Misplaced Pages

W25

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

An air-to-air missile ( AAM ) is a missile fired from an aircraft for the purpose of destroying another aircraft (including unmanned aircraft such as cruise missiles ). AAMs are typically powered by one or more rocket motors , usually solid fueled but sometimes liquid fueled . Ramjet engines, as used on the Meteor , are emerging as propulsion that will enable future medium- to long-range missiles to maintain higher average speed across their engagement envelope.

#900099

69-567: W25 or W.25 may refer to: W25 (nuclear warhead) The W25 , the Women's National Basketball Association's Top 25 Players of All Time British NVC community W25 , an underscrub community in the British National Vegetation Classification system Compound of ten tetrahedra Hansa-Brandenburg W.25 , a German floatplane fighter Mercedes-Benz W25 ,

138-678: A combination of any of those three warhead types) is typically used in the attempt to disable or destroy the target aircraft. Warheads are typically detonated by a proximity fuze or by an impact fuze if it scores a direct hit. Less commonly, nuclear warheads have been mounted on a small number of air-to-air missile types (such as the AIM-26 Falcon ) although these are not known to have ever been used in combat. Guided missiles operate by detecting their target (usually by either radar or infrared methods, although rarely others such as laser guidance or optical tracking ), and then "homing" in on

207-530: A complete redesign would be needed, effectively producing a new warhead. That study was followed by concerns about the plutonium hazard of the W25 and queries about producing an all- uranium weapon. A study group was convened which reported in November 1956 that, while the plutonium hazard could be reduced to some degree, inside the space limitations given, an all-uranium warhead was not possible without utilizing

276-451: A cone shape as the distance from the attacking aircraft increases. This will result in less accuracy for the missile because the beam may actually be larger than the target aircraft when the missile arrives. The missile could be securely within the beam but still not be close enough to destroy the target. Infrared guided (IR) missiles home on the heat produced by an aircraft. Early infra-red detectors had poor sensitivity, so could only track

345-464: A gun-type device. In May 1957, the AEC was directed to examine ways to minimize the plutonium hazard without increasing fissile material requirements. The results of that study remain classified, but the application was cancelled in November 1957. The W25 was 17.4 inches (44 cm) in diameter and 26.6 inches (68 cm) long, with a reported weight of 218 to 221 pounds (99 to 100 kg). The warhead

414-454: A major achievement as it was believed to be of a new generation of weapons that required little maintenance or inspection — a "wooden" bomb, likened to that of needing the maintenance of a block of pine. In January 1961, Sandia was requested to develop an environmental safing device for the weapon. This was achieved with an inertial switch, producing the Mark 25 Mod 1 warhead. The weapon entered

483-470: A minimum. Concern was expressed at this time over the use of thermal batteries in the weapon, because all the components needed to produce detonation would be present inside the warhead. An evaluation was therefore made and a report released in April 1955, describing several safing options that could be used. Eventually an automatic safe/arm device was selected, that disconnected the high voltage connections to

552-605: A more powerful motor that allows the missile to maneuver against crossing targets and launch at greater ranges, gives the launching aircraft improved tactical freedom. Other members of the 4th generation use focal plane arrays to offer greatly improved scanning and countermeasures resistance (especially against flares). These missiles are also much more agile, some by employing thrust vectoring (typically gimballed thrust ). The latest generation of short-range missiles again defined by advances in seeker technologies, this time electro-optical imaging infrared (IIR) seekers that allow

621-576: A narrow (30-degree) field of view and required the attacker to position himself behind the target ( rear aspect engagement ). This meant that the target aircraft only had to perform a slight turn to move outside the missile seeker's field of view and cause the missile to lose track of the target ("break lock"). The second-generation of short-range missiles utilized more effective seekers that were better cooled than its predecessors while being typically "uncaged"; resulting in improved sensitivity to heat signatures, an increase in field of view as well as allowing

