Misplaced Pages

Myers Motors NmG

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Myers Motors NmG (formerly the Corbin Sparrow ) is a single-passenger, three-wheeled , battery electric vehicle designed specifically for commuting and city driving, produced from 1999 into the early 2010s. It was initially produced by Corbin Motors, and made to order after 2005 by Myers Motors . It is a personal electric vehicle (PEV).

#209790

45-461: The Sparrow is powered by a 20  kW (continuous) 156-volt DC or 3-phase AC electric motor and has a range of 32 to 64 km (20 to 40 mi) and a top speed of 112 km/h (70 mph). Fuel efficiency is approximately 130 W·h/km (4.8 mi/(kW·h), which is equivalent to 162 mpg (US) or 194 mpg (UK) (1.45 L/100 km) using the DOE conversion. Two models were produced:

90-733: A bridge circuit . The cathode-ray oscilloscope works by amplifying the voltage and using it to deflect an electron beam from a straight path, so that the deflection of the beam is proportional to the voltage. A common voltage for flashlight batteries is 1.5 volts (DC). A common voltage for automobile batteries is 12 volts (DC). Common voltages supplied by power companies to consumers are 110 to 120 volts (AC) and 220 to 240 volts (AC). The voltage in electric power transmission lines used to distribute electricity from power stations can be several hundred times greater than consumer voltages, typically 110 to 1200 kV (AC). The voltage used in overhead lines to power railway locomotives

135-430: A capacitor ), and from an electromotive force (e.g., electromagnetic induction in a generator ). On a macroscopic scale, a potential difference can be caused by electrochemical processes (e.g., cells and batteries), the pressure-induced piezoelectric effect , and the thermoelectric effect . Since it is the difference in electric potential, it is a physical scalar quantity . A voltmeter can be used to measure

180-558: A light bulb with a power rating of 100 W is turned on for one hour, the energy used is 100 watt hours (W·h), 0.1 kilowatt hour, or 360  kJ . This same amount of energy would light a 40-watt bulb for 2.5 hours, or a 50-watt bulb for 2 hours. Power stations are rated using units of power, typically megawatts or gigawatts (for example, the Three Gorges Dam in China is rated at approximately 22 gigawatts). This reflects

225-492: A constant opposing force of one newton , the rate at which work is done is one watt. 1   W = 1   J / s = 1   N ⋅ m / s = 1   k g ⋅ m 2 ⋅ s − 3 . {\displaystyle \mathrm {1~W=1~J{/}s=1~N{\cdot }m{/}s=1~kg{\cdot }m^{2}{\cdot }s^{-3}} .} In terms of electromagnetism , one watt

270-481: A period of one year: equivalent to approximately 114 megawatts of constant power output. The watt-second is a unit of energy, equal to the joule . One kilowatt hour is 3,600,000 watt seconds. While a watt per hour is a unit of rate of change of power with time, it is not correct to refer to a watt (or watt-hour) as a watt per hour. Potential difference Voltage , also known as (electrical) potential difference , electric pressure , or electric tension

315-541: A turbine, which generates 648 MW e (i.e. electricity). Other SI prefixes are sometimes used, for example gigawatt electrical (GW e ). The International Bureau of Weights and Measures , which maintains the SI-standard, states that further information about a quantity should not be attached to the unit symbol but instead to the quantity symbol (e.g., P th = 270 W rather than P = 270 W th ) and so these unit symbols are non-SI. In compliance with SI,

360-495: A unit of time, namely 1 J/s. In this new definition, 1 absolute watt = 1.00019 international watts. Texts written before 1948 are likely to be using the international watt, which implies caution when comparing numerical values from this period with the post-1948 watt. In 1960, the 11th General Conference on Weights and Measures adopted the absolute watt into the International System of Units (SI) as

405-423: A well-defined voltage between nodes in the circuit, since the electric force is not a conservative force in those cases. However, at lower frequencies when the electric and magnetic fields are not rapidly changing, this can be neglected (see electrostatic approximation ). The electric potential can be generalized to electrodynamics, so that differences in electric potential between points are well-defined even in

