Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface , followed by cementation . Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment , and may be composed of geological detritus (minerals) or biological detritus (organic matter). The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement , which are called agents of denudation . Biological detritus was formed by bodies and parts (mainly shells) of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies ( marine snow ). Sedimentation may also occur as dissolved minerals precipitate from water solution .
123-551: The Chilhowee Group is a sedimentary body composed of early Cambrian siliciclastic sedimentary rocks which crop out along the eastern margin of the Blue Ridge province in Alabama , Maryland , Tennessee , North Carolina , Virginia , and West Virginia . They represent a rift to passive margin sequence, with mostly coarse, feldspathic sandstones and conglomerates in the lower member and shales and phyllite in
246-400: A (usually small) angle. Sometimes multiple sets of layers with different orientations exist in the same rock, a structure called cross-bedding . Cross-bedding is characteristic of deposition by a flowing medium (wind or water). The opposite of cross-bedding is parallel lamination, where all sedimentary layering is parallel. Differences in laminations are generally caused by cyclic changes in
369-443: A / k . The residence time is defined as where I and O are the input and output rates. In the above example, the steady-state input and output rates are both equal to a , so τ res = 1/ k . If the input and output rates are nonlinear functions of C , they may still be closely balanced over time scales much greater than the residence time; otherwise, there will be large fluctuations in C . In that case,
492-505: A computation based on 1672 analyses of numerous kinds of rocks Clarke arrived at the following as the average percentage composition of the Earth's crust: SiO 2 =59.71, Al 2 O 3 =15.41, Fe 2 O 3 =2.63, FeO=3.52, MgO=4.36, CaO=4.90, Na 2 O=3.55, K 2 O=2.80, H 2 O=1.52, TiO 2 =0.60, P 2 O 5 =0.22, (total 99.22%). All the other constituents occur only in very small quantities, usually much less than 1%. These oxides combine in
615-424: A concentration that is a function C ( r , t ) of position and time, but it is impractical to model the full variability. Instead, in an approach borrowed from chemical engineering , geochemists average the concentration over regions of the Earth called geochemical reservoirs . The choice of reservoir depends on the problem; for example, the ocean may be a single reservoir or be split into multiple reservoirs. In
738-424: A diagenetic structure common in carbonate rocks is a stylolite . Stylolites are irregular planes where material was dissolved into the pore fluids in the rock. This can result in the precipitation of a certain chemical species producing colouring and staining of the rock, or the formation of concretions . Concretions are roughly concentric bodies with a different composition from the host rock. Their formation can be
861-458: A fourth group, and in the fifth group FeO enter the magnesium silicates. The compositions of the planets and the Moon are chondritic , meaning that within each group the ratios between elements are the same as in carbonaceous chondrites. The estimates of planetary compositions depend on the model used. In the equilibrium condensation model, each planet was formed from a feeding zone in which
984-421: A haphazard way. For example, potash (potassium carbonate) and soda ( sodium carbonate ) combine to produce feldspars . In some cases, they may take other forms, such as nepheline , leucite , and muscovite , but in the great majority of instances they are found as feldspar. Phosphoric acid with lime (calcium carbonate) forms apatite . Titanium dioxide with ferrous oxide gives rise to ilmenite . Part of
1107-412: A ligand contains more than one donor atom, forming very strong complexes, also called chelates (the ligand is the chelator). One of the most common chelators is EDTA ( ethylenediaminetetraacetic acid ), which can replace six molecules of water and form strong bonds with metals that have a plus two charge. With stronger complexation, lower activity of the free metal ion is observed. One consequence of
1230-430: A little more than 47% of the Earth's crust consists of oxygen . It occurs principally in combination as oxides, of which the chief are silica , alumina , iron oxides , and various carbonates ( calcium carbonate , magnesium carbonate , sodium carbonate , and potassium carbonate ). The silica functions principally as an acid, forming silicates, and all the commonest minerals of igneous rocks are of this nature. From
1353-463: A particular sedimentary environment. Examples of bed forms include dunes and ripple marks . Sole markings, such as tool marks and flute casts, are grooves eroded on a surface that are preserved by renewed sedimentation. These are often elongated structures and can be used to establish the direction of the flow during deposition. Ripple marks also form in flowing water. There can be symmetric or asymmetric. Asymmetric ripples form in environments where
SECTION 10
#17327728026601476-465: A red colour does not necessarily mean the rock formed in a continental environment or arid climate. The presence of organic material can colour a rock black or grey. Organic material is formed from dead organisms, mostly plants. Normally, such material eventually decays by oxidation or bacterial activity. Under anoxic circumstances, however, organic material cannot decay and leaves a dark sediment, rich in organic material. This can, for example, occur at
1599-414: A result, chemical reactions show a small isotope dependence, with heavier isotopes preferring species or compounds with a higher oxidation state; and in phase changes, heavier isotopes tend to concentrate in the heavier phases. Mass-dependent fractionation is largest in light elements because the difference in masses is a larger fraction of the total mass. Ratios between isotopes are generally compared to
1722-489: A rock is usually expressed with the Wentworth scale, though alternative scales are sometimes used. The grain size can be expressed as a diameter or a volume, and is always an average value, since a rock is composed of clasts with different sizes. The statistical distribution of grain sizes is different for different rock types and is described in a property called the sorting of the rock. When all clasts are more or less of
1845-409: A scavenged-type trace metal is aluminium , which has strong interactions with particles as well as a short residence time in the ocean. The residence times of scavenged-type trace metals are around 100 to 1000 years. The concentrations of these metals are highest around bottom sediments, hydrothermal vents , and rivers. For aluminium, atmospheric dust provides the greatest source of external inputs into
1968-465: A sediment after its initial deposition. This includes compaction and lithification of the sediments. Early stages of diagenesis, described as eogenesis , take place at shallow depths (a few tens of meters) and is characterized by bioturbation and mineralogical changes in the sediments, with only slight compaction. The red hematite that gives red bed sandstones their color is likely formed during eogenesis. Some biochemical processes, like
