Ultramarine is a deep blue color pigment which was originally made by grinding lapis lazuli into a powder . Its lengthy grinding and washing process makes the natural pigment quite valuable—roughly ten times more expensive than the stone it comes from and as expensive as gold .
86-582: Ultramarine means "beyond the ocean" and is the name of a color pigment. Ultramarine , Ultramarines , or Ultra Marines may also refer to: Ultramarine The name ultramarine comes from the Latin ultramarinus . The word means 'beyond the sea', as the pigment was imported by Italian traders during the 14th and 15th centuries from mines in Afghanistan . Much of the expansion of ultramarine can be attributed to Venice which historically
172-399: A fault . Water often lubricates faults, filling in fractures and jogs. About 10 kilometres (6.2 mi) below the surface, under very high temperatures and pressures, the water carries high concentrations of carbon dioxide, silica, and gold. During an earthquake, the fault jog suddenly opens wider. The water inside the void instantly vaporizes, flashing to steam and forcing silica, which forms
258-412: A potassium carbonate solution prepared by combining wood ash with water. The blue lazurite particles collect at the bottom of the pot, while the colorless crystalline material and other impurities remain at the top. This process was performed at least three times, with each successive extraction generating a lower quality material. The final extraction, consisting largely of colorless material as well as
344-434: A solid solution series with the native element silver (as in electrum ), naturally alloyed with other metals like copper and palladium , and mineral inclusions such as within pyrite . Less commonly, it occurs in minerals as gold compounds, often with tellurium ( gold tellurides ). Gold is resistant to most acids, though it does dissolve in aqua regia (a mixture of nitric acid and hydrochloric acid ), forming
430-869: A color name in English was in 1598. The first noted use of lapis lazuli as a pigment can be seen in 6th and 7th-century paintings in Zoroastrian and Buddhist cave temples in Afghanistan, near the most famous source of the mineral. Lapis lazuli has been identified in Chinese paintings from the 10th and 11th centuries, in Indian mural paintings from the 11th, 12th, and 17th centuries, and on Anglo-Saxon and Norman illuminated manuscripts from c. 1100 . Ancient Egyptians used lapis lazuli in solid form for ornamental applications in jewelry, however, there
516-837: A complex sulfur-containing sodium-silicate (Na 8–10 Al 6 Si 6 O 24 S 2–4 ), which makes ultramarine the most complex of all mineral pigments . Some chloride is often present in the crystal lattice as well. The blue color of the pigment is due to the S 3 radical anion , which contains an unpaired electron . The best samples of ultramarine are a uniform deep blue while other specimens are of paler color. Particle size distribution has been found to vary among samples of ultramarine from various workshops. Numerous grinding techniques used by painters have resulted in different pigment/medium ratios and particle size distributions. The grinding and purification process results in pigment with particles of various geometries. Different grades of pigment may have been used for different areas in
602-438: A dark green while barium chromate is sometimes referred to as "ultramarine yellow". Ultramarine pigment has also been termed "Gmelin's Blue," "Guimet's Blue," "New blue," "Oriental Blue," and "Permanent Blue". [REDACTED] Media related to Ultramarine at Wikimedia Commons Gold Gold is a chemical element with the chemical symbol Au (from Latin aurum ) and atomic number 79. In its pure form, it
688-490: A deeper blue when originally painted. The beginning of the development of artificial ultramarine blue is known from Goethe . In about 1787, he observed the blue deposits on the walls of lime kilns near Palermo in Sicily . He was aware of the use of these glassy deposits as a substitute for lapis lazuli in decorative applications. He did not mention if it was suitable to grind for a pigment. In 1814, Tassaert observed
774-483: A dilute solution of gold(III) chloride or chlorauric acid . Unlike sulfur, phosphorus reacts directly with gold at elevated temperatures to produce gold phosphide (Au 2 P 3 ). Gold readily dissolves in mercury at room temperature to form an amalgam , and forms alloys with many other metals at higher temperatures. These alloys can be produced to modify the hardness and other metallurgical properties, to control melting point or to create exotic colors. Gold
860-425: A few blue particles, brings forth ultramarine ash which is prized as a glaze for its pale blue transparency. This extensive process was specific to ultramarine because the mineral it comes from has a combination of both blue and colorless pigments. If an artist were to simply grind and wash lapis lazuli, the resulting powder would be a greyish-blue color that lacks purity and depth of color since lapis lazuli contains
