A truss bridge is a bridge whose load-bearing superstructure is composed of a truss , a structure of connected elements, usually forming triangular units. The connected elements, typically straight, may be stressed from tension , compression , or sometimes both in response to dynamic loads. There are several types of truss bridges, including some with simple designs that were among the first bridges designed in the 19th and early 20th centuries. A truss bridge is economical to construct primarily because it uses materials efficiently.
99-602: Cambridge Springs Bridge was a historic metal truss bridge spanning French Creek at Cambridge Springs , Crawford County, Pennsylvania . It was built in 1896, and was a single span, Baltimore truss bridge measuring 200-foot-long (61 m). It was built by the Youngstown Bridge Company of Youngstown, Ohio . It was demolished about 2003. It was added to the National Register of Historic Places in 1988. Truss bridge The nature of
198-470: A Parker truss or Pratt truss than a true arch . In the Brown truss all vertical elements are under tension, with exception of the end posts. This type of truss is particularly suited for timber structures that use iron rods as tension members. See Lenticular truss below. This combines an arch with a truss to form a structure both strong and rigid. Most trusses have the lower chord under tension and
297-677: A covered bridge to protect the structure. In 1820, a simple form of truss, Town's lattice truss , was patented, and had the advantage of requiring neither high labor skills nor much metal. Few iron truss bridges were built in the United States before 1850. Truss bridges became a common type of bridge built from the 1870s through the 1930s. Examples of these bridges still remain across the US, but their numbers are dropping rapidly as they are demolished and replaced with new structures. As metal slowly started to replace timber, wrought iron bridges in
396-416: A truss allows the analysis of its structure using a few assumptions and the application of Newton's laws of motion according to the branch of physics known as statics . For purposes of analysis, trusses are assumed to be pin jointed where the straight components meet, meaning that taken alone, every joint on the structure is functionally considered to be a flexible joint as opposed to a rigid joint with
495-550: A Parker truss vary from near vertical in the center of the span to diagonal near each end, similar to a Warren truss. George H. Pegram , while the chief engineer of Edge Moor Iron Company in Wilmington, Delaware , patented this truss design in 1885. The Pegram truss consists of a Parker type design with the vertical posts leaning towards the center at an angle between 60 and 75°. The variable post angle and constant chord length allowed steel in existing bridges to be recycled into
594-524: A bar, expelling slag in the process. During the Middle Ages , water-power was applied to the process, probably initially for powering bellows, and only later to hammers for forging the blooms. However, while it is certain that water-power was used, the details remain uncertain. That was the culmination of the direct process of ironmaking. It survived in Spain and southern France as Catalan Forges to
693-582: A carbon content of less than 0.008 wt% . Bar iron is a generic term sometimes used to distinguish it from cast iron. It is the equivalent of an ingot of cast metal, in a convenient form for handling, storage, shipping and further working into a finished product. The bars were the usual product of the finery forge , but not necessarily made by that process: Wrought iron is a form of commercial iron containing less than 0.10% of carbon, less than 0.25% of impurities total of sulfur, phosphorus, silicon and manganese, and less than 2% slag by weight. Wrought iron
792-594: A continuous truss functions as a single rigid structure over multiple supports. This means that the live load on one span is partially supported by the other spans, and consequently it is possible to use less material in the truss. Continuous truss bridges were not very common before the mid-20th century because they are statically indeterminate , which makes them difficult to design without the use of computers . A multi-span truss bridge may also be constructed using cantilever spans, which are supported at only one end rather than both ends like other types of trusses. Unlike
891-523: A continuous truss, a cantilever truss does not need to be connected rigidly, or indeed at all, at the center. Many cantilever bridges, like the Quebec Bridge shown below, have two cantilever spans supporting a simple truss in the center. The bridge would remain standing if the simple truss section were removed. Bridges are the most widely known examples of truss use. There are many types, some of them dating back hundreds of years. Below are some of
990-435: A conventional truss into place or by building it in place using a "traveling support". In another method of construction, one outboard half of each balanced truss is built upon temporary falsework. When the outboard halves are completed and anchored the inboard halves may then be constructed and the center section completed as described above. The Fink truss was designed by Albert Fink of Germany in 1854. This type of bridge
1089-470: A final product. Sometimes European ironworks would skip the shingling process completely and roll the puddle balls. The only drawback to that is that the edges of the rough bars were not as well compressed. When the rough bar was reheated, the edges might separate and be lost into the furnace. The bloom was passed through rollers and to produce bars. The bars of wrought iron were of poor quality, called muck bars or puddle bars. To improve their quality,