450-468: Is a well-defined voltage across the inductor's terminals. This is the reason that measurements with a voltmeter across an inductor are often reasonably independent of the placement of the test leads. The volt (symbol: V ) is the derived unit for electric potential , voltage, and electromotive force . The volt is named in honour of the Italian physicist Alessandro Volta (1745–1827), who invented

495-548: Is affected by thermodynamics. The quantity measured by a voltmeter is the negative of the difference of the electrochemical potential of electrons ( Fermi level ) divided by the electron charge and commonly referred to as the voltage difference, while the pure unadjusted electrostatic potential (not measurable with a voltmeter) is sometimes called Galvani potential . The terms "voltage" and "electric potential" are ambiguous in that, in practice, they can refer to either of these in different contexts. The term electromotive force

SECTION 10

#1732786598210

540-427: Is between 12 kV and 50 kV (AC) or between 0.75 kV and 3 kV (DC). Inside a conductive material, the energy of an electron is affected not only by the average electric potential but also by the specific thermal and atomic environment that it is in. When a voltmeter is connected between two different types of metal, it measures not the electrostatic potential difference, but instead something else that

585-417: Is defined so that negatively charged objects are pulled towards higher voltages, while positively charged objects are pulled towards lower voltages. Therefore, the conventional current in a wire or resistor always flows from higher voltage to lower voltage. Historically, voltage has been referred to using terms like "tension" and "pressure". Even today, the term "tension" is still used, for example within

630-733: Is named after the Scottish inventor James Watt . The unit name was proposed by C. William Siemens in August 1882 in his President's Address to the Fifty-Second Congress of the British Association for the Advancement of Science . Noting that units in the practical system of units were named after leading physicists, Siemens proposed that watt might be an appropriate name for a unit of power. Siemens defined

675-552: Is the joule per coulomb , where 1 volt = 1 joule (of work) per 1 coulomb of charge. The old SI definition for volt used power and current ; starting in 1990, the quantum Hall and Josephson effect were used, and in 2019 physical constants were given defined values for the definition of all SI units. Voltage is denoted symbolically by Δ V {\displaystyle \Delta V} , simplified V , especially in English -speaking countries. Internationally,

720-413: Is the difference in electric potential between two points. In a static electric field , it corresponds to the work needed per unit of charge to move a positive test charge from the first point to the second point. In the International System of Units (SI), the derived unit for voltage is the volt (V) . The voltage between points can be caused by the build-up of electric charge (e.g.,

765-530: Is the intensity of the electric field. In this case, the voltage increase from point A to point B is equal to the work done per unit charge, against the electric field, to move the charge from A to B without causing any acceleration. Mathematically, this is expressed as the line integral of the electric field along that path. In electrostatics, this line integral is independent of the path taken. Under this definition, any circuit where there are time-varying magnetic fields, such as AC circuits , will not have

810-523: Is the rate at which electrical work is performed when a current of one ampere (A) flows across an electrical potential difference of one volt (V), meaning the watt is equivalent to the volt-ampere (the latter unit, however, is used for a different quantity from the real power of an electrical circuit). 1   W = 1   V ⋅ A . {\displaystyle \mathrm {1~W=1~V{\cdot }A} .} Two additional unit conversions for watt can be found using

855-450: Is the sum of the voltage between A and B and the voltage between B and C . The various voltages in a circuit can be computed using Kirchhoff's circuit laws . When talking about alternating current (AC) there is a difference between instantaneous voltage and average voltage. Instantaneous voltages can be added for direct current (DC) and AC, but average voltages can be meaningfully added only when they apply to signals that all have

900-530: Is used to quantify the rate of energy transfer . The watt is named in honor of James Watt (1736–1819), an 18th-century Scottish inventor , mechanical engineer , and chemist who improved the Newcomen engine with his own steam engine in 1776. Watt's invention was fundamental for the Industrial Revolution . When an object's velocity is held constant at one meter per second against

945-430: The voltaic pile , possibly the first chemical battery . A simple analogy for an electric circuit is water flowing in a closed circuit of pipework , driven by a mechanical pump . This can be called a "water circuit". The potential difference between two points corresponds to the pressure difference between two points. If the pump creates a pressure difference between two points, then water flowing from one point to

