Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time . Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude , elevation , isolation and habitat area . Phytogeography is the branch of biogeography that studies the distribution of plants. Zoogeography is the branch that studies distribution of animals. Mycogeography is the branch that studies distribution of fungi, such as mushrooms .
104-771: The Temperate Northern Pacific is a biogeographic region of the Earth's seas, comprising the temperate waters of the northern Pacific Ocean . The Temperate Northern Pacific connects, via the Bering Sea , to the Arctic marine realm , which includes the polar waters of the Arctic Ocean . To the south, it transitions to the tropical marine realms of the Pacific, including the Tropical Eastern Pacific along
208-504: A ground sample distance of 1 inch (2.54 cm) in only 12 minutes. The majority of digital data currently comes from photo interpretation of aerial photographs. Soft-copy workstations are used to digitize features directly from stereo pairs of digital photographs. These systems allow data to be captured in two and three dimensions, with elevations measured directly from a stereo pair using principles of photogrammetry . Analog aerial photos must be scanned before being entered into
312-409: A spatial database ; however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations. The uncounted plural, geographic information systems , also abbreviated GIS, is the most common term for
416-409: A "real" physical location or extent. This key characteristic of GIS has begun to open new avenues of scientific inquiry and studies. While digital GIS dates to the mid-1960s, when Roger Tomlinson first coined the phrase "geographic information system", many of the geographic concepts and methods that GIS automates date back decades earlier. One of the first known instances in which spatial analysis
520-596: A GIS database, which can be grouped into three categories: primary data capture , the direct measurement phenomena in the field (e.g., remote sensing , the global positioning system ); secondary data capture , the extraction of information from existing sources that are not in a GIS form, such as paper maps, through digitization ; and data transfer , the copying of existing GIS data from external sources such as government agencies and private companies. All of these methods can consume significant time, finances, and other resources. Survey data can be directly entered into
624-567: A GIS for both kinds of abstractions mapping references: raster images and vector . Points, lines, and polygons represent vector data of mapped location attribute references. A new hybrid method of storing data is that of identifying point clouds, which combine three-dimensional points with RGB information at each point, returning a 3D color image . GIS thematic maps then are becoming more and more realistically visually descriptive of what they set out to show or determine. GIS data acquisition includes several methods for gathering spatial data into
728-551: A GIS from digital data collection systems on survey instruments using a technique called coordinate geometry (COGO). Positions from a global navigation satellite system ( GNSS ) like the Global Positioning System can also be collected and then imported into a GIS. A current trend in data collection gives users the ability to utilize field computers with the ability to edit live data using wireless connections or disconnected editing sessions. The current trend
832-476: A combination of historical factors such as: speciation , extinction , continental drift , and glaciation . Through observing the geographic distribution of species, we can see associated variations in sea level , river routes, habitat, and river capture . Additionally, this science considers the geographic constraints of landmass areas and isolation, as well as the available ecosystem energy supplies. Over periods of ecological changes, biogeography includes
936-478: A full suite of capabilities for entering, managing, analyzing, and visualizing geographic data, and are designed to be used on their own. Starting in the late 1990s with the emergence of the Internet , as computer network technology progressed, GIS infrastructure and data began to move to servers , providing another mechanism for providing GIS capabilities. This was facilitated by standalone software installed on
1040-507: A geographic methodology in pinpointing the source of an outbreak in epidemiology. While the basic elements of topography and theme existed previously in cartography , Snow's map was unique due to his use of cartographic methods, not only to depict, but also to analyze clusters of geographically dependent phenomena. The early 20th century saw the development of photozincography , which allowed maps to be split into layers, for example one layer for vegetation and another for water. This
1144-421: A global scale. GIS can show certain processes on the earth's surface like whale locations, sea surface temperatures , and bathymetry. Current scientists also use coral reefs to delve into the history of biogeography through the fossilized reefs. Two global information systems are either dedicated to, or have strong focus on, biogeography (in the form of the spatial location of observations of organisms), namely
SECTION 10
#17327718921111248-419: A great impact on Charles Darwin , who was inspired to consider species adaptations and evolution after learning about botanical geography. De Candolle was the first to describe the differences between the small-scale and large-scale distribution patterns of organisms around the globe. Several additional scientists contributed new theories to further develop the concept of biogeography. Charles Lyell developed
1352-449: A map made against a local datum may not be the same as one obtained from a GPS receiver . Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation , although in certain situations a simple translation may be sufficient. In popular GIS software, data projected in latitude/longitude is often represented as a Geographic coordinate system . For example, data in latitude/longitude if