SECTION 10
#17328015325741188-463: A high silky luster and fibrous appearance. Wrought iron lacks the carbon content necessary for hardening through heat treatment , but in areas where steel was uncommon or unknown, tools were sometimes cold-worked (hence cold iron ) to harden them. An advantage of its low carbon content is its excellent weldability. Furthermore, sheet wrought iron cannot bend as much as steel sheet metal when cold worked. Wrought iron can be melted and cast; however,
1287-605: A lack of durability, and gave way to the Pratt truss design, which was stronger. Again, the bridge companies marketed their designs, with the Wrought Iron Bridge Company in the lead. As the 1880s and 1890s progressed, steel began to replace wrought iron as the preferred material. Other truss designs were used during this time, including the camel-back. By the 1910s, many states developed standard plan truss bridges, including steel Warren pony truss bridges. In
1386-434: A low scale to supply the steel to the artisan swordmakers. Osmond iron consisted of balls of wrought iron, produced by melting pig iron and catching the droplets on a staff, which was spun in front of a blast of air so as to expose as much of it as possible to the air and oxidise its carbon content. The resultant ball was often forged into bar iron in a hammer mill. In the 15th century, the blast furnace spread into what
1485-477: A lower chord (functioning as a suspension cable) that curves down and then up to meet at the same end points. Where the arches extend above and below the roadbed, it is called a lenticular pony truss bridge . The Pauli truss bridge is a specific variant of the lenticular truss, but the terms are not interchangeable. One type of lenticular truss consists of arcuate upper compression chords and lower eyebar chain tension links. Brunel 's Royal Albert Bridge over
1584-449: A lower melting point than iron or steel. Cast and especially pig iron have excess slag which must be at least partially removed to produce quality wrought iron. At foundries it was common to blend scrap wrought iron with cast iron to improve the physical properties of castings. For several years after the introduction of Bessemer and open hearth steel, there were different opinions as to what differentiated iron from steel; some believed it
1683-459: A modest amount of wrought iron was refined into steel , which was used mainly to produce swords , cutlery , chisels , axes , and other edged tools, as well as springs and files. The demand for wrought iron reached its peak in the 1860s, being in high demand for ironclad warships and railway use. However, as properties such as brittleness of mild steel improved with better ferrous metallurgy and as steel became less costly to make thanks to
1782-726: A new span using the Pegram truss design. This design also facilitated reassembly and permitted a bridge to be adjusted to fit different span lengths. There are twelve known remaining Pegram span bridges in the United States with seven in Idaho , two in Kansas , and one each in California , Washington , and Utah . The Pennsylvania (Petit) truss is a variation on the Pratt truss . The Pratt truss includes braced diagonal members in all panels;
1881-603: A number of patented processes for that, which are referred to today as potting and stamping . The earliest were developed by John Wood of Wednesbury and his brother Charles Wood of Low Mill at Egremont , patented in 1763. Another was developed for the Coalbrookdale Company by the Cranage brothers . Another important one was that of John Wright and Joseph Jesson of West Bromwich . A number of processes for making wrought iron without charcoal were devised as
1980-410: A process for manufacturing wrought iron quickly and economically. It involved taking molten steel from a Bessemer converter and pouring it into cooler liquid slag. The temperature of the steel is about 1500 °C and the liquid slag is maintained at approximately 1200 °C. The molten steel contains a large amount of dissolved gases so when the liquid steel hit the cooler surfaces of the liquid slag
2079-410: A refinery where raw coal was used to remove silicon and convert carbon within the raw material, found in the form of graphite, to a combination with iron called cementite. In the fully developed process (of Hall), this metal was placed into the hearth of the puddling furnace where it was melted. The hearth was lined with oxidizing agents such as haematite and iron oxide. The mixture was subjected to
SECTION 20
#17328015325742178-481: A single hearth for all stages. The introduction of coke for use in the blast furnace by Abraham Darby in 1709 (or perhaps others a little earlier) initially had little effect on wrought iron production. Only in the 1750s was coke pig iron used on any significant scale as the feedstock of finery forges. However, charcoal continued to be the fuel for the finery. From the late 1750s, ironmasters began to develop processes for making bar iron without charcoal. There were
2277-445: A strike; before the collapse, similar incidents had been common and had necessitated frequent repairs. Truss bridges consisting of more than one span may be either a continuous truss or a series of simple trusses. In the simple truss design, each span is supported only at the ends and is fully independent of any adjacent spans. Each span must fully support the weight of any vehicles traveling over it (the live load ). In contrast,
