The Museum De Cruquius (or Cruquiusmuseum ) occupies the old Cruquius steam pumping station in Cruquius , the Netherlands . It derives its name from Nicolaas Kruik (1678–1754), a Dutch land-surveyor and one of many promoters of a plan to pump the Haarlemmermeer (Haarlem lake) dry. Like many well-educated men of his time, he latinized his name to Nicolaus Samuel Cruquius . During his lifetime the issue of the Haarlem Lake and how to pump it dry was international news, as the following excerpt from the Virginia Gazette on 31 May 1751 illustrates:
68-539: Even 50 machines proved too expensive, so it was not until successful experiments with steam pumping stations, such as at nearby Groenendaal park in 1781, that serious plans resulted in three steam-driven pumping stations, including the one at Cruquius . As a tribute to former planners, the pumping stations of the Haarlemmermeer were named after them. The one at the mouth of the Spaarne river, near Heemstede ,
136-448: A heat engine that performs mechanical work using steam as its working fluid . The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder . This pushing force can be transformed by a connecting rod and crank into rotational force for work. The term "steam engine" is most commonly applied to reciprocating engines as just described, although some authorities have also referred to
204-416: A café which it still is today. The pump house at Cruquius is a Netherlands ' Rijksmonument ' for the historical engine. It has also been declared an Anchor Point of ERIH, The European Route of Industrial Heritage . It is thought to be the largest steam engine – and certainly the largest beam engine – ever built. The engine was built by Harvey & Co , of Hayle , Cornwall . The diameter of
272-497: A closed space (e.g., combustion chamber , firebox , furnace). In the case of model or toy steam engines and a few full scale cases, the heat source can be an electric heating element . Boilers are pressure vessels that contain water to be boiled, and features that transfer the heat to the water as effectively as possible. The two most common types are: Fire-tube boilers were the main type used for early high-pressure steam (typical steam locomotive practice), but they were to
340-423: A common four-way rotary valve connected directly to a steam boiler. The next major step occurred when James Watt developed (1763–1775) an improved version of Newcomen's engine, with a separate condenser . Boulton and Watt 's early engines used half as much coal as John Smeaton 's improved version of Newcomen's. Newcomen's and Watt's early engines were "atmospheric". They were powered by air pressure pushing
408-438: A flywheel and crankshaft to provide rotative motion from an improved Newcomen engine. In 1720, Jacob Leupold described a two-cylinder high-pressure steam engine. The invention was published in his major work "Theatri Machinarum Hydraulicarum". The engine used two heavy pistons to provide motion to a water pump. Each piston was raised by the steam pressure and returned to its original position by gravity. The two pistons shared
476-423: A given cylinder size than previous engines and could be made small enough for transport applications. Thereafter, technological developments and improvements in manufacturing techniques (partly brought about by the adoption of the steam engine as a power source) resulted in the design of more efficient engines that could be smaller, faster, or more powerful, depending on the intended application. The Cornish engine
544-416: A large extent displaced by more economical water tube boilers in the late 19th century for marine propulsion and large stationary applications. Many boilers raise the temperature of the steam after it has left that part of the boiler where it is in contact with the water. Known as superheating it turns ' wet steam ' into ' superheated steam '. It avoids the steam condensing in the engine cylinders, and gives
612-409: A partial vacuum by condensing steam under a piston within a cylinder. It was employed for draining mine workings at depths originally impractical using traditional means, and for providing reusable water for driving waterwheels at factories sited away from a suitable "head". Water that passed over the wheel was pumped up into a storage reservoir above the wheel. In 1780 James Pickard patented the use of
680-405: A piston into the partial vacuum generated by condensing steam, instead of the pressure of expanding steam. The engine cylinders had to be large because the only usable force acting on them was atmospheric pressure . Watt developed his engine further, modifying it to provide a rotary motion suitable for driving machinery. This enabled factories to be sited away from rivers, and accelerated
748-433: A set speed, because it would assume a new constant speed in response to load changes. The governor was able to handle smaller variations such as those caused by fluctuating heat load to the boiler. Also, there was a tendency for oscillation whenever there was a speed change. As a consequence, engines equipped only with this governor were not suitable for operations requiring constant speed, such as cotton spinning. The governor