946-579: A gold-from-seawater swindle in the United States in the 1890s, as did an English fraudster in the early 1900s. Fritz Haber did research on the extraction of gold from sea water in an effort to help pay Germany 's reparations following World War I . Based on the published values of 2 to 64 ppb of gold in seawater, a commercially successful extraction seemed possible. After analysis of 4,000 water samples yielding an average of 0.004 ppb, it became clear that extraction would not be possible, and he ended
SECTION 10
#17327797755061032-830: A golden hue to metallic caesium . Common colored gold alloys include the distinctive eighteen-karat rose gold created by the addition of copper. Alloys containing palladium or nickel are also important in commercial jewelry as these produce white gold alloys. Fourteen-karat gold-copper alloy is nearly identical in color to certain bronze alloys, and both may be used to produce police and other badges . Fourteen- and eighteen-karat gold alloys with silver alone appear greenish-yellow and are referred to as green gold . Blue gold can be made by alloying with iron , and purple gold can be made by alloying with aluminium . Less commonly, addition of manganese , indium , and other elements can produce more unusual colors of gold for various applications. Colloidal gold , used by electron-microscopists,
1118-572: A high proportion of colorless material. Although the lapis lazuli stone itself is relatively inexpensive, the lengthy process of pulverizing, sifting, and washing to produce ultramarine makes the natural pigment quite valuable and roughly ten times more expensive than the stone it comes from. The high cost of the imported raw material and the long laborious process of extraction combined has been said to make high-quality ultramarine as expensive as gold . In 1990, an estimated 20,000 tons of ultramarine were produced industrially. The raw materials used in
1204-567: A large alluvial deposit. The mines at Roşia Montană in Transylvania were also very large, and until very recently, still mined by opencast methods. They also exploited smaller deposits in Britain , such as placer and hard-rock deposits at Dolaucothi . The various methods they used are well described by Pliny the Elder in his encyclopedia Naturalis Historia written towards the end of
1290-462: A novel type of metal-halide perovskite material consisting of Au and Au cations in its crystal structure has been found. It has been shown to be unexpectedly stable at normal conditions. Gold pentafluoride , along with its derivative anion, AuF − 6 , and its difluorine complex , gold heptafluoride , is the sole example of gold(V), the highest verified oxidation state. Some gold compounds exhibit aurophilic bonding , which describes
1376-607: A painting, a characteristic that is sometimes used in art authentication. International Klein Blue (IKB) a deep blue hue first mixed by the French artist Yves Klein . Electric ultramarine is the tone of ultramarine that is halfway between blue and violet on the RGB (HSV) color wheel , the expression of the HSV color space of the RGB color model . Historically, lapis lazuli stone
1462-461: A satisfactory blue colorant in the synthetic copper silicate pigment, Egyptian blue . Venice was central to both the manufacturing and distribution of ultramarine during the early modern period. The pigment was imported by Italian traders during the 14th and 15th centuries from mines in Afghanistan . Other European countries employed the pigment less extensively than in Italy; the pigment
1548-493: A secret, Gmelin published his, and became the originator of the "artificial ultramarine" industry. Easel paintings and illuminated manuscripts have revealed natural ultramarine in a perfect state of preservation even though the art may be several centuries old. In general, ultramarine is a permanent pigment. Although it is a sulfur -containing compound from which sulfur is readily emitted as H 2 S, historically, it has been mixed with lead white with no reported occurrences of
1634-401: A sheet of 1 square metre (11 sq ft), and an avoirdupois ounce into 28 square metres (300 sq ft). Gold leaf can be beaten thin enough to become semi-transparent. The transmitted light appears greenish-blue because gold strongly reflects yellow and red. Such semi-transparent sheets also strongly reflect infrared light, making them useful as infrared (radiant heat) shields in
1720-423: A soluble tetrachloroaurate anion . Gold is insoluble in nitric acid alone, which dissolves silver and base metals , a property long used to refine gold and confirm the presence of gold in metallic substances, giving rise to the term ' acid test '. Gold dissolves in alkaline solutions of cyanide , which are used in mining and electroplating . Gold also dissolves in mercury , forming amalgam alloys, and as