690-566: A racing car Thiin language Watkins 25 , an American sailboat design [REDACTED] Topics referred to by the same term This disambiguation page lists articles associated with the same title formed as a letter–number combination. If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=W25&oldid=1162290785 " Category : Letter–number combination disambiguation pages Hidden categories: Short description

759-411: A rocket of some type and the control actuation system or CAS. Dual-thrust solid-fuel rockets are common, but some longer-range missiles use liquid-fuel motors that can "throttle" to extend their range and preserve fuel for energy-intensive final maneuvering. Some solid-fuelled missiles mimic this technique with a second rocket motor which burns during the terminal homing phase. There are missiles, such as

SECTION 10

#1732776586901

828-448: A safe escape by the launching aircraft. This reduced the accuracy of the weapon, eventually counteracting the advantage from the increased yield. Cost in nuclear material to kill was also studied, and it was found that the largest weapon diameter of 18 inches (460 mm) was most efficient in nuclear material. However, larger weapons required a larger rocket and caused aircraft compatibility problems. A diameter of 17.25 inches (438 mm)

897-407: A specified range. Towed decoys which closely mimic engine heat and infra-red jammers can also be used. Some large aircraft and many combat helicopters make use of so-called "hot brick" infra-red jammers, typically mounted near the engines. Current research is developing laser devices which can spoof or destroy the guidance systems of infra-red guided missiles. See Infrared countermeasure . Start of

966-565: A target from various angles, not just from behind, where the heat signature from the engines is strongest. Other types rely on radar guidance (either on-board or "painted" by the launching aircraft). In 1999 R-73 missile were adapted by Serb forces for surface to air missiles. The Houthi movement Missile Research and Development Centre and the Missile Force have tried to fire R-27/R-60/R-73/R-77 against Saudi aircraft. Using stockpiles of missiles from Yemeni Air Force stocks. The issue for

1035-463: Is called "off- boresight " launch. For example, the Russian Su-27 is equipped with an infra-red search and track (IRST) system with laser rangefinder for its HMS-aimed missiles. A recent advancement in missile guidance is electro-optical imaging. The Israeli Python-5 has an electro-optical seeker that scans designated area for targets via optical imaging. Once a target is acquired,

1104-743: Is different from Wikidata All article disambiguation pages All disambiguation pages W25 (nuclear warhead) The W25 was a small nuclear warhead that was developed by the Los Alamos Scientific Laboratory for air-defense use. It was a fission device with a nominal yield of 1.7 kt. The W25 was used for the MB-1 "Ding Dong" , an unguided air-to-air rocket used by US Northrop F-89 Scorpion , F-101 Voodoo , and F-106 Delta Dart interceptor aircraft , and Canadian CF-101 Voodoo aircraft, as part of NATO nuclear sharing . The MB-1 entered service in 1957 and

1173-582: Is possible for the system to take missiles straight from an aircraft. After a live-fire test occurred in September 2020 off the coasts of Florida, during which it successfully engaged a simulated cruise missile, in 2022 NASAMS was deployed to Ukraine, where for the first time this missile system was used in real combat conditions, and, according to Ukrainian government, was able to shot down more than 100 aerial targets. A conventional explosive blast warhead, fragmentation warhead, or continuous rod warhead (or

1242-589: Is still a limitation to some degree) and could be distracted by the sun, a reflection of the sun off of a cloud or ground object, or any other "hot" object within its view. More modern infra-red guided missiles can detect the heat of an aircraft's skin, warmed by the friction of airflow, in addition to the fainter heat signature of the engine when the aircraft is seen from the side or head-on. This, combined with greater maneuverability, gives them an " all-aspect " capability, and an attacking aircraft no longer had to be behind its target to fire. Although launching from behind