2376-412: A strong current of air and stirred with long bars, called puddling bars or rabbles, through working doors. The air, the stirring, and the "boiling" action of the metal helped the oxidizing agents to oxidize the impurities and carbon out of the pig iron. As the impurities oxidize, they formed a molten slag or drifted off as gas, while the remaining iron solidified into spongy wrought iron that floated to
2475-545: A variant of the lenticular truss, "with the top chord carefully shaped so that it has a constant force along the entire length of the truss." It is named after Friedrich Augustus von Pauli [ de ] , whose 1857 railway bridge (the Großhesseloher Brücke [ de ] ) spanned the Isar near Munich . ( See also Grosshesselohe Isartal station .) The term Pauli truss is not interchangeable with
2574-424: Is redshort or hot short if it contains sulfur in excess quantity. It has sufficient tenacity when cold, but cracks when bent or finished at a red heat. Hot short iron was considered unmarketable. Cold short iron, also known as coldshear , colshire , contains excessive phosphorus. It is very brittle when cold and cracks if bent. It may, however, be worked at high temperature. Historically, coldshort iron
2673-700: Is a Pratt truss design with a polygonal upper chord. A "camelback" is a subset of the Parker type, where the upper chord consists of exactly five segments. An example of a Parker truss is the Traffic Bridge in Saskatoon , Canada. An example of a camelback truss is the Woolsey Bridge near Woolsey, Arkansas . Designed and patented in 1872 by Reuben Partridge , after local bridge designs proved ineffective against road traffic and heavy rains. It became
2772-519: Is a hybrid between a Warren truss and a double-intersection Pratt truss. Invented in 1863 by Simeon S. Post, it is occasionally referred to as a Post patent truss although he never received a patent for it. The Ponakin Bridge and the Bell Ford Bridge are two examples of this truss. A Pratt truss includes vertical members and diagonals that slope down towards the center, the opposite of
2871-414: Is a more important measure of the quality of wrought iron. In tensile testing, the best irons are able to undergo considerable elongation before failure. Higher tensile wrought iron is brittle. Because of the large number of boiler explosions on steamboats in the early 1800s, the U.S. Congress passed legislation in 1830 which approved funds for correcting the problem. The treasury awarded a $ 1500 contract to
2970-407: Is an iron alloy with a very low carbon content (less than 0.05%) in contrast to that of cast iron (2.1% to 4.5%). It is a semi-fused mass of iron with fibrous slag inclusions (up to 2% by weight), which give it a wood-like "grain" that is visible when it is etched, rusted, or bent to failure . Wrought iron is tough, malleable, ductile , corrosion resistant, and easily forge welded , but
3069-520: Is an archaic past participle of the verb "to work", and so "wrought iron" literally means "worked iron". Wrought iron is a general term for the commodity, but is also used more specifically for finished iron goods, as manufactured by a blacksmith . It was used in that narrower sense in British Customs records, such manufactured iron was subject to a higher rate of duty than what might be called "unwrought" iron. Cast iron , unlike wrought iron,
Cambridge Springs Bridge - Misplaced Pages Continue
3168-435: Is brittle and cannot be worked either hot or cold. In the 17th, 18th, and 19th centuries, wrought iron went by a wide variety of terms according to its form, origin, or quality. While the bloomery process produced wrought iron directly from ore, cast iron or pig iron were the starting materials used in the finery forge and puddling furnace . Pig iron and cast iron have higher carbon content than wrought iron, but have
3267-491: Is deceptive. Most of the manganese, sulfur, phosphorus, and silicon in the wrought iron are incorporated into the slag fibers, making wrought iron purer than plain carbon steel. Amongst its other properties, wrought iron becomes soft at red heat and can be easily forged and forge welded . It can be used to form temporary magnets , but it cannot be magnetized permanently, and is ductile , malleable , and tough . For most purposes, ductility rather than tensile strength
3366-467: Is highly refined, with a small amount of silicate slag forged out into fibers. It comprises around 99.4% iron by mass. The presence of slag can be beneficial for blacksmithing operations, such as forge welding, since the silicate inclusions act as a flux and give the material its unique, fibrous structure. The silicate filaments in the slag also protect the iron from corrosion and diminish the effect of fatigue caused by shock and vibration. Historically,
3465-549: Is more difficult to weld electrically. Before the development of effective methods of steelmaking and the availability of large quantities of steel, wrought iron was the most common form of malleable iron. It was given the name wrought because it was hammered, rolled, or otherwise worked while hot enough to expel molten slag. The modern functional equivalent of wrought iron is mild steel , also called low-carbon steel. Neither wrought iron nor mild steel contain enough carbon to be hardened by heating and quenching. Wrought iron
3564-832: Is named after the K formed in each panel by the vertical member and two oblique members. Examples include the Südbrücke rail bridge over the River Rhine, Mainz, Germany, the bridge on I-895 (Baltimore Harbor Tunnel Thruway) in Baltimore, Maryland, the Long–Allen Bridge in Morgan City, Louisiana (Morgan City Bridge) with three 600-foot-long spans, and the Wax Lake Outlet bridge in Calumet, Louisiana One of