2091-431: A sedimentary rock may have been present in the original sediments or may formed by precipitation during diagenesis. In the second case, a mineral precipitate may have grown over an older generation of cement. A complex diagenetic history can be established by optical mineralogy , using a petrographic microscope . Carbonate rocks predominantly consist of carbonate minerals such as calcite, aragonite or dolomite . Both
2214-508: A small sub-group rich in olivine and without feldspar has been called the "ultramafic" rocks. They have very low percentages of silica but much iron and magnesia. Except these last, practically all rocks contain felspars or feldspathoid minerals. In the acid rocks, the common feldspars are orthoclase, perthite, microcline, and oligoclase—all having much silica and alkalis. In the mafic rocks labradorite, anorthite, and bytownite prevail, being rich in lime and poor in silica, potash, and soda. Augite
2337-516: A small-scale property of a rock, but determines many of its large-scale properties, such as the density , porosity or permeability . The 3D orientation of the clasts is called the fabric of the rock. The size and form of clasts can be used to determine the velocity and direction of current in the sedimentary environment that moved the clasts from their origin; fine, calcareous mud only settles in quiet water while gravel and larger clasts are moved only by rapidly moving water. The grain size of
2460-606: A solid core captured nebular gas. In current models, the four giant planets have cores of rock and ice that are roughly the same size, but the proportion of hydrogen and helium decreases from about 300 Earth masses in Jupiter to 75 in Saturn and just a few in Uranus and Neptune. Thus, while the gas giants are primarily composed of hydrogen and helium, the ice giants are primarily composed of heavier elements (O, C, N, S), primarily in
2583-564: A standard. For example, sulfur has four stable isotopes, of which the two most common are S and S. The ratio of their concentrations, R = S/ S , is reported as where R s is the same ratio for a standard. Because the differences are small, the ratio is multiplied by 1000 to make it parts per thousand (referred to as parts per mil). This is represented by the symbol ‰ . Equilibrium fractionation occurs between chemicals or phases that are in equilibrium with each other. In equilibrium fractionation between phases, heavier phases prefer
SECTION 20
#17327728026602706-952: A term for a fissile mudrock (regardless of grain size) although some older literature uses the term "shale" as a synonym for mudrock. Biochemical sedimentary rocks are created when organisms use materials dissolved in air or water to build their tissue. Examples include: Chemical sedimentary rock forms when mineral constituents in solution become supersaturated and inorganically precipitate . Common chemical sedimentary rocks include oolitic limestone and rocks composed of evaporite minerals, such as halite (rock salt), sylvite , baryte and gypsum . This fourth miscellaneous category includes volcanic tuff and volcanic breccias formed by deposition and later cementation of lava fragments erupted by volcanoes, and impact breccias formed after impact events . Alternatively, sedimentary rocks can be subdivided into compositional groups based on their mineralogy: Sedimentary rocks are formed when sediment
2829-417: A texture, only the average size of the crystals and the fabric are necessary. Most sedimentary rocks contain either quartz ( siliciclastic rocks) or calcite ( carbonate rocks ). In contrast to igneous and metamorphic rocks, a sedimentary rock usually contains very few different major minerals. However, the origin of the minerals in a sedimentary rock is often more complex than in an igneous rock. Minerals in
2952-433: A trace metal with a conservative-type distribution is molybdenum. It has a residence time within the oceans of around 8 x 10 years and is generally present as the molybdate anion (MoO 4 ). Molybdenum interacts weakly with particles and displays an almost uniform vertical profile in the ocean. Relative to the abundance of molybdenum in the ocean, the amount required as a metal cofactor for enzymes in marine phytoplankton
3075-414: A type of model called a box model , a reservoir is represented by a box with inputs and outputs. Geochemical models generally involve feedback. In the simplest case of a linear cycle, either the input or the output from a reservoir is proportional to the concentration. For example, salt is removed from the ocean by formation of evaporites , and given a constant rate of evaporation in evaporite basins,
3198-425: A valuable indicator of the biological and ecological environment that existed after the sediment was deposited. On the other hand, the burrowing activity of organisms can destroy other (primary) structures in the sediment, making a reconstruction more difficult. Secondary structures can also form by diagenesis or the formation of a soil ( pedogenesis ) when a sediment is exposed above the water level. An example of
3321-503: Is deposited out of air, ice, wind, gravity, or water flows carrying the particles in suspension . This sediment is often formed when weathering and erosion break down a rock into loose material in a source area. The material is then transported from the source area to the deposition area. The type of sediment transported depends on the geology of the hinterland (the source area of the sediment). However, some sedimentary rocks, such as evaporites , are composed of material that form at
3444-623: Is a form of kinetic fractionation since reactions tend to be in one direction. Biological organisms prefer lighter isotopes because there is a lower energy cost in breaking energy bonds. In addition to the previously mentioned factors, the environment and species of the organism can have a large effect on the fractionation. Through a variety of physical and chemical processes, chemical elements change in concentration and move around in what are called geochemical cycles . An understanding of these changes requires both detailed observation and theoretical models. Each chemical compound, element or isotope has
3567-404: Is a physical and chemical separation of a planet into chemically distinct regions. For example, the terrestrial planets formed iron-rich cores and silicate-rich mantles and crusts. In the Earth's mantle, the primary source of chemical differentiation is partial melting , particularly near mid-ocean ridges. This can occur when the solid is heterogeneous or a solid solution , and part of the melt
3690-421: Is a structure where beds with a smaller grain size occur on top of beds with larger grains. This structure forms when fast flowing water stops flowing. Larger, heavier clasts in suspension settle first, then smaller clasts. Although graded bedding can form in many different environments, it is a characteristic of turbidity currents . The surface of a particular bed, called the bedform , can also be indicative of