1311-489: Is subject to a minimum range, before which it cannot maneuver effectively. In order to maneuver sufficiently from a poor launch angle at short ranges to hit its target, some missiles use thrust vectoring , which allow the missile to start turning "off the rail", before its motor has accelerated it up to high enough speeds for its small aerodynamic surfaces to be useful. Short-range air-to-air missiles (SRAAMs), typically used in " dogfighting " or close range air combat compare to

1380-414: Is that it enables a " fire-and-forget " mode of attack, where the attacking aircraft is free to pursue other targets or escape the area after launching the missile. Semi-active radar homing (SARH) guided missiles are simpler and more common. They function by detecting radar energy reflected from the target. The radar energy is emitted from the launching aircraft's own radar system. However, this means that

1449-512: Is the "home on jam" mode which, when installed, allows a radar-guided missile to home in on the jammer of the target aircraft if the primary seeker is jammed by the electronic countermeasures of the target aircraft. Air-to-air missiles are typically long, thin cylinders in order to reduce their cross section and thus minimize drag at the high speeds at which they travel. Missiles are divided into five primary systems (moving forward to aft): seeker, guidance, warhead, motor, and control actuation. At

SECTION 20

#1732776586901

1518-537: The R-60M or the Python-3 . The R-73 (missile) ( AA-11 Archer ) entered service in 1985 and marked a new generation of dogfight missile. It had a wider field of view and could be cued onto a target using a helmet mounted sight . This allowed it to be launched at targets that would otherwise not be seen by older generation missiles that generally stared forward while waiting to be launched. This capability, combined with

1587-686: The ASRAAM and Sea Ceptor . The air-to-air missile grew out of the unguided air-to-air rockets used during the First World War . Le Prieur rockets were sometimes attached to the struts of biplanes and fired electrically, usually against observation balloons , by such early pilots as Albert Ball and A. M. Walters. Facing the Allied air superiority, Germany in World War II invested limited effort into missile research, initially adapting

1656-635: The Mark 25 Mod 0 or W25-0 warhead. Design release was scheduled for July 1956, with the first production warheads being produced in June 1957. Emergency capability warheads were produced beginning in December 1956. Initially, the rocket was certified for the F-86 Sabre, with later capability with the F-101 Voodoo and F-106 Delta Dart as the aircraft became available. The weapon was hailed as

1725-593: The Mark 30 and Mark 31 in February 1956. In September 1954, the US army began examining warheads for the MGR-3 Little John rocket (originally called Honest John Junior). Military characteristics for a warhead were provided in April 1955 and the W25 warhead was briefly considered for the role. In February 1956, the application was cancelled in favor of a higher-yield, smaller diameter weapon. The W45 warhead

1794-539: The RIM-8 Talos , CIM-10 Bomarc and MIM-3 Nike Ajax surface-to-air missiles . During discussions about the report, it was believed that tens of thousands of air defense warheads would be needed, and so the warheads would have to be economical in nuclear materials to reduce their cost. At the same time, the US air force wanted a high-velocity, nuclear armed, air to air missile . The air force believed that, because air defenses operated under peacetime conditions, it

1863-480: The beyond-visual-range missiles . Most of the short-range air-to-air missiles are infrared guided and few are active radar guided . Those missiles usually classified into five "generations" according to the historical technological advances. Most of these advances were in infrared seeker technology (later combined with digital signal processing ). Early short-range missiles such as the early Sidewinders and K-13 (missile) ( AA-2 Atoll ) had infrared seekers with

1932-492: The 21st century missiles such as the ASRAAM use an " imaging infrared " seeker which "sees" the target (much like a digital video camera), and can distinguish between an aircraft and a point heat source such as a flare. They also feature a very wide detection angle, so the attacking aircraft does not have to be pointing straight at the target for the missile to lock on. The pilot can use a helmet mounted sight (HMS) and target another aircraft by looking at it, and then firing. This