3663-407: Is no longer manufactured commercially. Wrought iron was originally produced by a variety of smelting processes, all described today as "bloomeries". Different forms of bloomery were used at different places and times. The bloomery was charged with charcoal and iron ore and then lit. Air was blown in through a tuyere to heat the bloomery to a temperature somewhat below the melting point of iron. In
3762-450: Is no longer produced on a commercial scale. Many products described as wrought iron, such as guard rails , garden furniture , and gates are made of mild steel. They are described as "wrought iron" only because they have been made to resemble objects which in the past were wrought (worked) by hand by a blacksmith (although many decorative iron objects, including fences and gates, were often cast rather than wrought). The word "wrought"
3861-628: Is now Belgium where it was improved. From there, it spread via the Pays de Bray on the boundary of Normandy and then to the Weald in England. With it, the finery forge spread. Those remelted the pig iron and (in effect) burnt out the carbon, producing a bloom, which was then forged into bar iron. If rod iron was required, a slitting mill was used. The finery process existed in two slightly different forms. In Great Britain, France, and parts of Sweden, only
3960-695: Is practical for use with spans up to 250 feet (76 m) and was a common configuration for railroad bridges as truss bridges moved from wood to metal. They are statically determinate bridges, which lend themselves well to long spans. They were common in the United States between 1844 and the early 20th century. Examples of Pratt truss bridges are the Governor's Bridge in Maryland ; the Hayden RR Bridge in Springfield, Oregon , built in 1882;
4059-525: Is the Victoria Bridge on Prince Street, Picton, New South Wales . Also constructed of ironbark, the bridge is still in use today for pedestrian and light traffic. The Bailey truss was designed by the British in 1940–1941 for military uses during World War II. A short selection of prefabricated modular components could be easily and speedily combined on land in various configurations to adapt to
Cambridge Springs Bridge - Misplaced Pages Continue
4158-611: Is used in the teaching of statics, by the building of model bridges from spaghetti . Spaghetti is brittle and although it can carry a modest tension force, it breaks easily if bent. A model spaghetti bridge thus demonstrates the use of a truss structure to produce a usefully strong complete structure from individually weak elements. In the United States , because wood was in abundance, early truss bridges would typically use carefully fitted timbers for members taking compression and iron rods for tension members , usually constructed as
4257-555: The Bessemer process and the Siemens–Martin process , the use of wrought iron declined. Many items, before they came to be made of mild steel , were produced from wrought iron, including rivets , nails , wire , chains , rails , railway couplings , water and steam pipes , nuts , bolts , horseshoes , handrails , wagon tires, straps for timber roof trusses , and ornamental ironwork , among many other things. Wrought iron
4356-621: The Dearborn River High Bridge near Augusta, Montana, built in 1897; and the Fair Oaks Bridge in Fair Oaks, California , built 1907–09. The Scenic Bridge near Tarkio, Montana , is an example of a Pratt deck truss bridge, where the roadway is on top of the truss. The queenpost truss , sometimes called "queen post" or queenspost, is similar to a king post truss in that the outer supports are angled towards
4455-1316: The Fort Wayne Street Bridge in Goshen, Indiana , the Schell Bridge in Northfield, Massachusetts , the Inclined Plane Bridge in Johnstown, Pennsylvania , the Easton–Phillipsburg Toll Bridge in Easton, Pennsylvania , the Connecticut River Bridge in Brattleboro, Vermont , the Metropolis Bridge in Metropolis, Illinois , and the Healdsburg Memorial Bridge in Healdsburg, California . A Post truss
4554-495: The Howe truss . The interior diagonals are under tension under balanced loading and vertical elements under compression. If pure tension elements (such as eyebars ) are used in the diagonals, then crossing elements may be needed near the center to accept concentrated live loads as they traverse the span. It can be subdivided, creating Y- and K-shaped patterns. The Pratt truss was invented in 1844 by Thomas and Caleb Pratt. This truss
4653-481: The Industrial Revolution began during the latter half of the 18th century. The most successful of those was puddling, using a puddling furnace (a variety of the reverberatory furnace ), which was invented by Henry Cort in 1784. It was later improved by others including Joseph Hall , who was the first to add iron oxide to the charge. In that type of furnace, the metal does not come into contact with
4752-481: The River Tamar between Devon and Cornwall uses a single tubular upper chord. As the horizontal tension and compression forces are balanced these horizontal forces are not transferred to the supporting pylons (as is the case with most arch types). This in turn enables the truss to be fabricated on the ground and then to be raised by jacking as supporting masonry pylons are constructed. This truss has been used in
