The Walther PDP (Performance Duty Pistol) is a 9×19mm Parabellum semi-automatic pistol designed in 2021 by Walther Arms as a replacement for the Walther PPQ . The PDP has been designed to be more modular than previous Walther handguns, and has been described by Walther as their flagship handgun.
63-582: The first pre-production PDPs were distributed in 2020, and the pistol was released in February 2021. As the PDP was released, the PPQ ceased production. The PDP is a striker-fired , recoil-operated semi-automatic pistol chambered in 9×19mm Parabellum, with a longer grip and larger magazine capacity than the previous Walther design, the PPQ. The PDP is produced in full-size and compact grip frame variants. The grip uses
126-402: A n t . {\displaystyle m_{A}v_{A}+m_{B}v_{B}+m_{C}v_{C}+...=constant.} This conservation law applies to all interactions, including collisions (both elastic and inelastic ) and separations caused by explosive forces. It can also be generalized to situations where Newton's laws do not hold, for example in the theory of relativity and in electrodynamics . Momentum
189-418: A Galilean transformation . If a particle is moving at speed d x / d t = v in the first frame of reference, in the second, it is moving at speed v ′ = d x ′ d t = v − u . {\displaystyle v'={\frac {{\text{d}}x'}{{\text{d}}t}}=v-u\,.} Since u does not change,
252-473: A cam (similar to the action of a screw thread ) which retracts the striker, compressing the cocking spring and holding it there. When the cocking handle is rotated closed, the cocking cam disengages but the striker is retained in the cocked position by the trigger sear. Introduced in the Mauser Model 1871 , it significantly reduced the risk of accidental discharge upon closing. The system of operation
315-516: A momentum density can be defined as momentum per volume (a volume-specific quantity ). A continuum version of the conservation of momentum leads to equations such as the Navier–Stokes equations for fluids or the Cauchy momentum equation for deformable solids or fluids. Momentum is a vector quantity : it has both magnitude and direction. Since momentum has a direction, it can be used to predict
378-752: A 1 kg model airplane, traveling due north at 1 m/s in straight and level flight, has a momentum of 1 kg⋅m/s due north measured with reference to the ground. The momentum of a system of particles is the vector sum of their momenta. If two particles have respective masses m 1 and m 2 , and velocities v 1 and v 2 , the total momentum is p = p 1 + p 2 = m 1 v 1 + m 2 v 2 . {\displaystyle {\begin{aligned}p&=p_{1}+p_{2}\\&=m_{1}v_{1}+m_{2}v_{2}\,.\end{aligned}}} The momenta of more than two particles can be added more generally with
441-400: A breech-loading shotgun for his cartridge, using a firing pin and external hammer. The Dreyse needle gun of 1836 uses a paper cartridge with a priming as part of a sabot which cradles the projectile and is forward of the propelling charge. The needle-like firing pin projects from the bolt-face and pierces the cartridge when the breech is closed. On firing, the spring-loaded needle strikes
504-481: A chambered round) as it is possible for the firing pin to strike the face of the camber and deform it or damage the firing pin. In 1808 by the Swiss gunsmith Jean Samuel Pauly in association with French gunsmith François Prélat created the first cartridges to integrate a primer and be self-contained. The paper cartridge used a metal base with a through-hole coated in a percussive priming compound. Pauly also developed
567-402: A collision. For example, suppose there are two bodies of equal mass m , one stationary and one approaching the other at a speed v (as in the figure). The center of mass is moving at speed v / 2 and both bodies are moving towards it at speed v / 2 . Because of the symmetry, after the collision both must be moving away from the center of mass at
630-427: A custom texture, which makes acquisition of the red dot easier, and improves handling of the pistol in adverse weather conditions. The slide on the PDP is milled , allowing it to accept red dot sights without prior modification, and the slide contains serrations above the surface, making it easier to operate. The three-dot iron sight line features the same mounting method that is used on Glock pistols, meaning
693-476: A direction. If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p (from Latin pellere "push, drive") is: p = m v . {\displaystyle \mathbf {p} =m\mathbf {v} .} In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which