SECTION 20

#1732786598210

990-670: The NmG disappeared from the Myer Motors "Buy your NmG" page on their website, replaced by the 2 seat Duo. The Sparrow electrical system in a Corbin Sparrow VIN28 is composed of three isolated sections. "Defanging" is the process of changing the circuit to disconnect the high voltage from the low voltage. Watt The watt (symbol: W ) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m ⋅s . It

1035-470: The above equation and Ohm's law . 1   W = 1   V 2 / Ω = 1   A 2 ⋅ Ω , {\displaystyle \mathrm {1~W=1~V^{2}/\Omega =1~A^{2}{\cdot }\Omega } ,} where ohm ( Ω {\displaystyle \Omega } ) is the SI derived unit of electrical resistance . The watt

1080-413: The circuit are not negligible, then their effects can be modelled by adding mutual inductance elements. In the case of a physical inductor though, the ideal lumped representation is often accurate. This is because the external fields of inductors are generally negligible, especially if the inductor has a closed magnetic path . If external fields are negligible, we find that is path-independent, and there

1125-431: The device with respect to a common reference point (or ground ). The voltage drop is the difference between the two readings. Two points in an electric circuit that are connected by an ideal conductor without resistance and not within a changing magnetic field have a voltage of zero. Any two points with the same potential may be connected by a conductor and no current will flow between them. The voltage between A and C

1170-446: The electric field in the region exterior to each component is conservative, and voltages between nodes in the circuit are well-defined, where as long as the path of integration does not pass through the inside of any component. The above is the same formula used in electrostatics. This integral, with the path of integration being along the test leads, is what a voltmeter will actually measure. If uncontained magnetic fields throughout

1215-428: The electric field, rather than to differences in electric potential. In this case, the voltage rise along some path P {\displaystyle {\mathcal {P}}} from r A {\displaystyle \mathbf {r} _{A}} to r B {\displaystyle \mathbf {r} _{B}} is given by: However, in this case the "voltage" between two points depends on

1260-515: The energy company Ørsted A/S uses the unit megawatt for produced electrical power and the equivalent unit megajoule per second for delivered heating power in a combined heat and power station such as Avedøre Power Station . When describing alternating current (AC) electricity, another distinction is made between the watt and the volt-ampere . While these units are equivalent for simple resistive circuits , they differ when loads exhibit electrical reactance . Radio stations usually report

1305-460: The maximum power output it can achieve at any point in time. A power station's annual energy output, however, would be recorded using units of energy (not power), typically gigawatt hours. Major energy production or consumption is often expressed as terawatt hours for a given period; often a calendar year or financial year. One terawatt hour of energy is equal to a sustained power delivery of one terawatt for one hour, or approximately 114 megawatts for

1350-607: The original "jelly bean" model and then a hatchback model, which was nicknamed "pizza butt" because it was designed for use by Domino's Pizza . Several Sparrows were featured in the feature films Austin Powers in Goldmember and Looper . In June 2008, the website listed a price of $ 29,995 without taxes or shipping. In 2009, the NmG began to use lithium batteries which Myers Motors claims doubled its driving range to 97 km (60 mi) between charges. In February 2013,

1395-407: The other will be able to do work, such as driving a turbine . Similarly, work can be done by an electric current driven by the potential difference provided by a battery . For example, the voltage provided by a sufficiently-charged automobile battery can "push" a large current through the windings of an automobile's starter motor . If the pump is not working, it produces no pressure difference, and

Myers Motors NmG - Misplaced Pages Continue

1440-424: The path taken. In circuit analysis and electrical engineering , lumped element models are used to represent and analyze circuits. These elements are idealized and self-contained circuit elements used to model physical components. When using a lumped element model, it is assumed that the effects of changing magnetic fields produced by the circuit are suitably contained to each element. Under these assumptions,

1485-697: The phrase " high tension " (HT) which is commonly used in thermionic valve ( vacuum tube ) based and automotive electronics. In electrostatics , the voltage increase from point r A {\displaystyle \mathbf {r} _{A}} to some point r B {\displaystyle \mathbf {r} _{B}} is given by the change in electrostatic potential V {\textstyle V} from r A {\displaystyle \mathbf {r} _{A}} to r B {\displaystyle \mathbf {r} _{B}} . By definition, this is: where E {\displaystyle \mathbf {E} }