4851-609: The Walloon process was used. That employed two different hearths, a finery hearth for finishing the iron and a chafery hearth for reheating it in the course of drawing the bloom out into a bar. The finery always burnt charcoal, but the chafery could be fired with mineral coal , since its impurities would not harm the iron when it was in the solid state. On the other hand, the German process, used in Germany, Russia, and most of Sweden used
4950-524: The bloomery ever being used in China. The fining process involved liquifying cast iron in a fining hearth and removing carbon from the molten cast iron through oxidation . Wagner writes that in addition to the Han dynasty hearths believed to be fining hearths, there is also pictorial evidence of the fining hearth from a Shandong tomb mural dated 1st to 2nd century AD, as well as a hint of written evidence in
5049-413: The finery forge at least by the 2nd century BC, the earliest specimens of cast and pig iron fined into wrought iron and steel found at the early Han dynasty site at Tieshengguo. Pigott speculates that the finery forge existed in the previous Warring States period (403–221 BC), due to the fact that there are wrought iron items from China dating to that period and there is no documented evidence of
SECTION 50
#17328015325745148-412: The 1920s and 1930s, Pennsylvania and several states continued to build steel truss bridges, using massive steel through-truss bridges for long spans. Other states, such as Michigan , used standard plan concrete girder and beam bridges, and only a limited number of truss bridges were built. The truss may carry its roadbed on top, in the middle, or at the bottom of the truss. Bridges with the roadbed at
5247-638: The 1960s, the price of steel production was dropping due to recycling, and even using the Aston process, wrought iron production was labor-intensive. It has been estimated that the production of wrought iron is approximately twice as expensive as that of low-carbon steel. In the United States, the last plant closed in 1969. The last in the world was the Atlas Forge of Thomas Walmsley and Sons in Bolton , Great Britain, which closed in 1973. Its 1860s-era equipment
5346-418: The 4th century AD Daoist text Taiping Jing . Wrought iron has been used for many centuries, and is the "iron" that is referred to throughout Western history. The other form of iron, cast iron , was in use in China since ancient times but was not introduced into Western Europe until the 15th century; even then, due to its brittleness, it could be used for only a limited number of purposes. Throughout much of
5445-575: The Franklin Institute to conduct a study. As part of the study, Walter R. Johnson and Benjamin Reeves conducted strength tests on boiler iron using a tester they had built in 1832 based on a design by Lagerhjelm in Sweden. Because of misunderstandings about tensile strength and ductility, their work did little to reduce failures. The importance of ductility was recognized by some very early in
5544-542: The Middle Ages, iron was produced by the direct reduction of ore in manually operated bloomeries , although water power had begun to be employed by 1104. The raw material produced by all indirect processes is pig iron. It has a high carbon content and as a consequence, it is brittle and cannot be used to make hardware. The osmond process was the first of the indirect processes, developed by 1203, but bloomery production continued in many places. The process depended on
5643-685: The Pennsylvania truss adds to this design half-length struts or ties in the top, bottom, or both parts of the panels. It is named after the Pennsylvania Railroad , which pioneered this design. It was once used for hundreds of bridges in the United States, but fell out of favor in the 1930s and very few examples of this design remain. Examples of this truss type include the Lower Trenton Bridge in Trenton, New Jersey ,
5742-545: The US started being built on a large scale in the 1870s. Bowstring truss bridges were a common truss design during this time, with their arched top chords. Companies like the Massillon Bridge Company of Massillon, Ohio , and the King Bridge Company of Cleveland , became well-known, as they marketed their designs to cities and townships. The bowstring truss design fell out of favor due to
5841-454: The balance between labor, machinery, and material costs has certain favorable proportions. The inclusion of the elements shown is largely an engineering decision based upon economics, being a balance between the costs of raw materials, off-site fabrication, component transportation, on-site erection, the availability of machinery, and the cost of labor. In other cases, the appearance of the structure may take on greater importance and so influence
5940-451: The bars were cut up, piled and tied together by wires, a process known as faggoting or piling. They were then reheated to a welding state, forge welded, and rolled again into bars. The process could be repeated several times to produce wrought iron of desired quality. Wrought iron that has been rolled multiple times is called merchant bar or merchant iron. The advantage of puddling was that it used coal, not charcoal as fuel. However, that
6039-425: The bridge illustrated in the infobox at the top, vertical members are in tension, lower horizontal members in tension, shear , and bending, outer diagonal and top members are in compression, while the inner diagonals are in tension. The central vertical member stabilizes the upper compression member, preventing it from buckling . If the top member is sufficiently stiff then this vertical element may be eliminated. If
SECTION 60