SECTION 10
#1732783734201756-401: A fixed firing pin mounted in the breech plug. When a mortar round is dropped down the barrel, a primer in the base of the mortar round strikes the firing pin and ignites the propelling charge. In firearms terminology, a floating firing pin is one which is unrestricted by a firing-pin return spring or similar. While it will be captive and unable to simply fall out, either forward or backward, it
819-431: A modified formula) and, in a modified form, in electrodynamics , quantum mechanics , quantum field theory , and general relativity . It is an expression of one of the fundamental symmetries of space and time: translational symmetry . Advanced formulations of classical mechanics, Lagrangian and Hamiltonian mechanics , allow one to choose coordinate systems that incorporate symmetries and constraints. In these systems
882-459: A primer in the base of the disposable launch tube. The cap contains a fixed firing-pin inside. The flare is fired by placing the cap over the base and striking it by hand. Hand grenades of the type that use a safety lever (such as the M26 grenade ) use a striker that is similar to the classic spring-loaded mousetrap . It is held under tension until the lever is released and then flips over to strike
945-403: A typical firing pin. Many small- caliber rimfire bolt-action rifles and some centerfire automatic weapons (e. g., vz. 58 ) may appear to have a striker-operated firing mechanism but are actually a type of linear hammer . The hammer can be likened to that of a pile driver and is mainly contained within the bolt. It is much like the striker already described except that the "hammer" upon which
1008-444: Is dimensionally equivalent to the newton-second . Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference , but in any inertial frame it is a conserved quantity, meaning that if a closed system is not affected by external forces, its total momentum does not change. Momentum is also conserved in special relativity (with
1071-413: Is a good example of an almost totally elastic collision, due to their high rigidity , but when bodies come in contact there is always some dissipation . A head-on elastic collision between two bodies can be represented by velocities in one dimension, along a line passing through the bodies. If the velocities are v A1 and v B1 before the collision and v A2 and v B2 after,
1134-603: Is a measurable quantity, and the measurement depends on the frame of reference . For example: if an aircraft of mass 1000 kg is flying through the air at a speed of 50 m/s its momentum can be calculated to be 50,000 kg.m/s. If the aircraft is flying into a headwind of 5 m/s its speed relative to the surface of the Earth is only 45 m/s and its momentum can be calculated to be 45,000 kg.m/s. Both calculations are equally correct. In both frames of reference, any change in momentum will be found to be consistent with
1197-466: Is an inelastic collision . An elastic collision is one in which no kinetic energy is transformed into heat or some other form of energy. Perfectly elastic collisions can occur when the objects do not touch each other, as for example in atomic or nuclear scattering where electric repulsion keeps the objects apart. A slingshot maneuver of a satellite around a planet can also be viewed as a perfectly elastic collision. A collision between two pool balls
1260-464: Is common for them to be flat, with a square or rectangular cross-section and a blunt chisel point. Flat firing pins can be stamped from flat metal stock and usually operate in a slot cut in the breechblock (rather than a hole) that is parallel but offset from the centerline of the barrel. These production methods are generally simpler and reduce production costs. It is generally recommended not to excessively "dry fire" rimfire firearms (ie firing without
1323-605: Is equal to the instantaneous force F acting on it, F = d p d t . {\displaystyle F={\frac {{\text{d}}p}{{\text{d}}t}}.} If the net force experienced by a particle changes as a function of time, F ( t ) , the change in momentum (or impulse J ) between times t 1 and t 2 is Δ p = J = ∫ t 1 t 2 F ( t ) d t . {\displaystyle \Delta p=J=\int _{t_{1}}^{t_{2}}F(t)\,{\text{d}}t\,.} Impulse
SECTION 20