1530-430: The points across which the voltage is measured. When using a voltmeter to measure voltage, one electrical lead of the voltmeter must be connected to the first point, one to the second point. A common use of the term "voltage" is in describing the voltage dropped across an electrical device (such as a resistor). The voltage drop across the device can be understood as the difference between measurements at each terminal of

1575-488: The power of their transmitters in units of watts, referring to the effective radiated power . This refers to the power that a half-wave dipole antenna would need to radiate to match the intensity of the transmitter's main lobe . The terms power and energy are closely related but distinct physical quantities. Power is the rate at which energy is generated or consumed and hence is measured in units (e.g. watts) that represent energy per unit time . For example, when

1620-414: The presence of time-varying fields. However, unlike in electrostatics, the electric field can no longer be expressed only in terms of the electric potential. Furthermore, the potential is no longer uniquely determined up to a constant, and can take significantly different forms depending on the choice of gauge . In this general case, some authors use the word "voltage" to refer to the line integral of

1665-415: The same frequency and phase. Instruments for measuring voltages include the voltmeter , the potentiometer , and the oscilloscope . Analog voltmeters , such as moving-coil instruments, work by measuring the current through a fixed resistor, which, according to Ohm's law , is proportional to the voltage across the resistor. The potentiometer works by balancing the unknown voltage against a known voltage in

1710-465: The symbol U is standardized. It is used, for instance, in the context of Ohm's or Kirchhoff's circuit laws . The electrochemical potential is the voltage that can be directly measured with a voltmeter. The Galvani potential that exists in structures with junctions of dissimilar materials is also work per charge but cannot be measured with a voltmeter in the external circuit (see § Galvani potential vs. electrochemical potential ). Voltage

1755-401: The turbine will not rotate. Likewise, if the automobile's battery is very weak or "dead" (or "flat"), then it will not turn the starter motor. The hydraulic analogy is a useful way of understanding many electrical concepts. In such a system, the work done to move water is equal to the " pressure drop" (compare p.d.) multiplied by the volume of water moved. Similarly, in an electrical circuit,

1800-569: The unit of power. In the electric power industry , megawatt electrical ( MWe or MW e ) refers by convention to the electric power produced by a generator, while megawatt thermal or thermal megawatt (MWt, MW t , or MWth, MW th ) refers to thermal power produced by the plant. For example, the Embalse nuclear power plant in Argentina uses a fission reactor to generate 2,109 MW t (i.e. heat), which creates steam to drive

1845-570: The unit within the existing system of practical units as "the power conveyed by a current of an Ampère through the difference of potential of a Volt". In October 1908, at the International Conference on Electric Units and Standards in London, so-called international definitions were established for practical electrical units. Siemens' definition was adopted as the international watt. (Also used: 1 A × 1 Ω.) The watt

Myers Motors NmG - Misplaced Pages Continue

1890-400: The voltage between two points in a system. Often a common reference potential such as the ground of the system is used as one of the points. In this case, voltage is often mentioned at a point without completely mentioning the other measurement point. A voltage can be associated with either a source of energy or the loss, dissipation, or storage of energy. The SI unit of work per unit charge

1935-465: The work done to move electrons or other charge carriers is equal to "electrical pressure difference" multiplied by the quantity of electrical charges moved. In relation to "flow", the larger the "pressure difference" between two points (potential difference or water pressure difference), the greater the flow between them (electric current or water flow). (See " electric power ".) Specifying a voltage measurement requires explicit or implicit specification of

1980-420: Was defined as equal to 10 units of power in the practical system of units. The "international units" were dominant from 1909 until 1948. After the 9th General Conference on Weights and Measures in 1948, the international watt was redefined from practical units to absolute units (i.e., using only length, mass, and time). Concretely, this meant that 1 watt was defined as the quantity of energy transferred in

2025-617: Was first used by Volta in a letter to Giovanni Aldini in 1798, and first appeared in a published paper in 1801 in Annales de chimie et de physique . Volta meant by this a force that was not an electrostatic force, specifically, an electrochemical force. The term was taken up by Michael Faraday in connection with electromagnetic induction in the 1820s. However, a clear definition of voltage and method of measuring it had not been developed at this time. Volta distinguished electromotive force (emf) from tension (potential difference):

#209790