SECTION 10
#1732772573201816-522: A significantly higher efficiency . In a steam engine, a piston or steam turbine or any other similar device for doing mechanical work takes a supply of steam at high pressure and temperature and gives out a supply of steam at lower pressure and temperature, using as much of the difference in steam energy as possible to do mechanical work. These "motor units" are often called 'steam engines' in their own right. Engines using compressed air or other gases differ from steam engines only in details that depend on
884-414: A steam jet usually supplied from the boiler. Injectors became popular in the 1850s but are no longer widely used, except in applications such as steam locomotives. It is the pressurization of the water that circulates through the steam boiler that allows the water to be raised to temperatures well above 100 °C (212 °F) boiling point of water at one atmospheric pressure, and by that means to increase
952-628: A steam rail locomotive was designed and constructed by steamboat pioneer John Fitch in the United States probably during the 1780s or 1790s. His steam locomotive used interior bladed wheels guided by rails or tracks. The first full-scale working railway steam locomotive was built by Richard Trevithick in the United Kingdom and, on 21 February 1804, the world's first railway journey took place as Trevithick's steam locomotive hauled 10 tones of iron, 70 passengers and five wagons along
1020-527: A submarine. He was born in Guendulain ( Cizur ) ( Navarre ), the son of Carlos de Ayanz, captain of the Pamplona garrison, and Catalina de Beaumont. He was the second of the male siblings, the eldest being Don Francés de Ayanz, born a year earlier. His mother, Doña Catalina de Beaumont y Navarra, instilled in her children the principles of an education appropriate to her rank. He spent his childhood in
1088-612: A trio of locomotives, concluding with the Catch Me Who Can in 1808. Only four years later, the successful twin-cylinder locomotive Salamanca by Matthew Murray was used by the edge railed rack and pinion Middleton Railway . In 1825 George Stephenson built the Locomotion for the Stockton and Darlington Railway . This was the first public steam railway in the world and then in 1829, he built The Rocket which
1156-561: A very limited lift height and were prone to boiler explosions . Savery's engine was used in mines, pumping stations and supplying water to water wheels powering textile machinery. One advantage of Savery's engine was its low cost. Bento de Moura Portugal introduced an improvement of Savery's construction "to render it capable of working itself", as described by John Smeaton in the Philosophical Transactions published in 1751. It continued to be manufactured until
1224-473: A water pump for draining inundated mines. Frenchman Denis Papin did some useful work on the steam digester in 1679, and first used a piston to raise weights in 1690. The first commercial steam-powered device was a water pump, developed in 1698 by Thomas Savery . It used condensing steam to create a vacuum which raised water from below and then used steam pressure to raise it higher. Small engines were effective though larger models were problematic. They had
1292-431: Is cylinder condensation and re-evaporation. The steam cylinder and adjacent metal parts/ports operate at a temperature about halfway between the steam admission saturation temperature and the saturation temperature corresponding to the exhaust pressure. As high-pressure steam is admitted into the working cylinder, much of the high-temperature steam is condensed as water droplets onto the metal surfaces, significantly reducing
1360-399: Is then pumped back up to pressure and sent back to the boiler. A dry-type cooling tower is similar to an automobile radiator and is used in locations where water is costly. Waste heat can also be ejected by evaporative (wet) cooling towers, which use a secondary external water circuit that evaporates some of flow to the air. River boats initially used a jet condenser in which cold water from
1428-542: Is vented up the chimney so as to increase the draw on the fire, which greatly increases engine power, but reduces efficiency. Sometimes the waste heat from the engine is useful itself, and in those cases, very high overall efficiency can be obtained. Steam engines in stationary power plants use surface condensers as a cold sink. The condensers are cooled by water flow from oceans, rivers, lakes, and often by cooling towers which evaporate water to provide cooling energy removal. The resulting condensed hot water ( condensate ),
SECTION 20
#17327725732011496-468: The Rumford Medal , the committee said that "no one invention since Watt's time has so enhanced the efficiency of the steam engine". In addition to using 30% less steam, it provided more uniform speed due to variable steam cut off, making it well suited to manufacturing, especially cotton spinning. The first experimental road-going steam-powered vehicles were built in the late 18th century, but it