#17327837342011386-407: Is known as Euler's first law . If the net force F applied to a particle is constant, and is applied for a time interval Δ t , the momentum of the particle changes by an amount Δ p = F Δ t . {\displaystyle \Delta p=F\Delta t\,.} In differential form, this is Newton's second law ; the rate of change of the momentum of a particle
1449-468: Is measured in the derived units of the newton second (1 N⋅s = 1 kg⋅m/s) or dyne second (1 dyne⋅s = 1 g⋅cm/s) Under the assumption of constant mass m , it is equivalent to write F = d ( m v ) d t = m d v d t = m a , {\displaystyle F={\frac {{\text{d}}(mv)}{{\text{d}}t}}=m{\frac {{\text{d}}v}{{\text{d}}t}}=ma,} hence
1512-466: Is numerically equivalent to 3 newtons. In a closed system (one that does not exchange any matter with its surroundings and is not acted on by external forces) the total momentum remains constant. This fact, known as the law of conservation of momentum , is implied by Newton's laws of motion . Suppose, for example, that two particles interact. As explained by the third law, the forces between them are equal in magnitude but opposite in direction. If
1575-421: Is otherwise free to slide within these stops. The trapdoor Springfield Model 1865 is an example of a floating firing pin. Hammer-operated firing mechanisms use a relatively light firing pin and rely on a transfer of momentum received from a spring -loaded hammer , in the same fashion as a punch or chisel relays the blow from a mallet . In firearms terminology, a striker (or striker mechanism) derives
1638-422: Is the center of mass frame – one that is moving with the center of mass. In this frame, the total momentum is zero. If two particles, each of known momentum, collide and coalesce, the law of conservation of momentum can be used to determine the momentum of the coalesced body. If the outcome of the collision is that the two particles separate, the law is not sufficient to determine the momentum of each particle. If
1701-409: Is the product of the units of mass and velocity. In SI units , if the mass is in kilograms and the velocity is in meters per second then the momentum is in kilogram meters per second (kg⋅m/s). In cgs units , if the mass is in grams and the velocity in centimeters per second, then the momentum is in gram centimeters per second (g⋅cm/s). Being a vector, momentum has magnitude and direction. For example,
1764-455: Is unchanged. Forces such as Newtonian gravity, which depend only on the scalar distance between objects, satisfy this criterion. This independence of reference frame is called Newtonian relativity or Galilean invariance . A change of reference frame, can, often, simplify calculations of motion. For example, in a collision of two particles, a reference frame can be chosen, where, one particle begins at rest. Another, commonly used reference frame,
1827-459: The Franck–Hertz experiment ); and particle accelerators in which the kinetic energy is converted into mass in the form of new particles. In a perfectly inelastic collision (such as a bug hitting a windshield), both bodies have the same motion afterwards. A head-on inelastic collision between two bodies can be represented by velocities in one dimension, along a line passing through the bodies. If
1890-550: The inertia of the firing pin as the breech mechanism closes in the reloading part of the firing cycle. Firing pins of this type are often too short to contact the primer when the hammer is resting against it. This is a safety measure to prevent discharge from external forces such as a drop. Firing relies upon the transfer of momentum from the hammer to give the firing pin sufficient impact energy to cause firing. The two main types of metallic cartridges used in modern firearms are centerfire and rimfire . In centerfire cartridges,
1953-475: The PDP Match and PDP Match Steel Frame. [REDACTED] Germany [REDACTED] United States Striker-fired A firing pin or striker is a part of the firing mechanism of a firearm that impacts the primer in the base of a cartridge and causes it to fire. In firearms terminology, a striker is a particular type of firing pin where a compressed spring acts directly on
Walther PDP - Misplaced Pages Continue
2016-548: The PDP at that year's SHOT Show , the PDP SD Pro, which includes a threaded barrel, reinforced optic cut, flared magwell extension, and an improved trigger. In late 2022, Walther released the PDP F-Series which features “reduced trigger reach, reduced grip circumference, and reduced force necessary to operate the slide and you truly have the perfect tool for those with smaller hands.” In December 2023, Walther released