1456-410: A new dimension to business intelligence termed " spatial intelligence " which, when openly delivered via intranet, democratizes access to geographic and social network data. Geospatial intelligence , based on GIS spatial analysis, has also become a key element for security. GIS as a whole can be described as conversion to a vectorial representation or to any other digitisation process. Geoprocessing
1560-413: A number of methods have been developed to produce arguably more complete "predictive" or "modelled" distributions for species based on their associated environmental or other preferences (such as availability of food or other habitat requirements); this approach is known as either Environmental niche modelling (ENM) or Species distribution modelling (SDM). Depending on the reliability of the source data and
1664-946: A relational database containing text or numbers can relate many different tables using common key index variables, GIS can relate otherwise unrelated information by using location as the key index variable. The key is the location and/or extent in space-time. Any variable that can be located spatially, and increasingly also temporally, can be referenced using a GIS. Locations or extents in Earth space–time may be recorded as dates/times of occurrence, and x, y, and z coordinates representing, longitude , latitude , and elevation , respectively. These GIS coordinates may represent other quantified systems of temporo-spatial reference (for example, film frame number, stream gage station, highway mile-marker, surveyor benchmark, building address, street intersection, entrance gate, water depth sounding, POS or CAD drawing origin/units). Units applied to recorded temporal-spatial data can vary widely (even when using exactly
1768-987: A result of tectonic uplift (or subsidence ), natural damming created by a landslide , or headward or lateral erosion of the watershed between adjacent basins. Biogeography is a synthetic science, related to geography , biology , soil science , geology , climatology , ecology and evolution . Some fundamental concepts in biogeography include: The study of comparative biogeography can follow two main lines of investigation: There are many types of biogeographic units used in biogeographic regionalisation schemes, as there are many criteria ( species composition , physiognomy , ecological aspects) and hierarchization schemes: biogeographic realms (ecozones), bioregions ( sensu stricto ), ecoregions , zoogeographical regions , floristic regions , vegetation types, biomes , etc. The terms biogeographic unit, biogeographic area can be used for these categories, regardless of rank. In 2008, an International Code of Area Nomenclature
1872-502: A result of this, Tomlinson has become known as the "father of GIS", particularly for his use of overlays in promoting the spatial analysis of convergent geographic data. CGIS lasted into the 1990s and built a large digital land resource database in Canada. It was developed as a mainframe -based system in support of federal and provincial resource planning and management. Its strength was continent-wide analysis of complex datasets . The CGIS
1976-479: A road network, lines must connect with nodes at an intersection. Errors such as undershoots and overshoots must also be removed. For scanned maps, blemishes on the source map may need to be removed from the resulting raster . For example, a fleck of dirt might connect two lines that should not be connected. The earth can be represented by various models, each of which may provide a different set of coordinates (e.g., latitude, longitude, elevation) for any given point on
2080-449: A scale of 1:50,000. A rating classification factor was also added to permit analysis. CGIS was an improvement over "computer mapping" applications as it provided capabilities for data storage, overlay, measurement, and digitizing /scanning. It supported a national coordinate system that spanned the continent, coded lines as arcs having a true embedded topology and it stored the attribute and locational information in separate files. As
2184-492: A server, similar to other server software such as HTTP servers and relational database management systems , enabling clients to have access to GIS data and processing tools without having to install specialized desktop software. These networks are known as distributed GIS . This strategy has been extended through the Internet and development of cloud-based GIS platforms such as ArcGIS Online and GIS-specialized software as
SECTION 20
#17327718921112288-498: A service (SAAS), and mobile computing . The distinction must be made between a singular geographic information system , which is a single installation of software and data for a particular use, along with associated hardware, staff, and institutions (e.g., the GIS for a particular city government); and GIS software , a general-purpose application program that is intended to be used in many individual geographic information systems in
2392-508: A service (SAAS). The use of the Internet to facilitate distributed GIS is known as Internet GIS . An alternative approach is the integration of some or all of these capabilities into other software or information technology architectures. One example is a spatial extension to Object-relational database software, which defines a geometry datatype so that spatial data can be stored in relational tables, and extensions to SQL for spatial analysis operations such as overlay . Another example
2496-548: A soft-copy system, for high-quality digital cameras this step is skipped. Satellite remote sensing provides another important source of spatial data. Here satellites use different sensor packages to passively measure the reflectance from parts of the electromagnetic spectrum or radio waves that were sent out from an active sensor such as radar. Remote sensing collects raster data that can be further processed using different bands to identify objects and classes of interest, such as land cover. The most common method of data creation
2600-415: A specific aspect of the surface. Some of the most common include: Most of these are generated using algorithms that are discrete simplifications of vector calculus . Slope, aspect, and surface curvature in terrain analysis are all derived from neighborhood operations using elevation values of a cell's adjacent neighbours. Each of these is strongly affected by the level of detail in the terrain data, such as