1806-520: A solution of Au(OH) 3 in concentrated H 2 SO 4 produces red crystals of gold(II) sulfate , Au 2 (SO 4 ) 2 . Originally thought to be a mixed-valence compound, it has been shown to contain Au 4+ 2 cations, analogous to the better-known mercury(I) ion, Hg 2+ 2 . A gold(II) complex, the tetraxenonogold(II) cation, which contains xenon as a ligand, occurs in [AuXe 4 ](Sb 2 F 11 ) 2 . In September 2023,
SECTION 20
#17327797755061892-560: A thin glaze of pure ultramarine over it. In Lady Standing at a Virginal , the young woman's dress is painted with a mixture of ultramarine and green earth, and ultramarine was used to add shadows in the flesh tones. Scientific analysis by the National Gallery in London of Lady Standing at a Virginal showed that the ultramarine in the blue seat cushion in the foreground had degraded and become paler with time; it would have been
1978-470: Is Au with a half-life of 2.27 days. Gold's least stable isomer is Au with a half-life of only 7 ns. Au has three decay paths: β decay, isomeric transition , and alpha decay. No other isomer or isotope of gold has three decay paths. The possible production of gold from a more common element, such as lead , has long been a subject of human inquiry, and the ancient and medieval discipline of alchemy often focused on it; however,
2064-696: Is Au , which decays by proton emission with a half-life of 30 μs. Most of gold's radioisotopes with atomic masses below 197 decay by some combination of proton emission , α decay , and β decay . The exceptions are Au , which decays by electron capture, and Au , which decays most often by electron capture (93%) with a minor β decay path (7%). All of gold's radioisotopes with atomic masses above 197 decay by β decay. At least 32 nuclear isomers have also been characterized, ranging in atomic mass from 170 to 200. Within that range, only Au , Au , Au , Au , and Au do not have isomers. Gold's most stable isomer
2150-469: Is a bright , slightly orange-yellow, dense, soft, malleable , and ductile metal . Chemically, gold is a transition metal , a group 11 element , and one of the noble metals . It is one of the least reactive chemical elements, being the second-lowest in the reactivity series . It is solid under standard conditions . Gold often occurs in free elemental ( native state ), as nuggets or grains, in rocks , veins , and alluvial deposits . It occurs in
2236-409: Is a glorious, lovely and absolutely perfect pigment beyond all the pigments. It would not be possible to say anything about or do anything to it which would not make it more so." Natural ultramarine is a difficult pigment to grind by hand, and for all except the highest quality of mineral, sheer grinding and washing produces only a pale grayish blue powder. The pigment was most extensively used during
2322-456: Is a non-toxic, soft pigment that does not need much mulling to disperse into a paint formulation. Ultramarine is the aluminosilicate zeolite with a sodalite structure. Sodalite consists of interconnected aluminosilicate cages. Some of these cages contain polysulfide ( S x ) groups that are the chromophore (color centre). The negative charge on these ions is balanced by Na ions that also occupy these cages. The chromophore
2408-648: Is also known, an example of a mixed-valence complex . Gold does not react with oxygen at any temperature and, up to 100 °C, is resistant to attack from ozone: Au + O 2 ⟶ ( no reaction ) {\displaystyle {\ce {Au + O2 ->}}({\text{no reaction}})} Au + O 3 → t < 100 ∘ C ( no reaction ) {\displaystyle {\ce {Au{}+O3->[{} \atop {t<100^{\circ }{\text{C}}}]}}({\text{no reaction}})} Some free halogens react to form
2494-520: Is also used in infrared shielding, the production of colored glass , gold leafing , and tooth restoration . Certain gold salts are still used as anti-inflammatory agents in medicine. Gold is the most malleable of all metals. It can be drawn into a wire of single-atom width, and then stretched considerably before it breaks. Such nanowires distort via the formation, reorientation, and migration of dislocations and crystal twins without noticeable hardening. A single gram of gold can be beaten into
2580-427: Is always richer at the exposed surface of gold-bearing veins, owing to the oxidation of accompanying minerals followed by weathering; and by washing of the dust into streams and rivers, where it collects and can be welded by water action to form nuggets. Gold sometimes occurs combined with tellurium as the minerals calaverite , krennerite , nagyagite , petzite and sylvanite (see telluride minerals ), and as
2666-517: Is attributed to wind-blown dust or rivers. At 10 parts per quadrillion, the Earth's oceans would hold 15,000 tonnes of gold. These figures are three orders of magnitude less than reported in the literature prior to 1988, indicating contamination problems with the earlier data. A number of people have claimed to be able to economically recover gold from sea water , but they were either mistaken or acted in an intentional deception. Prescott Jernegan ran
Ultramarine (disambiguation) - Misplaced Pages Continue