2001-494: The MBDA Meteor, that "breathe" air (using a ramjet , similar to a jet engine) in order to extend their range. Modern missiles use "low-smoke" motors – early missiles produced thick smoke trails, which were easily seen by the crew of the target aircraft alerting them to the attack and helping them determine how to evade it. The CAS is typically an electro-mechanical, servo control actuation system, which takes input from

2070-538: The R-27 and R-77 is the lack of a radar to support their guidance to the target. However the R-73 and R-60 are infra-red heat seeking missiles. They only require, power, liquid nitrogen "to cool the seeker head" and a pylon to launch the missile. These missiles have been paired with a "US made FLIR Systems ULTRA 8500 turrets". Only one near miss has been verified and that was a R-27T fired at Royal Saudi Air Force F-15SA. However

2139-598: The US that early F-4 variants were armed only with missiles in the 1960s. High casualty rates during the Vietnam War caused the US to reintroduce autocannon and traditional dogfighting tactics but the missile remains the primary weapon in air combat. In the Falklands War British Harriers , using AIM-9L missiles were able to defeat faster Argentinian opponents. Since the late 20th century all-aspect heat-seeking designs can lock-on to

W25 - Misplaced Pages Continue

2208-537: The USN's AIM-7 Sparrow and AIM-9 Sidewinder . Post-war research led the Royal Air Force to introduce Fairey Fireflash into service in 1957 but their results were unsuccessful. The Soviet Air Force introduced its K-5 into service in 1957. As missile systems have continued to advance, modern air warfare consists almost entirely of missile firing. The use of beyond-visual-range combat became so pervasive in

2277-683: The anti-radiation missile (ARM) design, pioneered during Vietnam and used to home in against emitting surface-to-air missile (SAM) sites, to an air intercept weapon. Current air-to-air passive anti-radiation missile development is thought to be a countermeasure to airborne early warning and control (AEW&C – also known as AEW or AWACS) aircraft which typically mount powerful search radars. Due to their dependence on target aircraft radar emissions, when used against fighter aircraft passive anti-radiation missiles are primarily limited to forward-aspect intercept geometry. For examples, see Vympel R-27 and Brazo . Another aspect of passive anti-radiation homing

2346-657: The attack radar to illuminate the target during part or all of the missile interception itself. Radar guidance is normally used for medium- or long-range missiles, where the infra-red signature of the target would be too faint for an infra-red detector to track. There are three major types of radar-guided missile – active, semi-active, and passive. Radar-guided missiles can be countered by rapid maneuvering (which may result in them "breaking lock", or may cause them to overshoot), deploying chaff or using electronic counter-measures . Active radar (AR)-guided missiles carry their own radar system to detect and track their target. However,

2415-424: The category of beyond-visual-range missiles (BVRAAMs), tend to rely upon radar guidance, of which there are many forms. Some modern ones use inertial guidance and/or "mid-course updates" to get the missile close enough to use an active homing sensor. The concepts of air-to-air missiles and surface-to-air missiles are closely related, and in some cases versions of the same weapon may be used for both roles, such as

2484-614: The detonators. By placing it inside the warhead and not in the warhead adaption kit, it became possible for the system to also short the x-unit capacitor and thermal battery. By May 1955, the rocket, the AIR-2 Genie, was taking shape. Unguided, the rocket would have a range of 3 to 5 miles (4.8 to 8.0 km) and a velocity of 3,000 feet per second (910 m/s) over its launch speed. Length would be 114 inches (2,900 mm), diameter with fins retracted of 22 inches (560 mm) and with fins extended 34 inches (860 mm). The warhead

2553-558: The drawback is that these missiles are intended to be fired from one jet fighter against another. So the motors and fuel load are smaller than a purpose built surface to air missile. On the Western side, the Norwegian-American made NASAMS air defense system has been developed for using AIM-9 Sidewinder , IRIS-T and AMRAAM air-to-air missiles to intercept targets. None of these missiles require modifications and hence it