2704-459: A variety of application domains. Starting in the late 1970s, many software packages have been created specifically for GIS applications. Esri's ArcGIS , which includes ArcGIS Pro and the legacy software ArcMap , currently dominates the GIS market. Other examples of GIS include Autodesk and MapInfo Professional and open-source programs such as QGIS , GRASS GIS , MapGuide , and Hadoop-GIS . These and other desktop GIS applications include
2808-406: A variety of forms, such as a collection of separate data files or a single spatially-enabled relational database . Collecting and managing these data usually constitutes the bulk of the time and financial resources of a project, far more than other aspects such as analysis and mapping. GIS uses spatio-temporal ( space-time ) location as the key index variable for all other information. Just as
2912-440: A whole suite of predictor variables for biogeographic analysis, including satellite imaging and processing of the Earth. Two main types of satellite imaging that are important within modern biogeography are Global Production Efficiency Model (GLO-PEM) and Geographic Information Systems (GIS). GLO-PEM uses satellite-imaging gives "repetitive, spatially contiguous, and time specific observations of vegetation". These observations are on
3016-438: Is digitization , where a hard copy map or survey plan is transferred into a digital medium through the use of a CAD program, and geo-referencing capabilities. With the wide availability of ortho-rectified imagery (from satellites, aircraft, Helikites and UAVs), heads-up digitizing is becoming the main avenue through which geographic data is extracted. Heads-up digitizing involves the tracing of geographic data directly on top of
3120-511: Is a GIS operation used to manipulate spatial data. A typical geoprocessing operation takes an input dataset , performs an operation on that dataset, and returns the result of the operation as an output dataset. Common geoprocessing operations include geographic feature overlay, feature selection and analysis, topology processing, raster processing, and data conversion. Geoprocessing allows for definition, management, and analysis of information used to form decisions. Many geographic tasks involve
3224-653: Is a rapidly changing field, and GIS packages are increasingly including analytical tools as standard built-in facilities, as optional toolsets, as add-ins or 'analysts'. In many instances these are provided by the original software suppliers (commercial vendors or collaborative non commercial development teams), while in other cases facilities have been developed and are provided by third parties. Furthermore, many products offer software development kits (SDKs), programming languages and language support, scripting facilities and/or special interfaces for developing one's own analytical tools or variants. The increased availability has created
Temperate Northern Pacific - Misplaced Pages Continue
3328-424: Is an alternate view than that of Linnaeus. Buffon's law eventually became a principle of biogeography by explaining how similar environments were habitats for comparable types of organisms. Buffon also studied fossils which led him to believe that the Earth was over tens of thousands of years old, and that humans had not lived there long in comparison to the age of the Earth. Following the period of exploration came
3432-461: Is captured, the user should consider if the data should be captured with either a relative accuracy or absolute accuracy, since this could not only influence how information will be interpreted but also the cost of data capture. After entering data into a GIS, the data usually requires editing, to remove errors, or further processing. For vector data it must be made "topologically correct" before it can be used for some advanced analysis. For example, in
3536-464: Is collected and stored in various ways, the two data sources may not be entirely compatible. So a GIS must be able to convert geographic data from one structure to another. In so doing, the implicit assumptions behind different ontologies and classifications require analysis. Object ontologies have gained increasing prominence as a consequence of object-oriented programming and sustained work by Barry Smith and co-workers. Spatial ETL tools provide
3640-437: Is far more precise than the machines of conventional map analysis. All geographical data are inherently inaccurate, and these inaccuracies will propagate through GIS operations in ways that are difficult to predict. Data restructuring can be performed by a GIS to convert data into different formats. For example, a GIS may be used to convert a satellite image map to a vector structure by generating lines around all cells with
3744-631: Is further subdivided into marine provinces, and the marine provinces divided into marine ecoregions: Biogeography Knowledge of spatial variation in the numbers and types of organisms is as vital to us today as it was to our early human ancestors , as we adapt to heterogeneous but geographically predictable environments . Biogeography is an integrative field of inquiry that unites concepts and information from ecology , evolutionary biology , taxonomy , geology , physical geography , palaeontology , and climatology . Modern biogeographic research combines information and ideas from many fields, from
3848-404: Is in the geological similarities between varying locations around the globe, the geographic distribution of some fossils (including the mesosaurs ) on various continents, and the jigsaw puzzle shape of the landmasses on Earth. Though Wegener did not know the mechanism of this concept of Continental Drift, this contribution to the study of biogeography was significant in the way that it shed light on
3952-420: Is more commonly used, heads-down digitizing is still useful for digitizing maps of poor quality. Existing data printed on paper or PET film maps can be digitized or scanned to produce digital data. A digitizer produces vector data as an operator traces points, lines, and polygon boundaries from a map. Scanning a map results in raster data that could be further processed to produce vector data. When data