#17328015325746138-461: The center of the structure. The primary difference is the horizontal extension at the center which relies on beam action to provide mechanical stability. This truss style is only suitable for relatively short spans. The Smith truss , patented by Robert W Smith on July 16, 1867, has mostly diagonal criss-crossed supports. Smith's company used many variations of this pattern in the wooden covered bridges it built. Wrought iron Wrought iron
6237-732: The center, the opposite of the Pratt truss . In contrast to the Pratt truss, the diagonal web members are in compression and the vertical web members are in tension. Few of these bridges remain standing. Examples include Jay Bridge in Jay, New York ; McConnell's Mill Covered Bridge in Slippery Rock Township, Lawrence County, Pennsylvania ; Sandy Creek Covered Bridge in Jefferson County, Missouri ; and Westham Island Bridge in Delta, British Columbia , Canada. The K-truss
6336-414: The compression members and to control deflection. It is mainly used for rail bridges, showing off a simple and very strong design. In the Pratt truss the intersection of the verticals and the lower horizontal tension members are used to anchor the supports for the short-span girders under the tracks (among other things). With the Baltimore truss, there are almost twice as many points for this to happen because
6435-600: The construction of a stadium, with the upper chords of parallel trusses supporting a roof that may be rolled back. The Smithfield Street Bridge in Pittsburgh, Pennsylvania , is another example of this type. An example of a lenticular pony truss bridge that uses regular spans of iron is the Turn-of-River Bridge designed and manufactured by the Berlin Iron Bridge Co. The Pauli truss is
6534-413: The course of the smelt, slag would melt and run out, and carbon monoxide from the charcoal would reduce the ore to iron, which formed a spongy mass (called a "bloom") containing iron and also molten silicate minerals (slag) from the ore. The iron remained in the solid state. If the bloomery were allowed to become hot enough to melt the iron, carbon would dissolve into it and form pig or cast iron, but that
6633-429: The design decisions beyond mere matters of economics. Modern materials such as prestressed concrete and fabrication methods, such as automated welding , and the changing price of steel relative to that of labor have significantly influenced the design of modern bridges. A pure truss can be represented as a pin-jointed structure, one where the only forces on the truss members are tension or compression, not bending. This
6732-593: The development of the blast furnace, of which medieval examples have been discovered at Lapphyttan , Sweden and in Germany . The bloomery and osmond processes were gradually replaced from the 15th century by finery processes, of which there were two versions, the German and Walloon. They were in turn replaced from the late 18th century by puddling , with certain variants such as the Swedish Lancashire process . Those, too, are now obsolete, and wrought iron
6831-484: The earliest examples is the Old Blenheim Bridge , which with a span of 210 feet (64 m) and a total length of 232 feet (71 m) long was the second-longest covered bridge in the United States, until its destruction from flooding in 2011. The Busching bridge, often erroneously used as an example of a Long truss, is an example of a Howe truss, as the verticals are metal rods. A Parker truss bridge
6930-432: The fuel, and so is not contaminated by its impurities. The heat of the combustion products passes over the surface of the puddle and the roof of the furnace reverberates (reflects) the heat onto the metal puddle on the fire bridge of the furnace. Unless the raw material used is white cast iron, the pig iron or other raw product of the puddling first had to be refined into refined iron , or finers metal. That would be done in
7029-401: The gases were liberated. The molten steel then froze to yield a spongy mass having a temperature of about 1370 °C. The spongy mass would then be finished by being shingled and rolled as described under puddling (above). Three to four tons could be converted per batch with the method. Steel began to replace iron for railroad rails as soon as the Bessemer process for its manufacture
7128-430: The iron. The included slag in wrought iron also imparts corrosion resistance. Antique music wire , manufactured at a time when mass-produced carbon-steels were available, was found to have low carbon and high phosphorus; iron with high phosphorus content, normally causing brittleness when worked cold, was easily drawn into music wires. Although at the time phosphorus was not an easily identified component of iron, it
7227-482: The lower chord (a horizontal member of a truss) is sufficiently resistant to bending and shear, the outer vertical elements may be eliminated, but with additional strength added to other members in compensation. The ability to distribute the forces in various ways has led to a large variety of truss bridge types. Some types may be more advantageous when the wood is employed for compression elements while other types may be easier to erect in particular site conditions, or when
7326-514: The mid 19th century, in Austria as the stuckofen to 1775, and near Garstang in England until about 1770; it was still in use with hot blast in New York in the 1880s. In Japan the last of the old tatara bloomeries used in production of traditional tamahagane steel, mainly used in swordmaking, was extinguished only in 1925, though in the late 20th century the production resumed on