2752-470: Is found in ores in rock formed from the Precambrian time onward. It most often occurs as a native metal , typically in a metal solid solution with silver (i.e. as a gold/silver alloy ). Such alloys usually have a silver content of 8–10%. Electrum is elemental gold with more than 20% silver, and is commonly known as white gold . Electrum's color runs from golden-silvery to silvery, dependent upon
2838-448: Is generally obtained by heating a mixture of pure clay, very fine white sand , sulfur, and charcoal in a muffle furnace . A blue product is obtained at once, but a red tinge often results. The different ultramarines— green , blue , red , and violet —are finely ground and washed with water. Synthetic ultramarine is a more vivid blue than natural ultramarine, since the particles in synthetic ultramarine are smaller and more uniform than
2924-472: Is most often called the oldest since this treasure is the largest and most diverse. Gold artifacts probably made their first appearance in Ancient Egypt at the very beginning of the pre-dynastic period, at the end of the fifth millennium BC and the start of the fourth, and smelting was developed during the course of the 4th millennium; gold artifacts appear in the archeology of Lower Mesopotamia during
3010-464: Is no record of them successfully formulating lapis lazuli into paint. Archaeological evidence and early literature reveal that lapis lazuli was used as a semi-precious stone and decorative building stone from early Egyptian times. The mineral is described by the classical authors Theophrastus and Pliny . There is no evidence that lapis lazuli was used ground as a painting pigment by ancient Greeks and Romans . Like ancient Egyptians, they had access to
3096-542: Is now questioned. The gold-bearing Witwatersrand rocks were laid down between 700 and 950 million years before the Vredefort impact. These gold-bearing rocks had furthermore been covered by a thick layer of Ventersdorp lavas and the Transvaal Supergroup of rocks before the meteor struck, and thus the gold did not actually arrive in the asteroid/meteorite. What the Vredefort impact achieved, however,
3182-596: Is proposed to be S 4 or S 4 . The name derives from Middle Latin ultramarinus , literally "beyond the sea" because it was imported from Asia by sea. In the past, it has also been known as azzurrum ultramarine , azzurrum transmarinum , azzuro oltramarino , azur d'Acre, pierre d'azur , Lazurstein . The current terminology for ultramarine includes natural ultramarine (English), outremer lapis (French), Ultramarin echt (German), oltremare genuino (Italian), and ultramarino verdadero (Spanish). The first recorded use of ultramarine as
3268-427: Is red if the particles are small; larger particles of colloidal gold are blue. Gold has only one stable isotope , Au , which is also its only naturally occurring isotope, so gold is both a mononuclidic and monoisotopic element . Thirty-six radioisotopes have been synthesized, ranging in atomic mass from 169 to 205. The most stable of these is Au with a half-life of 186.1 days. The least stable
3354-484: Is similarly unaffected by most bases. It does not react with aqueous , solid , or molten sodium or potassium hydroxide . It does however, react with sodium or potassium cyanide under alkaline conditions when oxygen is present to form soluble complexes. Common oxidation states of gold include +1 (gold(I) or aurous compounds) and +3 (gold(III) or auric compounds). Gold ions in solution are readily reduced and precipitated as metal by adding any other metal as
3440-480: Is susceptible to discoloration and fading. The pigment consists primarily of a zeolite -based mineral containing small amounts of polysulfides . It occurs in nature as a proximate component of lapis lazuli containing a blue cubic mineral called lazurite . In the Colour Index International , the pigment of ultramarine is identified as P. Blue 29 77007. The major component of lazurite is
3526-589: Is the soluble form of gold encountered in mining. The binary gold halides , such as AuCl , form zigzag polymeric chains, again featuring linear coordination at Au. Most drugs based on gold are Au(I) derivatives. Au(III) (referred to as auric) is a common oxidation state, and is illustrated by gold(III) chloride , Au 2 Cl 6 . The gold atom centers in Au(III) complexes, like other d compounds, are typically square planar , with chemical bonds that have both covalent and ionic character. Gold(I,III) chloride
Ultramarine (disambiguation) - Misplaced Pages Continue
3612-657: Is thought to have been delivered to Earth by asteroid impacts during the Late Heavy Bombardment , about 4 billion years ago. Gold which is reachable by humans has, in one case, been associated with a particular asteroid impact. The asteroid that formed Vredefort impact structure 2.020 billion years ago is often credited with seeding the Witwatersrand basin in South Africa with the richest gold deposits on earth. However, this scenario