2622-414: The front is the seeker, either a radar system, radar homer, or infra-red detector. Behind that lies the avionics which control the missile. Typically after that, in the centre of the missile, is the warhead, usually several kilograms of high explosive surrounded by metal that fragments on detonation (or in some cases, pre-fragmented metal). The rear part of the missile contains the propulsion system, usually

2691-422: The front or side aspects, as opposed to just the hotter engine nozzle(s) from rear-aspect, allowing for a true all-aspect capability. This significantly expanded potential attacking envelopes, allowing the attacker to fire at a target which was side-on or front-on to itself as opposed to just the rear. While the field-of-view was still restricted to a fairly narrow cone, the attack at least did not have to be behind

2760-488: The guidance system and manipulates the airfoils or fins at the rear of the missile that guide or steers the weapon to target. Nowadays, countries start developing hypersonic air-to-air missile using scramjet engines (such as R-37 , or AIM-260 JATM ), which not only increases efficiency for BVR battles, but it also makes survival chances of target aircraft drop to nearly zero. A number of terms frequently crop up in discussions of air-to-air missile performance. A missile

2829-426: The hot exhaust pipes of an aircraft. This meant an attacking aircraft had to maneuver to a position behind its target before it could fire an infra-red guided missile. This also limited the range of the missile as the infra-red signature soon become too small to detect with increasing distance and after launch the missile was playing "catch-up" with its target. Early infrared seekers were unusable in clouds or rain (which

W25 - Misplaced Pages Continue

2898-417: The launch aircraft has to maintain a "lock" on the target (keep illuminating the target aircraft with its own radar) until the missile makes the interception. This limits the attacking aircraft's ability to maneuver, which may be necessary should threats to the attacking aircraft appear. An advantage of SARH-guided missiles is that they are homing on the reflected radar signal, so accuracy actually increases as

2967-424: The longitudinal axis and 20 g (200 m/s ) along perpendicular axes. In June 1954, the warhead names Mark 25, Mark 30 and Mark 31 were formally adopted. The air force would be responsible for the rocket systems, including the arming and fusing system, while the AEC would supply the warhead and associated assembly, testing and handling equipment. The rocket for the warhead was initially named Ding Dong and

3036-482: The missile close to the target. At a predetermined point (frequently based on time since launch or arrival near the predicted target location) the missile's radar system is activated (the missile is said to "go active"), and the missile then homes in on the target. If the range from the attacking aircraft to the target is within the range of the missile's radar system, the missile can "go active" immediately upon launch. The great advantage of an active radar homing system

3105-500: The missile gets closer because the reflection comes from a "point source": the target. Against this, if there are multiple targets, each will be reflecting the same radar signal and the missile may become confused as to which target is its intended victim. The missile may well be unable to pick a specific target and fly through a formation without passing within lethal range of any specific aircraft. Newer missiles have logic circuits in their guidance systems to help prevent this problem. At

3174-408: The missile that allows it to home in on the jamming signal. An early form of radar guidance was " beam-riding " (BR). In this method, the attacking aircraft directs a narrow beam of radar energy at the target. The air-to-air missile was launched into the beam, where sensors on the aft of the missile controlled the missile, keeping it within the beam. So long as the beam was kept on the target aircraft,

3243-403: The missile will lock-on to it for the kill. Electro-optical seekers can be programmed to target vital area of an aircraft, such as the cockpit. Since it does not depend on the target aircraft's heat signature, it can be used against low-heat targets such as UAVs and cruise missiles . However, clouds can get in the way of electro-optical sensors. Evolving missile guidance designs are converting

3312-405: The missile would ride the beam until making the interception. While conceptually simple, the move is hard because of the challenge of simultaneously keeping the beam solidly on the target (which could not be relied upon to cooperate by flying straight and level), continuing to fly one's own aircraft, and monitoring enemy countermeasures. An added complication was that the beam will spread out into