4056-445: Is no single standard for data quality, because the necessary degree of quality depends on the scale and purpose of the tasks for which it is to be used. Several elements of data quality are important to GIS data: The quality of a dataset is very dependent upon its sources, and the methods used to create it. Land surveyors have been able to provide a high level of positional accuracy utilizing high-end GPS equipment, but GPS locations on
4160-473: Is on how the environment and humans affect the distribution of species as well as other manifestations of Life such as species or genetic diversity. Biogeography is being applied to biodiversity conservation and planning, projecting global environmental changes on species and biomes, projecting the spread of infectious diseases, invasive species, and for supporting planning for the establishment of crops. Technological evolving and advances have allowed for generating
4264-521: Is the proliferation of geospatial libraries and application programming interfaces (e.g., GDAL , Leaflet , D3.js ) that extend programming languages to enable the incorporation of GIS data and processing into custom software, including web mapping sites and location-based services in smartphones . The core of any GIS is a database that contains representations of geographic phenomena, modeling their geometry (location and shape) and their properties or attributes . A GIS database may be stored in
Temperate Northern Pacific - Misplaced Pages Continue
4368-498: Is to utilize applications available on smartphones and PDAs in the form of mobile GIS. This has been enhanced by the availability of low-cost mapping-grade GPS units with decimeter accuracy in real time. This eliminates the need to post process, import, and update the data in the office after fieldwork has been collected. This includes the ability to incorporate positions collected using a laser rangefinder . New technologies also allow users to create maps as well as analysis directly in
4472-614: The Age of Enlightenment in Europe, which attempted to explain the patterns of biodiversity observed by Buffon and Linnaeus. At the birth of the 19th century, Alexander von Humboldt, known as the "founder of plant geography", developed the concept of physique generale to demonstrate the unity of science and how species fit together. As one of the first to contribute empirical data to the science of biogeography through his travel as an explorer, he observed differences in climate and vegetation. The Earth
4576-640: The CAD platform, Environmental Systems Research Institute ( ESRI ), CARIS (Computer Aided Resource Information System), and ERDAS (Earth Resource Data Analysis System) emerged as commercial vendors of GIS software, successfully incorporating many of the CGIS ;features, combining the first-generation approach to separation of spatial and attribute information with a second-generation approach to organizing attribute data into database structures. In 1986, Mapping Display and Analysis System (MIDAS),
4680-713: The Global Biodiversity Information Facility (GBIF: 2.57 billion species occurrence records reported as at August 2023) and, for marine species only, the Ocean Biodiversity Information System (OBIS, originally the Ocean Biogeographic Information System : 116 million species occurrence records reported as at August 2023), while at a national scale, similar compilations of species occurrence records also exist such as
4784-426: The Internet , requiring data format and transfer standards. More recently, a growing number of free, open-source GIS packages run on a range of operating systems and can be customized to perform specific tasks. The major trend of the 21st Century has been the integration of GIS capabilities with other Information technology and Internet infrastructure, such as relational databases , cloud computing , software as
4888-400: The terrain , the shape of the surface of the earth, such as hydrology , earthworks , and biogeography . Thus, terrain data is often a core dataset in a GIS, usually in the form of a raster Digital elevation model (DEM) or a Triangulated irregular network (TIN). A variety of tools are available in most GIS software for analyzing terrain, often by creating derivative datasets that represent
4992-479: The 36 volume Histoire Naturelle, générale et particulière , in which he argued that varying geographical regions would have different forms of life. This was inspired by his observations comparing the Old and New World, as he determined distinct variations of species from the two regions. Buffon believed there was a single species creation event, and that different regions of the world were homes for varying species, which
5096-509: The Amazon basin, Orinoco basin, and Guianas ) with an exceptionally low (flat) topographic relief, the many waterways have had a highly reticulated history over geological time . In such a context, stream capture is an important factor affecting the evolution and distribution of freshwater organisms. Stream capture occurs when an upstream portion of one river drainage is diverted to the downstream portion of an adjacent basin. This can happen as
5200-548: The Earth's surface. The simplest model is to assume the earth is a perfect sphere. As more measurements of the earth have accumulated, the models of the earth have become more sophisticated and more accurate. In fact, there are models called datums that apply to different areas of the earth to provide increased accuracy, like North American Datum of 1983 for U.S. measurements, and the World Geodetic System for worldwide measurements. The latitude and longitude on
5304-597: The Gómez Farias Region, Tamaulipas, Mexico , which has been described as "ground-breaking" and "a classic treatise in historical biogeography". Martin applied several disciplines including ecology , botany , climatology , geology , and Pleistocene dispersal routes to examine the herpetofauna of a relatively small and largely undisturbed area, but ecologically complex, situated on the threshold of temperate – tropical (nearctic and neotropical) regions, including semiarid lowlands at 70 meters elevation and
SECTION 50
#17327718921115408-619: The Indian Ocean was much narrower than it is today, and that South America was closer to the Antarctic, one would be hard pressed to explain the presence of many "ancient" lineages of perching birds in Africa, as well as the mainly South American distribution of the suboscines . Paleobiogeography also helps constrain hypotheses on the timing of biogeographic events such as vicariance and geodispersal , and provides unique information on