3813-465: Is an integrated field of chemistry and geology . The term geochemistry was first used by the Swiss-German chemist Christian Friedrich Schönbein in 1838: "a comparative geochemistry ought to be launched, before geognosy can become geology, and before the mystery of the genesis of our planets and their inorganic matter may be revealed." However, for the rest of the century the more common term
Chilhowee Group - Misplaced Pages Continue
3936-567: Is anomalously enriched. The pattern of elemental abundance is mainly due to two factors. The hydrogen, helium, and some of the lithium were formed in about 20 minutes after the Big Bang , while the rest were created in the interiors of stars . Meteorites come in a variety of compositions, but chemical analysis can determine whether they were once in planetesimals that melted or differentiated . Chondrites are undifferentiated and have round mineral inclusions called chondrules . With
4059-451: Is based on "educated guesses". One difficulty with this model is that there may be significant errors in its prediction of volatile abundances because some volatiles are only partially condensed. The more common rock constituents are nearly all oxides ; chlorides , sulfides and fluorides are the only important exceptions to this and their total amount in any rock is usually much less than 1%. By 1911, F. W. Clarke had calculated that
4182-409: Is called bedding . Single beds can be a couple of centimetres to several meters thick. Finer, less pronounced layers are called laminae, and the structure a lamina forms in a rock is called lamination . Laminae are usually less than a few centimetres thick. Though bedding and lamination are often originally horizontal in nature, this is not always the case. In some environments, beds are deposited at
4305-404: Is convenient in a purely formal classification like that outlined here to treat the whole assemblage as a distinct series. This classification is based essentially on the mineralogical constitution of the igneous rocks. Any chemical distinctions between the different groups, though implied, are relegated to a subordinate position. It is admittedly artificial, but it has grown up with the growth of
4428-466: Is divided into two formations: the lower Wilson Ridge Formation and the upper Weisner Formation. In the southern Appalachians the two formations represent clastic deposition into the widening Iapetus basin. This article about a specific stratigraphic formation in the United States is a stub . You can help Misplaced Pages by expanding it . Sedimentary rock The sedimentary rock cover of
4551-719: Is found in the reduced form UO 2 (s). Vanadium is in several forms in oxidation state V(V); HVO 4 and H 2 VO 4 . Its reduced forms can include VO 2 , VO(OH) 3 , and V(OH) 3 . These relative dominance of these species depends on pH . In the water column of the ocean or deep lakes, vertical profiles of dissolved trace metals are characterized as following conservative–type , nutrient–type , or scavenged–type distributions. Across these three distributions, trace metals have different residence times and are used to varying extents by planktonic microorganisms. Trace metals with conservative-type distributions have high concentrations relative to their biological use. One example of
4674-429: Is higher when the sedimentation rate is high (so that a carcass is quickly buried), in anoxic environments (where little bacterial activity occurs) or when the organism had a particularly hard skeleton. Larger, well-preserved fossils are relatively rare. Fossils can be both the direct remains or imprints of organisms and their skeletons. Most commonly preserved are the harder parts of organisms such as bones, shells, and
4797-527: Is identified by a letter for the element preceded by a superscript for the mass number. For example, two common isotopes of chlorine are Cl and Cl. There are about 1700 known combinations of Z and N, of which only about 260 are stable. However, most of the unstable isotopes do not occur in nature. In geochemistry, stable isotopes are used to trace chemical pathways and reactions, while radioactive isotopes are primarily used to date samples. The chemical behavior of an atom – its affinity for other elements and
4920-506: Is low, olivine may be expected; where silica is present in greater quantity over ferromagnesian minerals, such as augite , hornblende , enstatite or biotite , occur rather than olivine. Unless potash is high and silica relatively low, leucite will not be present, for leucite does not occur with free quartz. Nepheline , likewise, is usually found in rocks with much soda and comparatively little silica. With high alkalis , soda-bearing pyroxenes and amphiboles may be present. The lower
5043-491: Is mirrored by the broad categories of rudites , arenites , and lutites , respectively, in older literature. The subdivision of these three broad categories is based on differences in clast shape (conglomerates and breccias), composition (sandstones), or grain size or texture (mudrocks). Conglomerates are dominantly composed of rounded gravel, while breccias are composed of dominantly angular gravel. Sandstone classification schemes vary widely, but most geologists have adopted
Chilhowee Group - Misplaced Pages Continue
5166-536: Is negligible. Trace metals with nutrient-type distributions are strongly associated with the internal cycles of particulate organic matter, especially the assimilation by plankton. The lowest dissolved concentrations of these metals are at the surface of the ocean, where they are assimilated by plankton. As dissolution and decomposition occur at greater depths, concentrations of these trace metals increase. Residence times of these metals, such as zinc, are several thousand to one hundred thousand years. Finally, an example of
5289-480: Is possible, by rock analysis, to say approximately what minerals the rock contains, but there are numerous exceptions to any rule. Except in acid or siliceous igneous rocks containing greater than 66% of silica , known as felsic rocks, quartz is not abundant in igneous rocks. In basic rocks (containing 20% of silica or less) it is rare for them to contain as much silicon, these are referred to as mafic rocks. If magnesium and iron are above average while silica
5412-554: Is present as the Mo(VI) oxidation state as MoO 4 (aq) in oxic environments. Mo(V) and Mo(IV) are present in reduced environments in the forms MoO 2 (aq) and MoS 2(s) . Rhenium is present as the Re(VII) oxidation state as ReO 4 within oxic conditions, but is reduced to Re(IV) which may form ReO 2 or ReS 2 . Uranium is in oxidation state VI in UO 2 (CO 3 ) 3 (aq) and
5535-401: Is reduced. Sediments are typically saturated with groundwater or seawater when originally deposited, and as pore space is reduced, much of these connate fluids are expelled. In addition to this physical compaction, chemical compaction may take place via pressure solution . Points of contact between grains are under the greatest strain, and the strained mineral is more soluble than the rest of