3698-511: Is thought to have been produced in supernova nucleosynthesis , and from the collision of neutron stars , and to have been present in the dust from which the Solar System formed. Traditionally, gold in the universe is thought to have formed by the r-process (rapid neutron capture) in supernova nucleosynthesis , but more recently it has been suggested that gold and other elements heavier than iron may also be produced in quantity by
3784-416: Is unaffected by most acids. It does not react with hydrofluoric , hydrochloric , hydrobromic , hydriodic , sulfuric , or nitric acid . It does react with selenic acid , and is dissolved by aqua regia , a 1:3 mixture of nitric acid and hydrochloric acid . Nitric acid oxidizes the metal to +3 ions, but only in minute amounts, typically undetectable in the pure acid because of the chemical equilibrium of
3870-661: The Cappella degli Scrovegni or the Arena Chapel in Padua . European artists used the pigment sparingly, reserving their highest quality blues for the robes of Mary and the Christ child , possibly in an effort to show piety, spending as a means of expressing devotion. As a result of the high price, artists sometimes economized by using a cheaper blue, azurite , for under painting. Most likely imported to Europe through Venice ,
3956-666: The Chu (state) circulated the Ying Yuan , one kind of square gold coin. In Roman metallurgy , new methods for extracting gold on a large scale were developed by introducing hydraulic mining methods, especially in Hispania from 25 BC onwards and in Dacia from 106 AD onwards. One of their largest mines was at Las Medulas in León , where seven long aqueducts enabled them to sluice most of
4042-602: The Old Testament , starting with Genesis 2:11 (at Havilah ), the story of the golden calf , and many parts of the temple including the Menorah and the golden altar. In the New Testament , it is included with the gifts of the magi in the first chapters of Matthew. The Book of Revelation 21:21 describes the city of New Jerusalem as having streets "made of pure gold, clear as crystal". Exploitation of gold in
4128-658: The Varna Necropolis near Lake Varna and the Black Sea coast, thought to be the earliest "well-dated" finding of gold artifacts in history. Several prehistoric Bulgarian finds are considered no less old – the golden treasures of Hotnitsa, Durankulak , artifacts from the Kurgan settlement of Yunatsite near Pazardzhik , the golden treasure Sakar, as well as beads and gold jewelry found in the Kurgan settlement of Provadia – Solnitsata ("salt pit"). However, Varna gold
4214-470: The reducing agent . The added metal is oxidized and dissolves, allowing the gold to be displaced from solution and be recovered as a solid precipitate. Less common oxidation states of gold include −1, +2, and +5. The −1 oxidation state occurs in aurides, compounds containing the Au anion . Caesium auride (CsAu), for example, crystallizes in the caesium chloride motif; rubidium, potassium, and tetramethylammonium aurides are also known. Gold has
4300-427: The 14th through 15th centuries, as its brilliance complemented the vermilion and gold of illuminated manuscripts and Italian panel paintings. It was valued chiefly on account of its brilliancy of tone and its inertness in opposition to sunlight, oil, and slaked lime . It is, however, extremely susceptible to even minute and dilute mineral acids and acid vapors. Dilute HCl, HNO 3 , and H 2 SO 4 rapidly destroy
4386-483: The blue color, producing hydrogen sulfide (H 2 S) in the process. Acetic acid attacks the pigment at a much slower rate than mineral acids. Ultramarine was only used for frescoes when it was applied secco because frescoes' absorption rate made its use cost prohibitive. The pigment was mixed with a binding medium like egg to form a tempera and applied over dry plaster, such as in Giotto di Bondone 's frescos in
SECTION 50
#17327797755064472-562: The chemically different Prussian blue , that is used for this purpose when washing white clothes. It is often found in makeup such as mascaras or eye shadows . Large quantities are used in the manufacture of paper, and especially for producing a kind of pale blue writing paper which was popular in Britain. During World War I, the RAF painted the outer roundels with a color made from ultramarine blue. This became BS 108(381C) aircraft blue. It
4558-1409: The corresponding gold halides. Gold is strongly attacked by fluorine at dull-red heat to form gold(III) fluoride AuF 3 . Powdered gold reacts with chlorine at 180 °C to form gold(III) chloride AuCl 3 . Gold reacts with bromine at 140 °C to form a combination of gold(III) bromide AuBr 3 and gold(I) bromide AuBr, but reacts very slowly with iodine to form gold(I) iodide AuI: 2 Au + 3 F 2 → Δ 2 AuF 3 {\displaystyle {\ce {2Au{}+3F2->[{} \atop \Delta ]2AuF3}}} 2 Au + 3 Cl 2 → Δ 2 AuCl 3 {\displaystyle {\ce {2Au{}+3Cl2->[{} \atop \Delta ]2AuCl3}}} 2 Au + 2 Br 2 → Δ AuBr 3 + AuBr {\displaystyle {\ce {2Au{}+2Br2->[{} \atop \Delta ]AuBr3{}+AuBr}}} 2 Au + I 2 → Δ 2 AuI {\displaystyle {\ce {2Au{}+I2->[{} \atop \Delta ]2AuI}}} Gold does not react with sulfur directly, but gold(III) sulfide can be made by passing hydrogen sulfide through