2079-538: The PDP can accept aftermarket Glock iron sight lines. The trigger is cross-compatible with the PPQ, but is lighter due to a shortened takeup . It has a trigger pull of approximately 25 N (5.6 lb f ). American Rifleman called the PDP an "excellent addition to the market that will allow Walther to compete strongly against the established leaders", praising its "best-in-class trigger, excellent controls and exceptional accuracy." The author said that it outperformed other striker-fired pistols he had used in
2142-406: The barrel. A striker mechanism will consist of the striker spring (firing spring) and the striker. The striker spring is a relatively strong spring sufficient to initiate firing. A typical striker consists of a narrow striking point, a heavier section that acts as a spring guide for the striker spring, a shoulder to restrain the spring, and a catch piece which is engaged by the trigger sear to hold
2205-437: The base of the cartridge. The pin needs to be aligned with a corresponding slot in the chamber; a disadvantage compared with rimfire and centerfire cartridges that followed and that are also safer. Early rifle designs that fired metallic cartridges typically used a side-lock mechanism, with the hammer mounted to one side rather than inline with the axis of the barrel. In the trapdoor Springfield Model 1865 (and similar)
2268-502: The bolt is pushed forward to close the breech, the striker catch is held by the trigger sear. The firer must close the bolt with sufficient force to overcome the force exerted by the cocking spring. Notably, the Lee–Enfield and Belgian Mauser cock on closing as do many small-caliber rimfire bolt-action rifles. The breech of a bolt action rifle is opened by first rotating the bolt handle . In cock-on-open operation, this rotation acts on
2331-502: The conserved quantity is generalized momentum , and in general this is different from the kinetic momentum defined above. The concept of generalized momentum is carried over into quantum mechanics, where it becomes an operator on a wave function . The momentum and position operators are related by the Heisenberg uncertainty principle . In continuous systems such as electromagnetic fields , fluid dynamics and deformable bodies ,
2394-914: The equations expressing conservation of momentum and kinetic energy are: m A v A 1 + m B v B 1 = m A v A 2 + m B v B 2 1 2 m A v A 1 2 + 1 2 m B v B 1 2 = 1 2 m A v A 2 2 + 1 2 m B v B 2 2 . {\displaystyle {\begin{aligned}m_{A}v_{A1}+m_{B}v_{B1}&=m_{A}v_{A2}+m_{B}v_{B2}\\{\tfrac {1}{2}}m_{A}v_{A1}^{2}+{\tfrac {1}{2}}m_{B}v_{B1}^{2}&={\tfrac {1}{2}}m_{A}v_{A2}^{2}+{\tfrac {1}{2}}m_{B}v_{B2}^{2}\,.\end{aligned}}} A change of reference frame can simplify analysis of
2457-405: The firing pin to provide the impact force rather than it being struck by a hammer . The terms may also be used for a component of equipment or a device which has a similar function. Such equipment or devices include: artillery , munitions and pyrotechnics . The typical firing pin is a thin, simple rod with a hardened, rounded tip that strikes and crushes the primer . The rounded end ensures
2520-399: The firing spring acts and the firing pin are separate units. Confusingly, parts lists will often refer to this type of hammer as a "striker". Striker-fired (or similar) bolt action firearms may be classified as cock-on-close or cock-on-open . When the breech is opened and retracted rearward, the striker is also carried rearward so that the striker catch passes over the trigger sear. When
2583-765: The following: p = ∑ i m i v i . {\displaystyle p=\sum _{i}m_{i}v_{i}.} A system of particles has a center of mass , a point determined by the weighted sum of their positions: r cm = m 1 r 1 + m 2 r 2 + ⋯ m 1 + m 2 + ⋯ = ∑ i m i r i ∑ i m i . {\displaystyle r_{\text{cm}}={\frac {m_{1}r_{1}+m_{2}r_{2}+\cdots }{m_{1}+m_{2}+\cdots }}={\frac {\sum _{i}m_{i}r_{i}}{\sum _{i}m_{i}}}.} If one or more of
Walther PDP - Misplaced Pages Continue
2646-456: The force is between particles. Similarly, if there are several particles, the momentum exchanged between each pair of particles adds to zero, so the total change in momentum is zero. The conservation of the total momentum of a number of interacting particles can be expressed as m A v A + m B v B + m C v C + . . . = c o n s t