5658-423: Is separated from the solid. The process is known as equilibrium or batch melting if the solid and melt remain in equilibrium until the moment that the melt is removed, and fractional or Rayleigh melting if it is removed continuously. Isotopic fractionation can have mass-dependent and mass-independent forms. Molecules with heavier isotopes have lower ground state energies and are therefore more stable. As
5781-401: Is that volatiles would not condense, so the planets would have no atmospheres and Earth no atmosphere. In chondritic mixing models, the compositions of chondrites are used to estimate planetary compositions. For example, one model mixes two components, one with the composition of C1 chondrites and one with just the refractory components of C1 chondrites. In another model, the abundances of
5904-645: Is the Goldschmidt classification , which places the elements into four main groups. Lithophiles combine easily with oxygen. These elements, which include Na , K , Si , Al , Ti , Mg and Ca , dominate in the Earth's crust , forming silicates and other oxides. Siderophile elements ( Fe , Co , Ni , Pt , Re , Os ) have an affinity for iron and tend to concentrate in the core . Chalcophile elements ( Cu , Ag , Zn , Pb , S ) form sulfides ; and atmophile elements ( O , N , H and noble gases) dominate
6027-679: Is the most common ferromagnesian in mafic rocks, but biotite and hornblende are on the whole more frequent in felsic rocks. Rocks that contain leucite or nepheline, either partly or wholly replacing felspar, are not included in this table. They are essentially of intermediate or of mafic character. We might in consequence regard them as varieties of syenite, diorite, gabbro, etc., in which feldspathoid minerals occur, and indeed there are many transitions between syenites of ordinary type and nepheline — or leucite — syenite, and between gabbro or dolerite and theralite or essexite. But, as many minerals develop in these "alkali" rocks that are uncommon elsewhere, it
6150-493: Is the most stable, followed by feldspar , micas , and finally other less stable minerals that are only present when little weathering has occurred. The amount of weathering depends mainly on the distance to the source area, the local climate and the time it took for the sediment to be transported to the point where it is deposited. In most sedimentary rocks, mica, feldspar and less stable minerals have been weathered to clay minerals like kaolinite , illite or smectite . Among
6273-402: The chemical elements . These can be identified by their atomic number Z, which is the number of protons in the nucleus . An element can have more than one value for N, the number of neutrons in the nucleus. The sum of these is the mass number , which is roughly equal to the atomic mass . Atoms with the same atomic number but different neutron numbers are called isotopes . A given isotope
SECTION 50
#17327728026606396-430: The giant planets , which are dominated by hydrogen and helium and have lower mean densities. These can be further subdivided into the gas giants ( Jupiter and Saturn ) and the ice giants ( Uranus and Neptune ) that have large icy cores. Most of our direct information on the composition of the giant planets is from spectroscopy . Since the 1930s, Jupiter was known to contain hydrogen, methane and ammonium . In
6519-412: The history of life . The scientific discipline that studies the properties and origin of sedimentary rocks is called sedimentology . Sedimentology is part of both geology and physical geography and overlaps partly with other disciplines in the Earth sciences , such as pedology , geomorphology , geochemistry and structural geology . Sedimentary rocks can be subdivided into four groups based on
6642-682: The organic material of a dead organism undergoes chemical reactions in which volatiles such as water and carbon dioxide are expulsed. The fossil, in the end, consists of a thin layer of pure carbon or its mineralized form, graphite . This form of fossilisation is called carbonisation . It is particularly important for plant fossils. The same process is responsible for the formation of fossil fuels like lignite or coal. Structures in sedimentary rocks can be divided into primary structures (formed during deposition) and secondary structures (formed after deposition). Unlike textures, structures are always large-scale features that can easily be studied in
6765-439: The "mafic" group. The "intermediate" rocks include those characterized by the general absence of both quartz and olivine. An important subdivision of these contains a very high percentage of alkalis, especially soda, and consequently has minerals such as nepheline and leucite not common in other rocks. It is often separated from the others as the "alkali" or "soda" rocks, and there is a corresponding series of mafic rocks. Lastly,
6888-466: The 1960s, interferometry greatly increased the resolution and sensitivity of spectral analysis, allowing the identification of a much greater collection of molecules including ethane , acetylene , water and carbon monoxide . However, Earth-based spectroscopy becomes increasingly difficult with more remote planets, since the reflected light of the Sun is much dimmer; and spectroscopic analysis of light from
7011-501: The Dott scheme, which uses the relative abundance of quartz, feldspar, and lithic framework grains and the abundance of a muddy matrix between the larger grains. Six sandstone names are possible using the descriptors for grain composition (quartz-, feldspathic-, and lithic-) and the amount of matrix (wacke or arenite). For example, a quartz arenite would be composed of mostly (>90%) quartz grains and have little or no clayey matrix between
7134-527: The Earth is composed of non-silicate minerals such as carbonates , oxides , and sulfides . The other determining factor, namely the physical conditions attending consolidation, plays, on the whole, a smaller part, yet is by no means negligible. Certain minerals are practically confined to deep-seated intrusive rocks, e.g., microcline, muscovite, diallage. Leucite is very rare in plutonic masses; many minerals have special peculiarities in microscopic character according to whether they crystallized in-depth or near
7257-548: The James River Face Wilderness. Those quarries produced roofing shale, light weight aggregate, and various materials for brick making. The Antietam Formation also had a minor economic importance, particularly from 1945 up until 1966. There were three quarries producing crushed quartzite, which was used to produce concrete aggregates, road metal and railroad ballast. In Alabama and Georgia, the Chilhowee
7380-903: The Solar System, there could be little systematic dependence on position. Direct information on Mars, Venus and Mercury largely comes from spacecraft missions. Using gamma-ray spectrometers , the composition of the crust of Mars has been measured by the Mars Odyssey orbiter, the crust of Venus by some of the Venera missions to Venus, and the crust of Mercury by the MESSENGER spacecraft. Additional information on Mars comes from meteorites that have landed on Earth (the Shergottites , Nakhlites , and Chassignites , collectively known as SNC meteorites). Abundances are also constrained by