5512-452: The Origin of Species were devoted to geographical distribution. The first discoveries that contributed to the development of biogeography as a science began in the mid-18th century, as Europeans explored the world and described the biodiversity of life. During the 18th century most views on the world were shaped around religion and for many natural theologists, the bible. Carl Linnaeus , in
5616-823: The Pacific coast of the Americas, the Eastern Indo-Pacific in the central Pacific Ocean, and the Central Indo-Pacific of the western Pacific basin. The Taiwan Strait forms the boundary between the Temperate Northern Pacific and the Central Indo-Pacific. Characteristic fauna include the Pacific salmon and trout ( Oncorhynchus spp.), gray whale (Eschrichtius robustus) , and North Pacific right whale (Eubalaena japonica). The Temperate Northern Pacific
5720-482: The Theory of Continental Drift in 1912, though it was not widely accepted until the 1960s. This theory was revolutionary because it changed the way that everyone thought about species and their distribution around the globe. The theory explained how continents were formerly joined in one large landmass, Pangea , and slowly drifted apart due to the movement of the plates below Earth's surface. The evidence for this theory
5824-603: The Theory of Uniformitarianism after studying fossils. This theory explained how the world was not created by one sole catastrophic event, but instead from numerous creation events and locations. Uniformitarianism also introduced the idea that the Earth was actually significantly older than was previously accepted. Using this knowledge, Lyell concluded that it was possible for species to go extinct. Since he noted that Earth's climate changes, he realized that species distribution must also change accordingly. Lyell argued that climate changes complemented vegetation changes, thus connecting
5928-639: The U.K. National Biodiversity Network , the Atlas of Living Australia , and many others. In the case of the oceans, in 2017 Costello et al. analyzed the distribution of 65,000 species of marine animals and plants as then documented in OBIS, and used the results to distinguish 30 distinct marine realms, split between continental-shelf and offshore deep-sea areas. Since it is self evident that compilations of species occurrence records cannot cover with any completeness, areas that have received either limited or no sampling,
6032-517: The aerial imagery instead of by the traditional method of tracing the geographic form on a separate digitizing tablet (heads-down digitizing). Heads-down digitizing, or manual digitizing, uses a special magnetic pen, or stylus, that feeds information into a computer to create an identical, digital map. Some tablets use a mouse-like tool, called a puck, instead of a stylus. The puck has a small window with cross-hairs which allows for greater precision and pinpointing map features. Though heads-up digitizing
6136-414: The anticipated effects of climate change can also be used to show potential changes in species distributions that may occur in the future based on such scenarios. Paleobiogeography goes one step further to include paleogeographic data and considerations of plate tectonics . Using molecular analyses and corroborated by fossils , it has been possible to demonstrate that perching birds evolved first in
6240-439: The average smartphone are much less accurate. Common datasets such as digital terrain and aerial imagery are available in a wide variety of levels of quality, especially spatial precision. Paper maps, which have been digitized for many years as a data source, can also be of widely varying quality. A quantitative analysis of maps brings accuracy issues into focus. The electronic and other equipment used to make measurements for GIS
6344-421: The biotic and abiotic features of the Earth in his book, Cosmos . Augustin de Candolle contributed to the field of biogeography as he observed species competition and the several differences that influenced the discovery of the diversity of life. He was a Swiss botanist and created the first Laws of Botanical Nomenclature in his work, Prodromus. He discussed plant distribution and his theories eventually had
SECTION 60
#17327718921116448-455: The data processing functionality of traditional extract, transform, load (ETL) software, but with a primary focus on the ability to manage spatial data. They provide GIS users with the ability to translate data between different standards and proprietary formats, whilst geometrically transforming the data en route. These tools can come in the form of add-ins to existing wider-purpose software such as spreadsheets . GIS spatial analysis
6552-429: The datum is the ' North American Datum of 1983' is denoted by 'GCS North American 1983'. While no digital model can be a perfect representation of the real world, it is important that GIS data be of a high quality. In keeping with the principle of homomorphism , the data must be close enough to reality so that the results of GIS procedures correctly correspond to the results of real world processes. This means that there
6656-475: The development of biogeography as a science. The scientific theory of biogeography grows out of the work of Alexander von Humboldt (1769–1859), Francisco Jose de Caldas (1768–1816), Hewett Cottrell Watson (1804–1881), Alphonse de Candolle (1806–1893), Alfred Russel Wallace (1823–1913), Philip Lutley Sclater (1829–1913) and other biologists and explorers. The patterns of species distribution across geographical areas can usually be explained through
6760-420: The development of the fields of conservation biology and landscape ecology . Classic biogeography has been expanded by the development of molecular systematics , creating a new discipline known as phylogeography . This development allowed scientists to test theories about the origin and dispersal of populations, such as island endemics . For example, while classic biogeographers were able to speculate about