7425-515: The more common designs. The Allan truss , designed by Percy Allan , is partly based on the Howe truss . The first Allan truss was completed on 13 August 1894 over Glennies Creek at Camberwell, New South Wales and the last Allan truss bridge was built over Mill Creek near Wisemans Ferry in 1929. Completed in March 1895, the Tharwa Bridge located at Tharwa, Australian Capital Territory ,
7524-412: The needs at the site and allow rapid deployment of completed trusses. In the image, note the use of pairs of doubled trusses to adapt to the span and load requirements. In other applications the trusses may be stacked vertically, and doubled as necessary. The Baltimore truss is a subclass of the Pratt truss. A Baltimore truss has additional bracing in the lower section of the truss to prevent buckling in
7623-666: The product is no longer wrought iron, since the slag stringers characteristic of wrought iron disappear on melting, so the product resembles impure, cast, Bessemer steel. There is no engineering advantage to melting and casting wrought iron, as compared to using cast iron or steel, both of which are cheaper. Due to the variations in iron ore origin and iron manufacture, wrought iron can be inferior or superior in corrosion resistance, compared to other iron alloys. There are many mechanisms behind its corrosion resistance. Chilton and Evans found that nickel enrichment bands reduce corrosion. They also found that in puddled, forged, and piled iron,
7722-474: The roadbed but are not connected, a pony truss or half-through truss. Sometimes both the upper and lower chords support roadbeds, forming a double-decked truss . This can be used to separate rail from road traffic or to separate the two directions of road traffic. Since through truss bridges have supports located over the bridge deck, they are susceptible to being hit by overheight loads when used on highways. The I-5 Skagit River bridge collapsed after such
7821-531: The same manner as mild steel, but the presence of oxide or inclusions will give defective results. The material has a rough surface, so it can hold platings and coatings better than smooth steel. For instance, a galvanic zinc finish applied to wrought iron is approximately 25–40% thicker than the same finish on steel. In Table 1, the chemical composition of wrought iron is compared to that of pig iron and carbon steel . Although it appears that wrought iron and plain carbon steel have similar chemical compositions, that
7920-574: The short verticals will also be used to anchor the supports. Thus the short-span girders can be made lighter because their span is shorter. A good example of the Baltimore truss is the Amtrak Old Saybrook – Old Lyme Bridge in Connecticut , United States. The Bollman Truss Railroad Bridge at Savage, Maryland , United States is the only surviving example of a revolutionary design in the history of American bridge engineering. The type
8019-451: The simplest truss styles to implement, the king post consists of two angled supports leaning into a common vertical support. This type of bridge uses a substantial number of lightweight elements, easing the task of construction. Truss elements are usually of wood, iron, or steel. A lenticular truss bridge includes a lens-shape truss, with trusses between an upper chord functioning as an arch that curves up and then down to end points, and
8118-454: The standard for covered bridges built in central Ohio in the late 1800s and early 1900s. The Pegram truss is a hybrid between the Warren and Parker trusses where the upper chords are all of equal length and the lower chords are longer than the corresponding upper chord. Because of the difference in upper and lower chord length, each panel is not square. The members which would be vertical in
8217-414: The strength to maintain its shape, and the resulting shape and strength of the structure are only maintained by the interlocking of the components. This assumption means that members of the truss (chords, verticals, and diagonals) will act only in tension or compression. A more complex analysis is required where rigid joints impose significant bending loads upon the elements, as in a Vierendeel truss . In
8316-481: The term lenticular truss and, according to Thomas Boothby, the casual use of the term has clouded the literature. The Long truss was designed by Stephen H. Long in 1830. The design resembles a Howe truss , but is entirely made of wood instead of a combination of wood and metal. The longest surviving example is the Eldean Covered Bridge north of Troy, Ohio , spanning 224 feet (68 m). One of
8415-465: The top of the puddle and was fished out of the melt as puddle balls, using puddle bars. There was still some slag left in the puddle balls, so while they were still hot they would be shingled to remove the remaining slag and cinder. That was achieved by forging the balls under a hammer, or by squeezing the bloom in a machine. The material obtained at the end of shingling is known as bloom. The blooms are not useful in that form, so they were rolled into
8514-542: The top or the bottom are the most common as this allows both the top and bottom to be stiffened, forming a box truss . When the roadbed is atop the truss, it is a deck truss; an example of this was the I-35W Mississippi River bridge . When the truss members are both above and below the roadbed it is called a through truss; an example of this is the Pulaski Skyway , and where the sides extend above
8613-428: The upper chord under compression. In a cantilever truss the situation is reversed, at least over a portion of the span. The typical cantilever truss bridge is a "balanced cantilever", which enables the construction to proceed outward from a central vertical spar in each direction. Usually these are built in pairs until the outer sections may be anchored to footings. A central gap, if present, can then be filled by lifting