7503-470: The activity of bacteria , can affect minerals in a rock and are therefore seen as part of diagenesis. Deeper burial is accompanied by mesogenesis , during which most of the compaction and lithification takes place. Compaction takes place as the sediments come under increasing overburden (lithostatic) pressure from overlying sediments. Sediment grains move into more compact arrangements, grains of ductile minerals (such as mica ) are deformed, and pore space
SECTION 60
#17327728026607626-448: The ages of 4.56 billion years, they date to the early solar system . A particular kind, the CI chondrite , has a composition that closely matches that of the Sun's photosphere, except for depletion of some volatiles (H, He, C, N, O) and a group of elements (Li, B, Be) that are destroyed by nucleosynthesis in the Sun. Because of the latter group, CI chondrites are considered a better match for
7749-460: The atmosphere. Within each group, some elements are refractory , remaining stable at high temperatures, while others are volatile , evaporating more easily, so heating can separate them. The chemical composition of the Earth and other bodies is determined by two opposing processes: differentiation and mixing. In the Earth's mantle , differentiation occurs at mid-ocean ridges through partial melting , with more refractory materials remaining at
7872-447: The base of the lithosphere while the remainder rises to form basalt . After an oceanic plate descends into the mantle, convection eventually mixes the two parts together. Erosion differentiates granite , separating it into clay on the ocean floor, sandstone on the edge of the continent, and dissolved minerals in ocean waters. Metamorphism and anatexis (partial melting of crustal rocks) can mix these elements together again. In
7995-399: The bottom of deep seas and lakes. There is little water mixing in such environments; as a result, oxygen from surface water is not brought down, and the deposited sediment is normally a fine dark clay. Dark rocks, rich in organic material, are therefore often shales. The size , form and orientation of clasts (the original pieces of rock) in a sediment is called its texture . The texture is
8118-504: The cement and the clasts (including fossils and ooids ) of a carbonate sedimentary rock usually consist of carbonate minerals. The mineralogy of a clastic rock is determined by the material supplied by the source area, the manner of its transport to the place of deposition and the stability of that particular mineral. The resistance of rock-forming minerals to weathering is expressed by the Goldich dissolution series . In this series, quartz
8241-421: The cement to produce secondary porosity . At sufficiently high temperature and pressure, the realm of diagenesis makes way for metamorphism , the process that forms metamorphic rock . The color of a sedimentary rock is often mostly determined by iron , an element with two major oxides: iron(II) oxide and iron(III) oxide . Iron(II) oxide (FeO) only forms under low oxygen ( anoxic ) circumstances and gives
8364-495: The composition of the early Solar System. Moreover, the chemical analysis of CI chondrites is more accurate than for the photosphere, so it is generally used as the source for chemical abundance, despite their rareness (only five have been recovered on Earth). The planets of the Solar System are divided into two groups: the four inner planets are the terrestrial planets ( Mercury , Venus , Earth and Mars ), with relatively small sizes and rocky surfaces. The four outer planets are
8487-425: The compositions of solids were determined by the temperature in that zone. Thus, Mercury formed at 1400 K, where iron remained in a pure metallic form and there was little magnesium or silicon in solid form; Venus at 900 K, so all the magnesium and silicon condensed; Earth at 600 K, so it contains FeS and silicates; and Mars at 450 K, so FeO was incorporated into magnesium silicates. The greatest problem with this theory
8610-587: The continents of the Earth's crust is extensive (73% of the Earth's current land surface), but sedimentary rock is estimated to be only 8% of the volume of the crust. Sedimentary rocks are only a thin veneer over a crust consisting mainly of igneous and metamorphic rocks . Sedimentary rocks are deposited in layers as strata , forming a structure called bedding . Sedimentary rocks are often deposited in large structures called sedimentary basins . Sedimentary rocks have also been found on Mars . The study of sedimentary rocks and rock strata provides information about
8733-404: The corrosion of porphyritic minerals in igneous rocks. In rhyolites and trachytes, early crystals of hornblende and biotite may be found in great numbers partially converted into augite and magnetite. Hornblende and biotite were stable under the pressures and other conditions below the surface, but unstable at higher levels. In the ground-mass of these rocks, augite is almost universally present. But
8856-572: The current is in one direction, such as rivers. The longer flank of such ripples is on the upstream side of the current. Symmetric wave ripples occur in environments where currents reverse directions, such as tidal flats. Mudcracks are a bed form caused by the dehydration of sediment that occasionally comes above the water surface. Such structures are commonly found at tidal flats or point bars along rivers. Secondary sedimentary structures are those which formed after deposition. Such structures form by chemical, physical and biological processes within
8979-663: The dominant particle size. Most geologists use the Udden-Wentworth grain size scale and divide unconsolidated sediment into three fractions: gravel (>2 mm diameter), sand (1/16 to 2 mm diameter), and mud (<1/16 mm diameter). Mud is further divided into silt (1/16 to 1/256 mm diameter) and clay (<1/256 mm diameter). The classification of clastic sedimentary rocks parallels this scheme; conglomerates and breccias are made mostly of gravel, sandstones are made mostly of sand , and mudrocks are made mostly of mud. This tripartite subdivision
9102-489: The field. Sedimentary structures can indicate something about the sedimentary environment or can serve to tell which side originally faced up where tectonics have tilted or overturned sedimentary layers. Sedimentary rocks are laid down in layers called beds or strata . A bed is defined as a layer of rock that has a uniform lithology and texture. Beds form by the deposition of layers of sediment on top of each other. The sequence of beds that characterizes sedimentary rocks
9225-494: The five fractionation groups are estimated using an index element for each group. For the most refractory group, uranium is used; iron for the second; the ratios of potassium and thallium to uranium for the next two; and the molar ratio FeO/(FeO+ MgO ) for the last. Using thermal and seismic models along with heat flow and density, Fe can be constrained to within 10 percent on Earth, Venus, and Mercury. U can be constrained within about 30% on Earth, but its abundance on other planets
