
10101-609: The road slab off its support. Rust was an important factor in the Silver Bridge disaster of 1967 in West Virginia , when a steel suspension bridge collapsed in less than a minute, killing 46 drivers and passengers on the bridge at the time. The Kinzua Bridge in Pennsylvania was blown down by a tornado in 2003, largely because the central base bolts holding the structure to the ground had rusted away, leaving
10212-455: The same conclusion. A decade later Benjamin Franklin proposed that electricity was not from different types of electrical fluid, but a single electrical fluid showing an excess (+) or deficit (−). He gave them the modern charge nomenclature of positive and negative respectively. Franklin thought of the charge carrier as being positive, but he did not correctly identify which situation was
10323-423: The same orbit. In a simplified picture, which often tends to give the wrong idea but may serve to illustrate some aspects, every photon spends some time as a combination of a virtual electron plus its antiparticle, the virtual positron, which rapidly annihilate each other shortly thereafter. The combination of the energy variation needed to create these particles, and the time during which they exist, fall under
10434-518: The seafloor, forming banded iron formations from 2.5 to 2.2 billion years ago. Afterwards, rust soon uplifted iron metals toward the ocean surface. They would subsequently transform into foundations of iron and steel , which effectively fuelled the Industrial Revolution . Rust is a general name for a complex of oxides and hydroxides of iron, which occur when iron or some alloys that contain iron are exposed to oxygen and moisture for
10545-489: The single particle formalism, by replacing its mass with the effective mass tensor . In the Standard Model of particle physics, electrons belong to the group of subatomic particles called leptons , which are believed to be fundamental or elementary particles . Electrons have the lowest mass of any charged lepton (or electrically charged particle of any type) and belong to the first generation of fundamental particles. The second and third generation contain charged leptons,
10656-435: The state of the system. The wave function of fermions, including electrons, is antisymmetric, meaning that it changes sign when two electrons are swapped; that is, ψ ( r 1 , r 2 ) = − ψ ( r 2 , r 1 ) , where the variables r 1 and r 2 correspond to the first and second electrons, respectively. Since the absolute value is not changed by a sign swap, this corresponds to equal probabilities. Bosons , such as
10767-451: The strength of the object. When iron is in contact with water and oxygen, it rusts. If salt is present, for example in seawater or salt spray , the iron tends to rust more quickly, as a result of chemical reactions. Iron metal is relatively unaffected by pure water or by dry oxygen. As with other metals, like aluminium, a tightly adhering oxide coating, a passivation layer , protects the bulk iron from further oxidation. The conversion of
10878-484: The structure of an atom as a dense nucleus of positive charge surrounded by lower-mass electrons. In 1913, Danish physicist Niels Bohr postulated that electrons resided in quantized energy states, with their energies determined by the angular momentum of the electron's orbit about the nucleus. The electrons could move between those states, or orbits, by the emission or absorption of photons of specific frequencies. By means of these quantized orbits, he accurately explained
10989-504: The subject of much interest by scientists, including the New Zealand physicist Ernest Rutherford who discovered they emitted particles. He designated these particles alpha and beta , on the basis of their ability to penetrate matter. In 1900, Becquerel showed that the beta rays emitted by radium could be deflected by an electric field, and that their mass-to-charge ratio was the same as for cathode rays. This evidence strengthened
11100-423: The term electrolion in 1881. Ten years later, he switched to electron to describe these elementary charges, writing in 1894: "... an estimate was made of the actual amount of this most remarkable fundamental unit of electricity, for which I have since ventured to suggest the name electron ". A 1906 proposal to change to electrion failed because Hendrik Lorentz preferred to keep electron . The word electron
11211-522: The threshold of detectability expressed by the Heisenberg uncertainty relation , Δ E · Δ t ≥ ħ . In effect, the energy needed to create these virtual particles, Δ E , can be "borrowed" from the vacuum for a period of time, Δ t , so that their product is no more than the reduced Planck constant , ħ ≈ 6.6 × 10 eV·s . Thus, for a virtual electron, Δ t is at most 1.3 × 10 s . While an electron–positron virtual pair