8712-560: The working-over of the metal spread out copper, nickel, and tin impurities that produce electrochemical conditions that slow down corrosion. The slag inclusions have been shown to disperse corrosion to an even film, enabling the iron to resist pitting. Another study has shown that slag inclusions are pathways to corrosion. Other studies show that sulfur in the wrought iron decreases corrosion resistance, while phosphorus increases corrosion resistance. Chloride ions also decrease wrought iron's corrosion resistance. Wrought iron may be welded in
8811-479: Was adopted (1865 on). Iron remained dominant for structural applications until the 1880s, because of problems with brittle steel, caused by introduced nitrogen, high carbon, excess phosphorus, or excessive temperature during or too-rapid rolling. By 1890 steel had largely replaced iron for structural applications. Sheet iron (Armco 99.97% pure iron) had good properties for use in appliances, being well-suited for enamelling and welding, and being rust-resistant. In
8910-414: Was also easy to assemble. Wells Creek Bollman Bridge is the only other bridge designed by Wendel Bollman still in existence, but it is a Warren truss configuration. The bowstring truss bridge was patented in 1841 by Squire Whipple . While similar in appearance to a tied-arch bridge , a bowstring truss has diagonal load-bearing members: these diagonals result in a structure that more closely matches
9009-490: Was considered sufficient for nails . Phosphorus is not necessarily detrimental to iron. Ancient Near Eastern smiths did not add lime to their furnaces. The absence of calcium oxide in the slag, and the deliberate use of wood with high phosphorus content during the smelting, induces a higher phosphorus content (typically <0.3%) than in modern iron (<0.02–0.03%). Analysis of the Iron Pillar of Delhi gives 0.11% in
9108-515: Was hypothesized that the type of iron had been rejected for conversion to steel but excelled when tested for drawing ability. During the Han dynasty (202 BC – 220 AD), new iron smelting processes led to the manufacture of new wrought iron implements for use in agriculture, such as the multi-tube seed drill and iron plough . In addition to accidental lumps of low-carbon wrought iron produced by excessive injected air in ancient Chinese cupola furnaces . The ancient Chinese created wrought iron by using
9207-477: Was moved to the Blists Hill site of Ironbridge Gorge Museum for preservation. Some wrought iron is still being produced for heritage restoration purposes, but only by recycling scrap. The slag inclusions, or stringers , in wrought iron give it properties not found in other forms of ferrous metal. There are approximately 250,000 inclusions per square inch. A fresh fracture shows a clear bluish color with
9306-405: Was named after its inventor, Wendel Bollman , a self-educated Baltimore engineer. It was the first successful all-metal bridge design (patented in 1852) to be adopted and consistently used on a railroad. The design employs wrought iron tension members and cast iron compression members. The use of multiple independent tension elements reduces the likelihood of catastrophic failure. The structure
9405-445: Was not the intention. However, the design of a bloomery made it difficult to reach the melting point of iron and also prevented the concentration of carbon monoxide from becoming high. After smelting was complete, the bloom was removed, and the process could then be started again. It was thus a batch process, rather than a continuous one such as a blast furnace. The bloom had to be forged mechanically to consolidate it and shape it into
9504-479: Was of little advantage in Sweden, which lacked coal. Gustaf Ekman observed charcoal fineries at Ulverston , which were quite different from any in Sweden. After his return to Sweden in the 1830s, he experimented and developed a process similar to puddling but used firewood and charcoal, which was widely adopted in the Bergslagen in the following decades. In 1925, James Aston of the United States developed
9603-683: Was popular with the Baltimore and Ohio Railroad . The Appomattox High Bridge on the Norfolk and Western Railway included 21 Fink deck truss spans from 1869 until their replacement in 1886. There are also inverted Fink truss bridges such as the Moody Pedestrian Bridge in Austin, Texas. The Howe truss , patented in 1840 by Massachusetts millwright William Howe , includes vertical members and diagonals that slope up towards
9702-473: Was the chemical composition and others that it was whether the iron heated sufficiently to melt and "fuse". Fusion eventually became generally accepted as relatively more important than composition below a given low carbon concentration. Another difference is that steel can be hardened by heat treating . Historically, wrought iron was known as "commercially pure iron"; however, it no longer qualifies because current standards for commercially pure iron require
9801-848: Was the second Allan truss bridge to be built, the oldest surviving bridge in the Australian Capital Territory and the oldest, longest continuously used Allan truss bridge. Completed in November 1895, the Hampden Bridge in Wagga Wagga, New South Wales , Australia, the first of the Allan truss bridges with overhead bracing, was originally designed as a steel bridge but was constructed with timber to reduce cost. In his design, Allan used Australian ironbark for its strength. A similar bridge also designed by Percy Allen
#573426