9348-404: The flow calms and the particles settle out of suspension . Most authors presently use the term "mudrock" to refer to all rocks composed dominantly of mud. Mudrocks can be divided into siltstones, composed dominantly of silt-sized particles; mudstones with subequal mixture of silt- and clay-sized particles; and claystones, composed mostly of clay-sized particles. Most authors use " shale " as
9471-423: The form CdCl (aq) in oxic waters or CdS(s) in a reduced environment. Thus, higher concentrations of Cd in marine sediments may indicate low redox potential conditions in the past. For copper(II), a prevalent form is CuCl (aq) within oxic environments and CuS(s) and Cu 2 S within reduced environments. The reduced seawater environment leads to two possible oxidation states of copper, Cu(I) and Cu(II). Molybdenum
9594-412: The form of water, methane, and ammonia. The surfaces are cold enough for molecular hydrogen to be liquid, so much of each planet is likely a hydrogen ocean overlaying one of heavier compounds. Outside the core, Jupiter has a mantle of liquid metallic hydrogen and an atmosphere of molecular hydrogen and helium. Metallic hydrogen does not mix well with helium, and in Saturn, it may form a separate layer below
9717-487: The formation of the Earth and the Solar System. In the early 20th century, Max von Laue and William L. Bragg showed that X-ray scattering could be used to determine the structures of crystals. In the 1920s and 1930s, Victor Goldschmidt and associates at the University of Oslo applied these methods to many common minerals and formulated a set of rules for how elements are grouped. Goldschmidt published this work in
9840-419: The forward reaction is enhanced if the humidity of the air is less than 100% or the water vapor is moved by a wind. Kinetic fractionation generally is enhanced compared to equilibrium fractionation and depends on factors such as reaction rate, reaction pathway and bond energy. Since lighter isotopes generally have weaker bonds, they tend to react faster and enrich the reaction products. Biological fractionation
9963-485: The grain. As a result, the contact points are dissolved away, allowing the grains to come into closer contact. The increased pressure and temperature stimulate further chemical reactions, such as the reactions by which organic material becomes lignite or coal. Lithification follows closely on compaction, as increased temperatures at depth hasten the precipitation of cement that binds the grains together. Pressure solution contributes to this process of cementation , as
10086-510: The grains, a lithic wacke would have abundant lithic grains and abundant muddy matrix, etc. Although the Dott classification scheme is widely used by sedimentologists, common names like greywacke , arkose , and quartz sandstone are still widely used by non-specialists and in popular literature. Mudrocks are sedimentary rocks composed of at least 50% silt- and clay-sized particles. These relatively fine-grained particles are commonly transported by turbulent flow in water or air, and deposited as
10209-484: The heavier isotopes. For two phases A and B, the effect can be represented by the factor In the liquid-vapor phase transition for water, a l-v at 20 degrees Celsius is 1.0098 for O and 1.084 for H. In general, fractionation is greater at lower temperatures. At 0 °C, the factors are 1.0117 and 1.111. When there is no equilibrium between phases or chemical compounds, kinetic fractionation can occur. For example, at interfaces between liquid water and air,
10332-587: The host rock. For example, a shell consisting of calcite can dissolve while a cement of silica then fills the cavity. In the same way, precipitating minerals can fill cavities formerly occupied by blood vessels , vascular tissue or other soft tissues. This preserves the form of the organism but changes the chemical composition, a process called permineralization . The most common minerals involved in permineralization are various forms of amorphous silica ( chalcedony , flint , chert ), carbonates (especially calcite), and pyrite . At high pressure and temperature,
10455-506: The largest two elements by fraction of total mass are hydrogen (74.9%) and helium (23.8%), with all the remaining elements contributing just 1.3%. There is a general trend of exponential decrease in abundance with increasing atomic number, although elements with even atomic number are more common than their odd-numbered neighbors (the Oddo–Harkins rule ). Compared to the overall trend, lithium , boron and beryllium are depleted and iron
10578-421: The likely compositions. High-pressure experiments predict that hydrogen will be a metallic liquid in the interior of Jupiter and Saturn, while in Uranus and Neptune it remains in the molecular state. Estimates also depend on models for the formation of the planets. Condensation of the presolar nebula would result in a gaseous planet with the same composition as the Sun, but the planets could also have formed when
10701-456: The lime forms lime feldspar. Magnesium carbonate and iron oxides with silica crystallize as olivine or enstatite , or with alumina and lime form the complex ferromagnesian silicates of which the pyroxenes , amphiboles , and biotites are the chief. Any excess of silica above what is required to neutralize the bases will separate out as quartz ; excess of alumina crystallizes as corundum . These must be regarded only as general tendencies. It
10824-435: The lithologies dehydrates. Clay can be easily compressed as a result of dehydration, while sand retains the same volume and becomes relatively less dense. On the other hand, when the pore fluid pressure in a sand layer surpasses a critical point, the sand can break through overlying clay layers and flow through, forming discordant bodies of sedimentary rock called sedimentary dykes . The same process can form mud volcanoes on
10947-419: The lower reactivity of complexed metals compared to the same concentration of free metal is that the chelation tends to stabilize metals in the aqueous solution instead of in solids. Concentrations of the trace metals cadmium , copper , molybdenum , manganese , rhenium , uranium and vanadium in sediments record the redox history of the oceans. Within aquatic environments, cadmium(II) can either be in
11070-535: The masses of the planets, while the internal distribution of elements is constrained by their moments of inertia. The planets condensed from the solar nebula, and much of the details of their composition are determined by fractionation as they cooled. The phases that condense fall into five groups. First to condense are materials rich in refractory elements such as Ca and Al. These are followed by nickel and iron, then magnesium silicates . Below about 700 kelvins (700 K), FeS and volatile-rich metals and silicates form
11193-417: The metallic hydrogen. Terrestrial planets are believed to have come from the same nebular material as the giant planets, but they have lost most of the lighter elements and have different histories. Planets closer to the Sun might be expected to have a higher fraction of refractory elements, but if their later stages of formation involved collisions of large objects with orbits that sampled different parts of