4644-424: The densest element, osmium , is 22.588 ± 0.015 g/cm . Whereas most metals are gray or silvery white, gold is slightly reddish-yellow. This color is determined by the frequency of plasma oscillations among the metal's valence electrons, in the ultraviolet range for most metals but in the visible range for gold due to relativistic effects affecting the orbitals around gold atoms. Similar effects impart
4730-689: The early 4th millennium. As of 1990, gold artifacts found at the Wadi Qana cave cemetery of the 4th millennium BC in West Bank were the earliest from the Levant. Gold artifacts such as the golden hats and the Nebra disk appeared in Central Europe from the 2nd millennium BC Bronze Age . The oldest known map of a gold mine was drawn in the 19th Dynasty of Ancient Egypt (1320–1200 BC), whereas
4816-591: The first written reference to gold was recorded in the 12th Dynasty around 1900 BC. Egyptian hieroglyphs from as early as 2600 BC describe gold, which King Tushratta of the Mitanni claimed was "more plentiful than dirt" in Egypt. Egypt and especially Nubia had the resources to make them major gold-producing areas for much of history. One of the earliest known maps, known as the Turin Papyrus Map , shows
4902-403: The gold acts simply as a solute, this is not a chemical reaction . A relatively rare element, gold is a precious metal that has been used for coinage , jewelry , and other works of art throughout recorded history . In the past, a gold standard was often implemented as a monetary policy . Gold coins ceased to be minted as a circulating currency in the 1930s, and the world gold standard
4988-563: The highest electron affinity of any metal, at 222.8 kJ/mol, making Au a stable species, analogous to the halides . Gold also has a –1 oxidation state in covalent complexes with the group 4 transition metals, such as in titanium tetraauride and the analogous zirconium and hafnium compounds. These chemicals are expected to form gold-bridged dimers in a manner similar to titanium(IV) hydride . Gold(II) compounds are usually diamagnetic with Au–Au bonds such as [ Au(CH 2 ) 2 P(C 6 H 5 ) 2 ] 2 Cl 2 . The evaporation of
5074-494: The lead pigment blackening to become lead sulfide . A plague known as "ultramarine sickness" has occasionally been observed among ultramarine oil paintings as a grayish or yellowish gray discoloration of the paint surface. This can occur with artificial ultramarine that is used industrially. The cause of this has been debated among experts, however, potential causes include atmospheric sulfur dioxide and moisture , acidity of an oil- or oleo-resinous paint medium, or slow drying of
5160-433: The manufacture of synthetic ultramarine are the following: The preparation is typically made in steps: Ultramarine poor in silica is obtained by fusing a mixture of soft clay, sodium sulfate, charcoal, sodium carbonate, and sulfur. The product is at first white, but soon turns green "green ultramarine" when it is mixed with sulfur and heated. The sulfur burns, and a fine blue pigment is obtained. Ultramarine rich in silica
5246-547: The mineral quartz, and gold out of the fluids and onto nearby surfaces. The world's oceans contain gold. Measured concentrations of gold in the Atlantic and Northeast Pacific are 50–150 femtomol /L or 10–30 parts per quadrillion (about 10–30 g/km ). In general, gold concentrations for south Atlantic and central Pacific samples are the same (~50 femtomol/L) but less certain. Mediterranean deep waters contain slightly higher concentrations of gold (100–150 femtomol/L), which
SECTION 60
#17327797755065332-419: The natural pigment’s fading may be the result of contact with the lime plaster of fresco paintings. Synthetic ultramarine, being very cheap, is used for wall painting, the printing of paper hangings, and calico . It also is used as a corrective for the yellowish tinge often present in things meant to be white, such as linen and paper . Bluing or "laundry blue" is a suspension of synthetic ultramarine, or
5418-411: The noble metals, it still forms many diverse compounds. The oxidation state of gold in its compounds ranges from −1 to +5, but Au(I) and Au(III) dominate its chemistry. Au(I), referred to as the aurous ion, is the most common oxidation state with soft ligands such as thioethers , thiolates , and organophosphines . Au(I) compounds are typically linear. A good example is Au(CN) − 2 , which
5504-423: The oil during which time water may have been absorbed, creating swelling, opacity of the medium, and therefore whitening of the paint film. Both natural and artificial ultramarine are stable to ammonia and caustic alkalis in ordinary conditions. Artificial ultramarine has been found to fade when in contact with lime when it is used to color concrete or plaster. These observations have led experts to speculate if