11322-426: The upper limit of the particle's radius to be 10 meters. The upper bound of the electron radius of 10 meters can be derived using the uncertainty relation in energy. There is also a physical constant called the " classical electron radius ", with the much larger value of 2.8179 × 10 m , greater than the radius of the proton. However, the terminology comes from a simplistic calculation that ignores
11433-487: The view that electrons existed as components of atoms. In 1897, the British physicist J. J. Thomson , with his colleagues John S. Townsend and H. A. Wilson , performed experiments indicating that cathode rays really were unique particles, rather than waves, atoms or molecules as was believed earlier. By 1899 he showed that their charge-to-mass ratio, e / m , was independent of cathode material. He further showed that
11544-473: The wavelength of the photon by an amount called the Compton shift . The maximum magnitude of this wavelength shift is h / m e c , which is known as the Compton wavelength . For an electron, it has a value of 2.43 × 10 m . When the wavelength of the light is long (for instance, the wavelength of the visible light is 0.4–0.7 μm) the wavelength shift becomes negligible. Such interaction between
11655-563: Was Thomson's graduate student, performed the first experiments but he died soon after in a motorcycle accident and is rarely mentioned. De Broglie's prediction of a wave nature for electrons led Erwin Schrödinger to postulate a wave equation for electrons moving under the influence of the nucleus in the atom. In 1926, this equation, the Schrödinger equation , successfully described how electron waves propagated. Rather than yielding
11766-416: Was able to qualitatively explain the chemical properties of all elements in the periodic table, which were known to largely repeat themselves according to the periodic law . In 1924, Austrian physicist Wolfgang Pauli observed that the shell-like structure of the atom could be explained by a set of four parameters that defined every quantum energy state, as long as each state was occupied by no more than
11877-734: Was caused by the rays striking the tube walls. Furthermore, he also discovered that these rays are deflected by magnets just like lines of current. In 1876, the German physicist Eugen Goldstein showed that the rays were emitted perpendicular to the cathode surface, which distinguished between the rays that were emitted from the cathode and the incandescent light. Goldstein dubbed the rays cathode rays . Decades of experimental and theoretical research involving cathode rays were important in J. J. Thomson 's eventual discovery of electrons. Goldstein also experimented with double cathodes and hypothesized that one ray may repulse another, although he didn't believe that any particles might be involved. During
11988-672: Was governed by the inverse square law . After studying the phenomenon of electrolysis in 1874, Irish physicist George Johnstone Stoney suggested that there existed a "single definite quantity of electricity", the charge of a monovalent ion . He was able to estimate the value of this elementary charge e by means of Faraday's laws of electrolysis . However, Stoney believed these charges were permanently attached to atoms and could not be removed. In 1881, German physicist Hermann von Helmholtz argued that both positive and negative charges were divided into elementary parts, each of which "behaves like atoms of electricity". Stoney initially coined
12099-426: Was later explained by the theory of quantum electrodynamics , developed by Sin-Itiro Tomonaga , Julian Schwinger and Richard Feynman in the late 1940s. With the development of the particle accelerator during the first half of the twentieth century, physicists began to delve deeper into the properties of subatomic particles . The first successful attempt to accelerate electrons using electromagnetic induction
12210-415: Was made in 1942 by Donald Kerst . His initial betatron reached energies of 2.3 MeV, while subsequent betatrons achieved 300 MeV. In 1947, synchrotron radiation was discovered with a 70 MeV electron synchrotron at General Electric . This radiation was caused by the acceleration of electrons through a magnetic field as they moved near the speed of light. With a beam energy of 1.5 GeV,
12321-413: Was originally coined by George Johnstone Stoney in 1891 as a tentative name for the basic unit of electrical charge (which had then yet to be discovered). The electron's charge was more carefully measured by the American physicists Robert Millikan and Harvey Fletcher in their oil-drop experiment of 1909, the results of which were published in 1911. This experiment used an electric field to prevent
#906093