11316-450: The mineral dissolved from strained contact points is redeposited in the unstrained pore spaces. This further reduces porosity and makes the rock more compact and competent . Unroofing of buried sedimentary rock is accompanied by telogenesis , the third and final stage of diagenesis. As erosion reduces the depth of burial, renewed exposure to meteoric water produces additional changes to the sedimentary rock, such as leaching of some of
11439-408: The ocean, biological organisms can cause chemical differentiation, while dissolution of the organisms and their wastes can mix the materials again. A major source of differentiation is fractionation , an unequal distribution of elements and isotopes. This can be the result of chemical reactions, phase changes , kinetic effects, or radioactivity . On the largest scale, planetary differentiation
11562-462: The percentage of silica and alkali's, the greater is the prevalence of plagioclase feldspar as contracted with soda or potash feldspar. Earth's crust is composed of 90% silicate minerals and their abundance in the Earth is as follows: plagioclase feldspar (39%), alkali feldspar (12%), quartz (12%), pyroxene (11%), amphiboles (5%), micas (5%), clay minerals (5%); the remaining silicate minerals make up another 3% of Earth's crust. Only 8% of
11685-438: The place of deposition. The nature of a sedimentary rock, therefore, not only depends on the sediment supply, but also on the sedimentary depositional environment in which it formed. As sediments accumulate in a depositional environment, older sediments are buried by younger sediments, and they undergo diagenesis. Diagenesis includes all the chemical, physical, and biological changes, exclusive of surface weathering, undergone by
11808-462: The planets can only be used to detect vibrations of molecules, which are in the infrared frequency range. This constrains the abundances of the elements H, C and N. Two other elements are detected: phosphorus in the gas phosphine (PH 3 ) and germanium in germane (GeH 4 ). The helium atom has vibrations in the ultraviolet range, which is strongly absorbed by the atmospheres of the outer planets and Earth. Thus, despite its abundance, helium
11931-406: The plutonic representatives of the same magma, granite, and syenite contain biotite and hornblende far more commonly than augite. Those rocks that contain the most silica, and on crystallizing yield free quartz, form a group generally designated the "felsic" rocks. Those again that contain the least silica and most magnesia and iron, so that quartz is absent while olivine is usually abundant, form
12054-416: The pressure is about equal to 1 bar , approximately Earth's atmospheric pressure at sea level . The Galileo probe penetrated to 22 bars. This is a small fraction of the planet, which is expected to reach pressures of over 40 Mbar. To constrain the composition in the interior, thermodynamic models are constructed using the information on temperature from infrared emission spectra and equations of state for
12177-627: The processes responsible for their formation: clastic sedimentary rocks, biochemical (biogenic) sedimentary rocks, chemical sedimentary rocks, and a fourth category for "other" sedimentary rocks formed by impacts, volcanism , and other minor processes. Clastic sedimentary rocks are composed of rock fragments ( clasts ) that have been cemented together. The clasts are commonly individual grains of quartz , feldspar , clay minerals , or mica . However, any type of mineral may be present. Clasts may also be lithic fragments composed of more than one mineral. Clastic sedimentary rocks are subdivided according to
12300-427: The rate of removal of salt should be proportional to its concentration. For a given component C , if the input to a reservoir is a constant a and the output is kC for some constant k , then the mass balance equation is This expresses the fact that any change in mass must be balanced by changes in the input or output. On a time scale of t = 1/k , the system approaches a steady state in which C =
12423-480: The result of localized precipitation due to small differences in composition or porosity of the host rock, such as around fossils, inside burrows or around plant roots. In carbonate rocks such as limestone or chalk , chert or flint concretions are common, while terrestrial sandstones sometimes contain iron concretions. Calcite concretions in clay containing angular cavities or cracks are called septarian concretions . After deposition, physical processes can deform
12546-454: The rock a grey or greenish colour. Iron(III) oxide (Fe 2 O 3 ) in a richer oxygen environment is often found in the form of the mineral hematite and gives the rock a reddish to brownish colour. In arid continental climates rocks are in direct contact with the atmosphere, and oxidation is an important process, giving the rock a red or orange colour. Thick sequences of red sedimentary rocks formed in arid climates are called red beds . However,
12669-469: The same size, the rock is called 'well-sorted', and when there is a large spread in grain size, the rock is called 'poorly sorted'. The form of the clasts can reflect the origin of the rock. For example, coquina , a rock composed of clasts of broken shells, can only form in energetic water. The form of a clast can be described by using four parameters: Chemical sedimentary rocks have a non-clastic texture, consisting entirely of crystals. To describe such
12792-647: The science and is still adopted as the basis on which more minute subdivisions are erected. The subdivisions are by no means of equal value. The syenites, for example, and the peridotites, are far less important than the granites, diorites, and gabbros. Moreover, the effusive andesites do not always correspond to the plutonic diorites but partly also to the gabbros. As the different kinds of rock, regarded as aggregates of minerals, pass gradually into one another, transitional types are very common and are often so important as to receive special names. The quartz-syenites and nordmarkites may be interposed between granite and syenite,
12915-433: The sediment supply, caused, for example, by seasonal changes in rainfall, temperature or biochemical activity. Laminae that represent seasonal changes (similar to tree rings ) are called varves . Any sedimentary rock composed of millimeter or finer scale layers can be named with the general term laminite . When sedimentary rocks have no lamination at all, their structural character is called massive bedding. Graded bedding
13038-402: The sediment, producing a third class of secondary structures. Density contrasts between different sedimentary layers, such as between sand and clay, can result in flame structures or load casts , formed by inverted diapirism . While the clastic bed is still fluid, diapirism can cause a denser upper layer to sink into a lower layer. Sometimes, density contrasts occur or are enhanced when one of
13161-443: The sediment. They can be indicators of circumstances after deposition. Some can be used as way up criteria . Organic materials in a sediment can leave more traces than just fossils. Preserved tracks and burrows are examples of trace fossils (also called ichnofossils). Such traces are relatively rare. Most trace fossils are burrows of molluscs or arthropods . This burrowing is called bioturbation by sedimentologists. It can be