2709-405: The impact force to strike the primer from a spring acting directly upon the firing pin – similar to a crossbow , where the striker (firing pin) is like the crossbow bolt (arrow). A striker mechanism is very common in bolt-action firearms but not to the exclusion of hammer-operated mechanisms. It is also found in other actions where the breechblock reciprocates directly inline with the axis of
2772-1047: The initial velocities are known, the final velocities are given by v A 2 = ( m A − m B m A + m B ) v A 1 + ( 2 m B m A + m B ) v B 1 v B 2 = ( m B − m A m A + m B ) v B 1 + ( 2 m A m A + m B ) v A 1 . {\displaystyle {\begin{aligned}v_{A2}&=\left({\frac {m_{A}-m_{B}}{m_{A}+m_{B}}}\right)v_{A1}+\left({\frac {2m_{B}}{m_{A}+m_{B}}}\right)v_{B1}\\v_{B2}&=\left({\frac {m_{B}-m_{A}}{m_{A}+m_{B}}}\right)v_{B1}+\left({\frac {2m_{A}}{m_{A}+m_{B}}}\right)v_{A1}\,.\end{aligned}}} If one body has much greater mass than
2835-411: The momentum of one particle after the collision is known, the law can be used to determine the momentum of the other particle. Alternatively if the combined kinetic energy after the collision is known, the law can be used to determine the momentum of each particle after the collision. Kinetic energy is usually not conserved. If it is conserved, the collision is called an elastic collision ; if not, it
2898-742: The negative sign indicating that the forces oppose. Equivalently, d d t ( p 1 + p 2 ) = 0. {\displaystyle {\frac {\text{d}}{{\text{d}}t}}\left(p_{1}+p_{2}\right)=0.} If the velocities of the particles are v A1 and v B1 before the interaction, and afterwards they are v A2 and v B2 , then m A v A 1 + m B v B 1 = m A v A 2 + m B v B 2 . {\displaystyle m_{A}v_{A1}+m_{B}v_{B1}=m_{A}v_{A2}+m_{B}v_{B2}.} This law holds no matter how complicated
2961-400: The net force is equal to the mass of the particle times its acceleration . Example : A model airplane of mass 1 kg accelerates from rest to a velocity of 6 m/s due north in 2 s. The net force required to produce this acceleration is 3 newtons due north. The change in momentum is 6 kg⋅m/s due north. The rate of change of momentum is 3 (kg⋅m/s)/s due north which
3024-447: The other, its velocity will be little affected by a collision while the other body will experience a large change. In an inelastic collision, some of the kinetic energy of the colliding bodies is converted into other forms of energy (such as heat or sound ). Examples include traffic collisions , in which the effect of loss of kinetic energy can be seen in the damage to the vehicles; electrons losing some of their energy to atoms (as in
3087-456: The particles are numbered 1 and 2, the second law states that F 1 = d p 1 / d t and F 2 = d p 2 / d t . Therefore, d p 1 d t = − d p 2 d t , {\displaystyle {\frac {{\text{d}}p_{1}}{{\text{d}}t}}=-{\frac {{\text{d}}p_{2}}{{\text{d}}t}},} with
3150-421: The particles is moving, the center of mass of the system will generally be moving as well (unless the system is in pure rotation around it). If the total mass of the particles is m {\displaystyle m} , and the center of mass is moving at velocity v cm , the momentum of the system is: p = m v cm . {\displaystyle p=mv_{\text{cm}}.} This
3213-407: The past, and went on to call the PDP his "current choice" for striker-fired pistols. Guns & Ammo described it as "the most modular and versatile pistol designed by Walther", also noting its accuracy and high quality trigger. Guns.com called the PDP's ergonomics "revolutionary", and named it as one of the best guns of the year. In 2022, Walther released a new competition-oriented variant of
SECTION 50
#17327837342013276-400: The primer cap. Some chemical oxygen generators use a primer and mousetrap type striker to initiate the chemical reaction. Momentum In Newtonian mechanics , momentum ( pl. : momenta or momentums ; more specifically linear momentum or translational momentum ) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and
3339-418: The primer is indented rather than pierced (to contain propellant gasses). It sits within a hole through the breechblock and is struck by the hammer when the trigger is "pulled". A light firing-pin spring is often used to keep the firing pin rearward. It may be termed a firing-pin return spring , since it returns it to the unfired position. In semi-automatic firearms , this prevents premature firing from