5590-423: The particles in natural ultramarine and therefore diffuse light more evenly. Its color is unaffected by light nor by contact with oil or lime as used in painting. Hydrochloric acid immediately bleaches it with liberation of hydrogen sulfide . Even a small addition of zinc oxide to the reddish varieties especially causes a considerable diminution in the intensity of the color. Modern, synthetic ultramarine blue
5676-501: The pigment was seldom seen in German art or art from countries north of Italy. Due to a shortage of azurite in the late 16th and 17th century, the price for the already-expensive ultramarine increased dramatically. Johannes Vermeer made extensive use of ultramarine in his paintings. The turban of the Girl with a Pearl Earring is painted with a mixture of ultramarine and lead white, with
5762-576: The plan of a gold mine in Nubia together with indications of the local geology . The primitive working methods are described by both Strabo and Diodorus Siculus , and included fire-setting . Large mines were also present across the Red Sea in what is now Saudi Arabia . Gold is mentioned in the Amarna letters numbered 19 and 26 from around the 14th century BC. Gold is mentioned frequently in
5848-464: The project. The earliest recorded metal employed by humans appears to be gold, which can be found free or " native ". Small amounts of natural gold have been found in Spanish caves used during the late Paleolithic period, c. 40,000 BC . The oldest gold artifacts in the world are from Bulgaria and are dating back to the 5th millennium BC (4,600 BC to 4,200 BC), such as those found in
5934-690: The r-process in the collision of neutron stars . In both cases, satellite spectrometers at first only indirectly detected the resulting gold. However, in August 2017, the spectroscopic signatures of heavy elements, including gold, were observed by electromagnetic observatories in the GW170817 neutron star merger event, after gravitational wave detectors confirmed the event as a neutron star merger. Current astrophysical models suggest that this single neutron star merger event generated between 3 and 13 Earth masses of gold. This amount, along with estimations of
6020-620: The rare bismuthide maldonite ( Au 2 Bi ) and antimonide aurostibite ( AuSb 2 ). Gold also occurs in rare alloys with copper , lead , and mercury : the minerals auricupride ( Cu 3 Au ), novodneprite ( AuPb 3 ) and weishanite ( (Au,Ag) 3 Hg 2 ). A 2004 research paper suggests that microbes can sometimes play an important role in forming gold deposits, transporting and precipitating gold to form grains and nuggets that collect in alluvial deposits. A 2013 study has claimed water in faults vaporizes during an earthquake, depositing gold. When an earthquake strikes, it moves along
6106-420: The rate of occurrence of these neutron star merger events, suggests that such mergers may produce enough gold to account for most of the abundance of this element in the universe. Because the Earth was molten when it was formed , almost all of the gold present in the early Earth probably sank into the planetary core . Therefore, as hypothesized in one model, most of the gold in the Earth's crust and mantle
6192-935: The reaction. However, the ions are removed from the equilibrium by hydrochloric acid, forming AuCl − 4 ions, or chloroauric acid , thereby enabling further oxidation: 2 Au + 6 H 2 SeO 4 → 200 ∘ C Au 2 ( SeO 4 ) 3 + 3 H 2 SeO 3 + 3 H 2 O {\displaystyle {\ce {2Au{}+6H2SeO4->[{} \atop {200^{\circ }{\text{C}}}]Au2(SeO4)3{}+3H2SeO3{}+3H2O}}} Au + 4 HCl + HNO 3 ⟶ HAuCl 4 + NO ↑ + 2 H 2 O {\displaystyle {\ce {Au{}+4HCl{}+HNO3->HAuCl4{}+NO\uparrow +2H2O}}} Gold
6278-473: The rest of the gold on Earth is thought to have been incorporated into the planet since its very beginning, as planetesimals formed the mantle . In 2017, an international group of scientists established that gold "came to the Earth's surface from the deepest regions of our planet", the mantle, as evidenced by their findings at Deseado Massif in the Argentinian Patagonia . On Earth, gold
6364-486: The same result and showing that the isotopes of gold produced by it were all radioactive . In 1980, Glenn Seaborg transmuted several thousand atoms of bismuth into gold at the Lawrence Berkeley Laboratory. Gold can be manufactured in a nuclear reactor, but doing so is highly impractical and would cost far more than the value of the gold that is produced. Although gold is the most noble of
6450-486: The silver content. The more silver, the lower the specific gravity . Native gold occurs as very small to microscopic particles embedded in rock, often together with quartz or sulfide minerals such as " fool's gold ", which is a pyrite . These are called lode deposits. The metal in a native state is also found in the form of free flakes, grains or larger nuggets that have been eroded from rocks and end up in alluvial deposits called placer deposits . Such free gold