13284-614: The series Geochemische Verteilungsgesetze der Elemente [Geochemical Laws of the Distribution of Elements]. The research of Manfred Schidlowski from the 1960s to around the year 2002 was concerned with the biochemistry of the Early Earth with a focus on isotope-biogeochemistry and the evidence of the earliest life processes in Precambrian . Some subfields of geochemistry are: The building blocks of materials are
13407-467: The solar system is similar to that of many other stars, and aside from small anomalies it can be assumed to have formed from a solar nebula that had a uniform composition, and the composition of the Sun 's photosphere is similar to that of the rest of the Solar System. The composition of the photosphere is determined by fitting the absorption lines in its spectrum to models of the Sun's atmosphere. By far
13530-453: The subsurface that is useful for civil engineering , for example in the construction of roads , houses , tunnels , canals or other structures. Sedimentary rocks are also important sources of natural resources including coal , fossil fuels , drinking water and ores . The study of the sequence of sedimentary rock strata is the main source for an understanding of the Earth's history , including palaeogeography , paleoclimatology and
13653-403: The surface where they broke through upper layers. Sedimentary dykes can also be formed in a cold climate where the soil is permanently frozen during a large part of the year. Frost weathering can form cracks in the soil that fill with rubble from above. Such structures can be used as climate indicators as well as way up structures. Geochemistry Geochemistry is the science that uses
13776-507: The surface, e.g., hypersthene, orthoclase, quartz. There are some curious instances of rocks having the same chemical composition, but consisting of entirely different minerals, e.g., the hornblendite of Gran, in Norway, which contains only hornblende, has the same composition as some of the camptonites of the same locality that contain feldspar and hornblende of a different variety. In this connection, we may repeat what has been said above about
13899-420: The system is always close to a steady-state and the lowest order expansion of the mass balance equation will lead to a linear equation like Equation ( 1 ). In most systems, one or both of the input and output depend on C , resulting in feedback that tends to maintain the steady-state. If an external forcing perturbs the system, it will return to the steady-state on a time scale of 1/ k . The composition of
14022-527: The three major types of rock, fossils are most commonly found in sedimentary rock. Unlike most igneous and metamorphic rocks, sedimentary rocks form at temperatures and pressures that do not destroy fossil remnants. Often these fossils may only be visible under magnification . Dead organisms in nature are usually quickly removed by scavengers , bacteria , rotting and erosion, but under exceptional circumstances, these natural processes are unable to take place, leading to fossilisation. The chance of fossilisation
14145-533: The tonalites and adamellites between granite and diorite, the monzonites between syenite and diorite, norites and hyperites between diorite and gabbro, and so on. Trace metals readily form complexes with major ions in the ocean, including hydroxide , carbonate , and chloride and their chemical speciation changes depending on whether the environment is oxidized or reduced . Benjamin (2002) defines complexes of metals with more than one type of ligand , other than water, as mixed-ligand-complexes. In some cases,
14268-429: The tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans . The realm of geochemistry extends beyond the Earth , encompassing the entire Solar System , and has made important contributions to the understanding of a number of processes including mantle convection , the formation of planets and the origins of granite and basalt . It
14391-512: The type of bonds it forms – is determined by the arrangement of electrons in orbitals , particularly the outermost ( valence ) electrons. These arrangements are reflected in the position of elements in the periodic table . Based on position, the elements fall into the broad groups of alkali metals , alkaline earth metals , transition metals , semi-metals (also known as metalloids ), halogens , noble gases , lanthanides and actinides . Another useful classification scheme for geochemistry
14514-908: The upper members. In the Mid-Atlantic region, the Chilhowee Group contains four formations; the Loudoun Formation, Weverton Formation , Harpers Formation and Antietam Formation . Another name for the Harpers formations is the Hampton formation, and the Antietam Formation is also known as the Erwin Formation. The Hampton Formation has minor economic importance in the area near the James River Face Wilderness. As of 1982 there were three quarries operating near
14637-404: The woody tissue of plants. Soft tissue has a much smaller chance of being fossilized, and the preservation of soft tissue of animals older than 40 million years is very rare. Imprints of organisms made while they were still alive are called trace fossils , examples of which are burrows , footprints , etc. As a part of a sedimentary rock, fossils undergo the same diagenetic processes as does
14760-463: The work on elemental abundance in The Data of Geochemistry . The composition of meteorites was investigated and compared to terrestrial rocks as early as 1850. In 1901, Oliver C. Farrington hypothesised that, although there were differences, the relative abundances should still be the same. This was the beginnings of the field of cosmochemistry and has contributed much of what we know about
14883-564: Was "chemical geology", and there was little contact between geologists and chemists . Geochemistry emerged as a separate discipline after major laboratories were established, starting with the United States Geological Survey (USGS) in 1884, which began systematic surveys of the chemistry of rocks and minerals. The chief USGS chemist, Frank Wigglesworth Clarke , noted that the elements generally decrease in abundance as their atomic weights increase, and summarized
15006-403: Was found to be depleted by a factor of 2 compared to solar composition and Ne by a factor of 10, a surprising result since the other noble gases and the elements C, N and S were enhanced by factors of 2 to 4 (oxygen was also depleted but this was attributed to the unusually dry region that Galileo sampled). Spectroscopic methods only penetrate the atmospheres of Jupiter and Saturn to depths where
15129-506: Was only detected once spacecraft were sent to the outer planets, and then only indirectly through collision-induced absorption in hydrogen molecules. Further information on Jupiter was obtained from the Galileo probe when it was sent into the atmosphere in 1995; and the final mission of the Cassini probe in 2017 was to enter the atmosphere of Saturn. In the atmosphere of Jupiter, He
#659340