6864-752: The early 1960s. In 1963, the world's first true operational GIS was developed in Ottawa, Ontario , Canada, by the federal Department of Forestry and Rural Development. Developed by Roger Tomlinson , it was called the Canada Geographic Information System (CGIS) and was used to store, analyze, and manipulate data collected for the Canada Land Inventory , an effort to determine the land capability for rural Canada by mapping information about soils , agriculture, recreation, wildlife, waterfowl , forestry and land use at
6968-489: The early days of GIS: Ian McHarg 's publication Design with Nature and its map overlay method and the introduction of a street network into the U.S. Census Bureau's DIME ( Dual Independent Map Encoding ) system. The first publication detailing the use of computers to facilitate cartography was written by Waldo Tobler in 1959. Further computer hardware development spurred by nuclear weapon research led to more widespread general-purpose computer "mapping" applications by
7072-504: The environmental surroundings to varying species. This largely influenced Charles Darwin in his development of the theory of evolution. Charles Darwin was a natural theologist who studied around the world, and most importantly in the Galapagos Islands . Darwin introduced the idea of natural selection, as he theorized against previously accepted ideas that species were static or unchanging. His contributions to biogeography and
7176-597: The factors affecting organism distribution, and to predict future trends in organism distribution. Often mathematical models and GIS are employed to solve ecological problems that have a spatial aspect to them. Biogeography is most keenly observed on the world's islands . These habitats are often much more manageable areas of study because they are more condensed than larger ecosystems on the mainland. Islands are also ideal locations because they allow scientists to look at habitats that new invasive species have only recently colonized and can observe how they disperse throughout
7280-527: The field, making projects more efficient and mapping more accurate. Remotely sensed data also plays an important role in data collection and consist of sensors attached to a platform. Sensors include cameras, digital scanners and lidar , while platforms usually consist of aircraft and satellites . In England in the mid-1990s, hybrid kite/balloons called helikites first pioneered the use of compact airborne digital cameras as airborne geo-information systems. Aircraft measurement software, accurate to 0.4 mm,
7384-597: The first desktop GIS product, was released for the DOS operating system. This was renamed in 1990 to MapInfo for Windows when it was ported to the Microsoft Windows platform. This began the process of moving GIS from the research department into the business environment. By the end of the 20th century, the rapid growth in various systems had been consolidated and standardized on relatively few platforms and users were beginning to explore viewing GIS data over
7488-408: The first examples of general-purpose GIS software that was not developed for a particular installation, and was very influential on future commercial software, such as Esri ARC/INFO , released in 1983. By the late 1970s two public domain GIS systems ( MOSS and GRASS GIS ) were in development, and by the early 1980s, M&S Computing (later Intergraph ) along with Bentley Systems Incorporated for
7592-458: The formation of regional biotas. For example, data from species-level phylogenetic and biogeographic studies tell us that the Amazonian teleost fauna accumulated in increments over a period of tens of millions of years, principally by means of allopatric speciation, and in an arena extending over most of the area of tropical South America (Albert & Reis 2011). In other words, unlike some of
7696-483: The former Lifemapper project at the University of Kansas (now continued as a part of BiotaPhy ) and AquaMaps , which as at 2023 contain modelled distributions for around 200,000 terrestrial, and 33,000 species of teleosts , marine mammals and invertebrates, respectively. One advantage of ENM/SDM is that in addition to showing current (or even past) modelled distributions, insertion of changed parameters such as
7800-587: The foundation of location-enabled services, which rely on geographic analysis and visualization. GIS provides the ability to relate previously unrelated information, through the use of location as the "key index variable". Locations and extents that are found in the Earth's spacetime are able to be recorded through the date and time of occurrence, along with x, y, and z coordinates ; representing, longitude ( x ), latitude ( y ), and elevation ( z ). All Earth-based, spatial–temporal, location and extent references should be relatable to one another, and ultimately, to
7904-655: The geographical distribution of organisms around the globe. Alfred Russel Wallace studied the distribution of flora and fauna in the Amazon Basin and the Malay Archipelago in the mid-19th century. His research was essential to the further development of biogeography, and he was later nicknamed the "father of Biogeography". Wallace conducted fieldwork researching the habits, breeding and migration tendencies, and feeding behavior of thousands of species. He studied butterfly and bird distributions in comparison to
8008-411: The importance of environmental and geographic similarities or differences as a result of climate and other pressures on the planet. Importantly, late in his career Wegener recognised that testing his theory required measurement of continental movement rather than inference from fossils species distributions. In 1958 paleontologist Paul S. Martin published A Biogeography of Reptiles and Amphibians in
8112-747: The industry and profession concerned with these systems. It is roughly synonymous with geoinformatics . The academic discipline that studies these systems and their underlying geographic principles, may also be abbreviated as GIS, but the unambiguous GIScience is more common. GIScience is often considered a subdiscipline of geography within the branch of technical geography . Geographic information systems are utilized in multiple technologies, processes, techniques and methods. They are attached to various operations and numerous applications, that relate to: engineering, planning, management, transport/logistics, insurance, telecommunications, and business. For this reason, GIS and location intelligence applications are at