6536-450: The south-east corner of the Black Sea is said to date from the time of Midas , and this gold was important in the establishment of what is probably the world's earliest coinage in Lydia around 610 BC. The legend of the golden fleece dating from eighth century BCE may refer to the use of fleeces to trap gold dust from placer deposits in the ancient world. From the 6th or 5th century BC,
6622-540: The spontaneous formation of a blue compound, very similar to ultramarine, if not identical with it, in a lime kiln at St. Gobain. In 1824, this caused the Societé pour l'Encouragement d'Industrie to offer a prize for the artificial production of the precious color. Processes were devised by Jean Baptiste Guimet (1826) and by Christian Gmelin (1828), then professor of chemistry in Tübingen. While Guimet kept his process
6708-436: The tendency of gold ions to interact at distances that are too long to be a conventional Au–Au bond but shorter than van der Waals bonding . The interaction is estimated to be comparable in strength to that of a hydrogen bond . Well-defined cluster compounds are numerous. In some cases, gold has a fractional oxidation state. A representative example is the octahedral species {Au( P(C 6 H 5 ) 3 )} 2+ 6 . Gold
6794-403: The transmutation of the chemical elements did not become possible until the understanding of nuclear physics in the 20th century. The first synthesis of gold was conducted by Japanese physicist Hantaro Nagaoka , who synthesized gold from mercury in 1924 by neutron bombardment. An American team, working without knowledge of Nagaoka's prior study, conducted the same experiment in 1941, achieving
6880-417: The visors of heat-resistant suits and in sun visors for spacesuits . Gold is a good conductor of heat and electricity . Gold has a density of 19.3 g/cm , almost identical to that of tungsten at 19.25 g/cm ; as such, tungsten has been used in the counterfeiting of gold bars , such as by plating a tungsten bar with gold. By comparison, the density of lead is 11.34 g/cm , and that of
6966-787: Was abandoned for a fiat currency system after the Nixon shock measures of 1971. In 2020, the world's largest gold producer was China, followed by Russia and Australia. As of 2020 , a total of around 201,296 tonnes of gold exist above ground. This is equal to a cube, with each side measuring roughly 21.7 meters (71 ft). The world's consumption of new gold produced is about 50% in jewelry, 40% in investments , and 10% in industry . Gold's high malleability, ductility, resistance to corrosion and most other chemical reactions, as well as conductivity of electricity have led to its continued use in corrosion-resistant electrical connectors in all types of computerized devices (its chief industrial use). Gold
7052-404: Was mined in Afghanistan and shipped overseas to Europe. A method to produce ultramarine from lapis lazuli was introduced and later described by Cennino Cennini in the 15th century. This process consisted of grinding the lapis lazuli mineral, mixing the ground material with melted wax , resins , and oils , wrapping the resulting mass in a cloth, and then kneading it in a dilute lye solution,
7138-633: Was not used even by wealthy painters in Spain at that time. During the Renaissance , ultramarine was the finest and most expensive blue that could be used by painters. Color infrared photogenic studies of ultramarine in 13th and 14th-century Sienese panel paintings have revealed that historically, ultramarine has been diluted with white lead pigment in an effort to use the color more sparingly given its high price. The 15th century artist Cennino Cennini wrote in his painters' handbook: "Ultramarine blue
7224-577: Was replaced in the 1960s by a new color made on phthalocyanine blue , called BS110(381C) roundel blue. Ultramarine is a blue made from natural lapis lazuli , or its synthetic equivalent which is sometimes called "French Ultramarine". More generally "ultramarine blue" can refer to a vivid blue. The term ultramarine can also refer to other pigments. Variants of the pigment such as "ultramarine red," "ultramarine green," and "ultramarine violet" all resemble ultramarine with respect to their chemistry and crystal structure. The term "ultramarine green" indicates
7310-526: Was the port of entry for lapis lazuli in Europe. Ultramarine was the finest and most expensive blue used by Renaissance painters. It was often used for the robes of the Virgin Mary and symbolized holiness and humility. It remained an extremely expensive pigment until a synthetic ultramarine was invented in 1826. Ultramarine is a permanent pigment when under ideal preservation conditions. Otherwise, it
7396-621: Was to distort the Witwatersrand basin in such a way that the gold-bearing rocks were brought to the present erosion surface in Johannesburg , on the Witwatersrand , just inside the rim of the original 300 km (190 mi) diameter crater caused by the meteor strike. The discovery of the deposit in 1886 launched the Witwatersrand Gold Rush . Some 22% of all the gold that is ascertained to exist today on Earth has been extracted from these Witwatersrand rocks. Much of
#505494