3381-481: The possibility of leading a missile within its FOV for an increased probability of kill against a maneuvering target. In some cases, the improved sensitivity to heat signatures allows for a very limited side and even all-aspect tracking, as is the case with the Red Top missile . In conjunction with improved control surfaces and propulsion motors over the first generation of dogfight missiles, the technological advances of

3450-564: The projectile of the unguided 21 cm Nebelwerfer 42 infantry barrage rocket system into the air-launched BR 21 anti-aircraft rocket in 1943; leading to the deployment of the R4M unguided rocket and the development of various guided missile prototypes such as the Ruhrstahl X-4 . The US Navy and US Air Force began equipping guided missiles in 1956, deploying the USAF's AIM-4 Falcon and

3519-402: The same time, jamming the missile lock-on is easier because the launching aircraft is further from the target than the missile, so the radar signal has to travel further and is greatly attenuated over the distance. This means that the missile may be jammed or "spoofed" by countermeasures whose signals grow stronger as the missile gets closer. One counter to this is a "home on jam" capability in

SECTION 50

#1732776586901

3588-471: The second-generation short-range missiles allowed them to be used not just on non-maneuvering bombers, but also actively maneuvering fighters. Examples include advanced derivatives of the K-13 (missile) and AIM-9 such as K-13M ( R-13M , Object 380) or AIM-9D / G / H . This generation introduced much more sensitive seekers that are capable of locking onto the warm heat irradiated by the skins of aircraft from

3657-409: The size of the radar antenna is limited by the small diameter of missiles, limiting its range which typically means such missiles are launched at a predicted future location of the target, often relying on separate guidance systems such as Global Positioning System , inertial guidance , or a mid-course update from either the launching aircraft or other system that can communicate with the missile to get

3726-474: The stockpile in March 1962. The W25 was retired in 1984. In October 1953, it was recommended that a lightweight atomic demolition munition (ADM) be developed. The device would be 15 inches (380 mm) in diameter, 30 inches (760 mm) in length, weigh less than 200 pounds (91 kg) and be capable of disassembly into 40-pound (18 kg) packages. The application was cancelled in favor of ADMs based on

3795-410: The target increases the probability of a hit, the launching aircraft usually has to be closer to the target in such a tail-chase engagement . An aircraft can defend against infra-red missiles by dropping flares that are hotter than the aircraft, so the missile homes in on the brighter, hotter target. In turn, IR missiles may employ filters to enable it to ignore targets whose temperature is not within

3864-440: The target on a collision course. Although the missile may use radar or infra-red guidance to home on the target, the launching aircraft may detect and track the target before launch by other means. Infra-red guided missiles can be "slaved" to an attack radar in order to find the target and radar-guided missiles can be launched at targets detected visually or via an infra-red search and track (IRST) system, although they may require

3933-446: The target. Also typical of the third generation of short-range missiles are further improved agility over the previous generation as well as their ability to radar-slave; which is acquiring tracking data from the launching aircraft's radar or IRST systems, allowing attackers to launch missiles without ever pointing the nose of the aircraft at an enemy prior to leading the missile. Examples of this generation of dogfight missiles include

4002-747: The use of nuclear materials. Sandia conducted research into the optimum size of an air-to-air missile warhead and, in May 1954, the Atomic Energy Commission began development of an air-to-air nuclear warhead. In May 1954, the military characteristics were specified for a 15 inches (380 mm) warhead. It would be capable of remaining at the ready condition for 30 days, be capable of 50 hours flight time at altitudes of up to 100,000 feet (30,000 m), and withstand temperatures of −90 to 165 °F (−68 to 74 °C). The warhead would be able to withstand acceleration of 100 g (980 m/s ) along

4071-469: The weapon operational by 1957. Because of the numbers required, they requested that quantity production of the weapon begin but, because no firm production directive had been received, the AEC denied the request. The military liaison committee subsequently requested the warhead be in production by the rocket availability date of January 1957. The weapon was to have maximum interchangeability of components with other weapons, provided that it did not compromise