8216-559: The island and change it. They can then apply their understanding to similar but more complex mainland habitats. Islands are very diverse in their biomes , ranging from the tropical to arctic climates. This diversity in habitat allows for a wide range of species study in different parts of the world. One scientist who recognized the importance of these geographic locations was Charles Darwin , who remarked in his journal "The Zoology of Archipelagoes will be well worth examination". Two chapters in On
8320-484: The layers were finished, they were combined into one image using a large process camera. Once color printing came in, the layers idea was also used for creating separate printing plates for each color. While the use of layers much later became one of the typical features of a contemporary GIS, the photographic process just described is not considered a GIS in itself – as the maps were just images with no database to link them to. Two additional developments are notable in
8424-488: The mid-18th century, improved our classifications of organisms through the exploration of undiscovered territories by his students and disciples. When he noticed that species were not as perpetual as he believed, he developed the Mountain Explanation to explain the distribution of biodiversity; when Noah's ark landed on Mount Ararat and the waters receded, the animals dispersed throughout different elevations on
8528-515: The most important and consequential developments in biogeography has been to show how multiple organisms, including mammals like monkeys and reptiles like squamates , overcame barriers such as large oceans that many biogeographers formerly believed were impossible to cross. See also Oceanic dispersal . Biogeography now incorporates many different fields including but not limited to physical geography, geology, botany and plant biology, zoology, general biology, and modelling. A biogeographer's main focus
8632-505: The mountain. This showed different species in different climates proving species were not constant. Linnaeus' findings set a basis for ecological biogeography. Through his strong beliefs in Christianity, he was inspired to classify the living world, which then gave way to additional accounts of secular views on geographical distribution. He argued that the structure of an animal was very closely related to its physical surroundings. This
8736-683: The nature of the models employed (including the scales for which data are available), maps generated from such models may then provide better representations of the "real" biogeographic distributions of either individual species, groups of species, or biodiversity as a whole, however it should also be borne in mind that historic or recent human activities (such as hunting of great whales , or other human-induced exterminations) may have altered present-day species distributions from their potential "full" ecological footprint. Examples of predictive maps produced by niche modelling methods based on either GBIF (terrestrial) or OBIS (marine, plus some freshwater) data are
8840-476: The northernmost cloud forest in the western hemisphere at over 2200 meters. The publication of The Theory of Island Biogeography by Robert MacArthur and E.O. Wilson in 1967 showed that the species richness of an area could be predicted in terms of such factors as habitat area, immigration rate and extinction rate. This added to the long-standing interest in island biogeography . The application of island biogeography theory to habitat fragments spurred
8944-583: The origins of species in the Hawaiian Islands , phylogeography allows them to test theories of relatedness between these populations and putative source populations on various continents, notably in Asia and North America . Biogeography continues as a point of study for many life sciences and geography students worldwide, however it may be under different broader titles within institutions such as ecology or evolutionary biology. In recent years, one of
9048-495: The physiological and ecological constraints on organismal dispersal to geological and climatological phenomena operating at global spatial scales and evolutionary time frames. The short-term interactions within a habitat and species of organisms describe the ecological application of biogeography. Historical biogeography describes the long-term, evolutionary periods of time for broader classifications of organisms. Early scientists, beginning with Carl Linnaeus , contributed to
9152-448: The presence or absence of geographical barriers. His observations led him to conclude that the number of organisms present in a community was dependent on the amount of food resources in the particular habitat. Wallace believed species were dynamic by responding to biotic and abiotic factors. He and Philip Sclater saw biogeography as a source of support for the theory of evolution as they used Darwin's conclusion to explain how biogeography
9256-663: The real world, such as roads, land use, elevation, trees, waterways, and states. The most common types of phenomena that are represented in data can be divided into two conceptualizations: discrete objects (e.g., a house, a road) and continuous fields (e.g., rainfall amount or population density). Other types of geographic phenomena, such as events (e.g., location of World War II battles), processes (e.g., extent of suburbanization ), and masses (e.g., types of soil in an area) are represented less commonly or indirectly, or are modeled in analysis procedures rather than data. Traditionally, there are two broad methods used to store data in
9360-420: The region of Australia or the adjacent Antarctic (which at that time lay somewhat further north and had a temperate climate). From there, they spread to the other Gondwanan continents and Southeast Asia – the part of Laurasia then closest to their origin of dispersal – in the late Paleogene , before achieving a global distribution in the early Neogene . Not knowing that at the time of dispersal,
9464-414: The same classification, while determining the cell spatial relationships, such as adjacency or inclusion. More advanced data processing can occur with image processing , a technique developed in the late 1960s by NASA and the private sector to provide contrast enhancement, false color rendering and a variety of other techniques including use of two dimensional Fourier transforms . Since digital data