3402-421: The primer is located in the center of the base of the cartridge. Firing pins for centerfire cartridges usually have a round cross-section and their movement is usually through a hole in the breechblock along the axis of the center of the barrel 's bore. Rimfire cartridges however, must be struck on the base about the rim of the cartridge. While rimfire firearms may use a firing pin with a round cross-section, it
3465-455: The primer. Many revolvers use a firing pin that is fixed to the hammer. Simple blowback sub-machine guns that fire from the open-bolt position often have a fixed firing pin that protrudes from the face of the bolt. As the bolt fully closes on the breech the primer of the newly chambered round is struck, causing the cartridge to fire. The Owen and F1 submachine gun are examples that use bolt-face fixed firing-pins. Some mortars use
3528-403: The priming in the sabot. Unlike Pauly's cartridge, which was not widely accepted, Dreyse's rifle was adopted by Prussia as its infantry service rifle . It was the first military breechloader to use a self-contained cartridge and consequently, the first to employ a firing pin. The pinfire cartridge patented in 1835, uses a metallic cartridge with an integrated firing pin located radially near
3591-410: The rear of the firing pin tube within the breechblock is angled away from the centerline of the barrel toward the hammer. The Sharps rifle uses a firing pin block to solve this alignment problem. The block sits within a recess in the breechblock. When struck by the hammer, the whole block is propelled forward. That part of the block with the firing pin sits on the centerline of the barrel and strikes
3654-402: The relevant laws of physics. Suppose x is a position in an inertial frame of reference. From the point of view of another frame of reference, moving at a constant speed u relative to the other, the position (represented by a primed coordinate) changes with time as x ′ = x − u t . {\displaystyle x'=x-ut\,.} This is called
3717-538: The resulting direction and speed of motion of objects after they collide. Below, the basic properties of momentum are described in one dimension. The vector equations are almost identical to the scalar equations (see multiple dimensions ). The momentum of a particle is conventionally represented by the letter p . It is the product of two quantities, the particle's mass (represented by the letter m ) and its velocity ( v ): p = m v . {\displaystyle p=mv.} The unit of momentum
3780-644: The same speed. Adding the speed of the center of mass to both, we find that the body that was moving is now stopped and the other is moving away at speed v . The bodies have exchanged their velocities. Regardless of the velocities of the bodies, a switch to the center of mass frame leads us to the same conclusion. Therefore, the final velocities are given by v A 2 = v B 1 v B 2 = v A 1 . {\displaystyle {\begin{aligned}v_{A2}&=v_{B1}\\v_{B2}&=v_{A1}\,.\end{aligned}}} In general, when
3843-418: The second reference frame is also an inertial frame and the accelerations are the same: a ′ = d v ′ d t = a . {\displaystyle a'={\frac {{\text{d}}v'}{{\text{d}}t}}=a\,.} Thus, momentum is conserved in both reference frames. Moreover, as long as the force has the same form, in both frames, Newton's second law
SECTION 60
#17327837342013906-556: The spring under tension when "cocked" and ready to fire. The striker spring is compressed between the striker's shoulder and the rear of the breechblock. A striker may be assembled from several component; however, the stored energy in the striker spring is transferred directly to the striker and then to the primer without any intermediate transfer of energy or momentum. As striker mechanisms combine both functions of hammer and firing pin in one piece, they are generally considered to be mechanically simpler but are more robust in construction than
3969-760: Was widely adopted and is used almost exclusively in modern centerfire rifle designs. The Mauser Gewehr 98 , the Mosin–Nagant and M1903 Springfield are examples of service rifles using this type of operation. Modern era guns in general (and not just firearms) use a firing pin of some description to initiate firing. Mechanical contact fuzes in explosive ordnance will employ a firing pin or striker to initiate detonation . Such devices include: artillery projectiles , aerial bombs and land mines . In landmines, non-metallic firing pins, made from ceramics for example, may be used to minimise their magnetic signature . The M127A1 signal rocket (and other similar flares ) have
#200799