4140-425: The weapon's sealed design. The weapon would be capable of storage in a ready-to-operate condition for at least 30 days, with 90 days being desirable, as long as such a requirement did not delay the production date. The warhead would be capable of operation up to 75,000 feet (23,000 m), with 100,000 feet (30,000 m) being desirable. Diameter would be 17.25 inches (438 mm) with length and weight being held at

4209-588: Was an implosion weapon and was of the sealed design. Air to air missile Air-to-air missiles are broadly put in two groups. Those designed to engage opposing aircraft at ranges of around 30 km to 40 km maximum are known as short-range or "within visual range" missiles (SRAAMs or WVRAAMs) and are sometimes called " dogfight " missiles because they are designed to optimize their agility rather than range. Most use infrared guidance and are called heat-seeking missiles. In contrast, medium- or long-range missiles (MRAAMs or LRAAMs), which both fall under

SECTION 60

#1732776586901

4278-497: Was desirable to have the ability for a human to make confirmation that an unidentified aircraft was indeed hostile before engaging it. Sandia National Laboratory had been investigating the high-altitude operation of nuclear weapons since 1952 and, in August 1953, concluded that the only major concern was high-voltage breakdown at low pressures. That meant that existing weapon-firing sets were unsuitable, so solutions were examined. It

4347-526: Was eventually redesignated the AIR-2 Genie . Limited numbers were carried by Air National Guard F-106 aircraft until December 1984 . The W25 program began in March 1951, when the Division of Military Application suggested that the use of nuclear weapons to blunt enemy aircraft attacks be examined. However, little immediate action was taken because the state-of-the-art in both warheads and missiles

4416-453: Was eventually selected for the rocket. In June 1956, informal comments were made about the lack of a boosted W25 warhead. Albuquerque Operations Office replied that no formal request for such a weapon had ever been received and the military promptly furnished such a request. In July 1956, a preliminary study was concluded stating that, because of the size limitations of the Genie application,

4485-497: Was eventually settled on. In January 1955, the joint study group was dissolved and reformed as the Air-to-Air Rocket Joint Project Group. By that point, the weapon weighed approximately 230 lb (100 kg). In March 1955, the assistant secretary for defense authorized the full development of the rocket and its warhead. In the same month, the air force expressed an urgent desire to have

4554-616: Was not yet advanced enough for the proposal to be practicable. Technology soon improved and, by February 1952, the Joint Chiefs of Staff requested that the Joint Air Board study the matter. The study was completed in January 1953, which suggested that gun-, rocket- and missile-carried warheads were possible, launched from interceptor and bomber aircraft. The board specifically recommended the development of nuclear warheads for

4623-486: Was optimized for carriage on the F-86 Sabre , F-89 Scorpion and F-100 Super Sabre . The rocket was to be 15.5 inches (390 mm) in diameter, but excursions of up to 18 inches (460 mm) were to be investigated. A study of yield to kill probability was published in November 1954. While higher yields increased the lethal radius of the weapon, higher yields required the launching range to be increased to allow for

4692-536: Was pressurized to 15 pounds per square inch (100 kPa) at the factory to prevent high-voltage arc over at altitude. In June 1955, the air force requested an acceleration of the warhead production program, which would produce an interim warhead for short-term deployment that would be replaced by production Mark 25 warheads as they became available. The interim warheads were to be called the EC-25 (emergency capability warhead), while production warheads were to be called

4761-525: Was soon decided that the problem could be solved through the use of a sealed nuclear weapon, with the weapon filled with high-pressure air to prevent electric arcing . In October 1953, the air defense warhead programs took an unusual turn in that they avoided the then-trend to highly standardize nuclear and non-nuclear components of weapons. This was justified on the basis that air defense warheads needed to be readily available for use, needed to be highly resistant to premature detonation, and needed to economise

#900099