9568-622: The same data, see map projections ), but all Earth-based spatial–temporal location and extent references should, ideally, be relatable to one another and ultimately to a "real" physical location or extent in space–time. Related by accurate spatial information, an incredible variety of real-world and projected past or future data can be analyzed, interpreted and represented. This key characteristic of GIS has begun to open new avenues of scientific inquiry into behaviors and patterns of real-world information that previously had not been systematically correlated . GIS data represents phenomena that exist in
9672-428: The study of plant and animal species in: their past and/or present living refugium habitat ; their interim living sites; and/or their survival locales. As writer David Quammen put it, "...biogeography does more than ask Which species? and Where . It also asks Why? and, what is sometimes more crucial, Why not? ." Modern biogeography often employs the use of Geographic Information Systems (GIS), to understand
9776-416: The theory of evolution were different from those of other explorers of his time, because he developed a mechanism to describe the ways that species changed. His influential ideas include the development of theories regarding the struggle for existence and natural selection. Darwin's theories started a biological segment to biogeography and empirical studies, which enabled future scientists to develop ideas about
9880-447: The well-known insular faunas ( Galapagos finches , Hawaiian drosophilid flies, African rift lake cichlids ), the species-rich Amazonian ichthyofauna is not the result of recent adaptive radiations . For freshwater organisms, landscapes are divided naturally into discrete drainage basins by watersheds , episodically isolated and reunited by erosional processes. In regions like the Amazon Basin (or more generally Greater Amazonia,
9984-460: Was able to determine the source of a cholera outbreak in London through the use of spatial analysis. Snow achieved this through plotting the residence of each casualty on a map of the area, as well as the nearby water sources. Once these points were marked, he was able to identify the water source within the cluster that was responsible for the outbreak. This was one of the earliest successful uses of
10088-400: Was divided into regions which he defined as tropical, temperate, and arctic and within these regions there were similar forms of vegetation. This ultimately enabled him to create the isotherm, which allowed scientists to see patterns of life within different climates. He contributed his observations to findings of botanical geography by previous scientists, and sketched this description of both
10192-529: Was important to a George Louis Buffon's rival theory of distribution. Closely after Linnaeus, Georges-Louis Leclerc, Comte de Buffon observed shifts in climate and how species spread across the globe as a result. He was the first to see different groups of organisms in different regions of the world. Buffon saw similarities between some regions which led him to believe that at one point continents were connected and then water separated them and caused differences in species. His hypotheses were described in his work,
10296-608: Was never available commercially. In 1964, Howard T. Fisher formed the Laboratory for Computer Graphics and Spatial Analysis at the Harvard Graduate School of Design (LCGSA 1965–1991), where a number of important theoretical concepts in spatial data handling were developed, and which by the 1970s had distributed seminal software code and systems, such as SYMAP, GRID, and ODYSSEY, to universities, research centers and corporations worldwide. These programs were
10400-411: Was particularly used for printing contours – drawing these was a labour-intensive task but having them on a separate layer meant they could be worked on without the other layers to confuse the draughtsman . This work was initially drawn on glass plates, but later plastic film was introduced, with the advantages of being lighter, using less storage space and being less brittle, among others. When all
10504-870: Was proposed for biogeography. It achieved limited success; some studies commented favorably on it, but others were much more critical, and it "has not yet gained a significant following". Similarly, a set of rules for paleobiogeography has achieved limited success. In 2000, Westermann suggested that the difficulties in getting formal nomenclatural rules established in this field might be related to "the curious fact that neither paleo- nor neobiogeographers are organized in any formal groupings or societies, nationally (so far as I know) or internationally — an exception among active disciplines." Geographic Information Systems A geographic information system ( GIS ) consists of integrated computer hardware and software that store, manage, analyze , edit, output, and visualize geographic data . Much of this often happens within
10608-502: Was similar to a record of species inheritance. Key findings, such as the sharp difference in fauna either side of the Wallace Line , and the sharp difference that existed between North and South America prior to their relatively recent faunal interchange , can only be understood in this light. Otherwise, the field of biogeography would be seen as a purely descriptive one. Moving on to the 20th century, Alfred Wegener introduced
10712-599: Was used came from the field of epidemiology in the Rapport sur la marche et les effets du choléra dans Paris et le département de la Seine (1832). French cartographer and geographer Charles Picquet created a map outlining the forty-eight districts in Paris , using halftone color gradients, to provide a visual representation for the number of reported deaths due to cholera per every 1,000 inhabitants. In 1854, John Snow , an epidemiologist and physician,
10816-460: Was used to link the photographs and measure the ground. Helikites are inexpensive and gather more accurate data than aircraft. Helikites can be used over roads, railways and towns where unmanned aerial vehicles (UAVs) are banned. Recently aerial data collection has become more accessible with miniature UAVs and drones. For example, the Aeryon Scout was used to map a 50-acre area with
#110889