1564-399: The piston or turbine machinery alone, as in the beam engine and stationary steam engine . As noted, steam-driven devices such as the aeolipile were known in the first century AD, and there were a few other uses recorded in the 16th century. In 1606 Jerónimo de Ayanz y Beaumont patented his invention of the first steam-powered water pump for draining mines. Thomas Savery is considered
1632-478: The privilegio de invención (invention privilege)—as patents had been called at the time—signed by Philip III. He is best remembered for the invention of the first steam-powered water pump for draining mines, for which he was granted a patent by the Spanish monarchy in 1606. He also improved scientific equipment, windmills and developed new types of furnaces for industrial, military and household use. He invented
1700-567: The steam turbine and devices such as Hero's aeolipile as "steam engines". The essential feature of steam engines is that they are external combustion engines , where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle . In general usage, the term steam engine can refer to either complete steam plants (including boilers etc.), such as railway steam locomotives and portable engines , or may refer to
1768-626: The tramway from the Pen-y-darren ironworks, near Merthyr Tydfil to Abercynon in south Wales . The design incorporated a number of important innovations that included using high-pressure steam which reduced the weight of the engine and increased its efficiency. Trevithick visited the Newcastle area later in 1804 and the colliery railways in north-east England became the leading centre for experimentation and development of steam locomotives. Trevithick continued his own experiments using
1836-514: The 1860s to the 1920s. Steam road vehicles were used for many applications. In the 20th century, the rapid development of internal combustion engine technology led to the demise of the steam engine as a source of propulsion of vehicles on a commercial basis, with relatively few remaining in use beyond the Second World War . Many of these vehicles were acquired by enthusiasts for preservation, and numerous examples are still in existence. In
1904-562: The 1960s, the air pollution problems in California gave rise to a brief period of interest in developing and studying steam-powered vehicles as a possible means of reducing the pollution. Apart from interest by steam enthusiasts, the occasional replica vehicle, and experimental technology, no steam vehicles are in production at present. Near the end of the 19th century, compound engines came into widespread use. Compound engines exhausted steam into successively larger cylinders to accommodate
1972-408: The 20th century, where their efficiency, higher speed appropriate to generator service, and smooth rotation were advantages. Today most electric power is provided by steam turbines. In the United States, 90% of the electric power is produced in this way using a variety of heat sources. Steam turbines were extensively applied for propulsion of large ships throughout most of the 20th century. Although
2040-785: The Guenduláin manor until in 1567 he went to serve King Felipe II as a page. At court he was instructed in military skills, letters, the arts, and mathematics, which later would serve him for his studies of cosmography. His father, Carlos de Ayanz, took part in the campaigns in France, participating in the battle of St. Quentin in 1557 and in the punitive expedition to the then pirate port of San Juan de Luz. Jerónimo, after his training in El Escorial , began his military career in 1571. In 1573 he participated in campaigns in Tunisia , under
2108-610: The amount of work obtained per unit of fuel consumed. By the 19th century, stationary steam engines powered the factories of the Industrial Revolution . Steam engines replaced sails for ships on paddle steamers , and steam locomotives operated on the railways. Reciprocating piston type steam engines were the dominant source of power until the early 20th century. The efficiency of stationary steam engine increased dramatically until about 1922. The highest Rankine Cycle Efficiency of 91% and combined thermal efficiency of 31%
Museum De Cruquius - Misplaced Pages Continue
2176-475: The atmosphere or into a condenser. As steam expands in passing through a high-pressure engine, its temperature drops because no heat is being added to the system; this is known as adiabatic expansion and results in steam entering the cylinder at high temperature and leaving at lower temperature. This causes a cycle of heating and cooling of the cylinder with every stroke, which is a source of inefficiency. The dominant efficiency loss in reciprocating steam engines
2244-404: The boiler and engine in separate buildings some distance apart. For portable or mobile use, such as steam locomotives , the two are mounted together. The widely used reciprocating engine typically consisted of a cast-iron cylinder, piston, connecting rod and beam or a crank and flywheel, and miscellaneous linkages. Steam was alternately supplied and exhausted by one or more valves. Speed control
2312-593: The bronze fingers", due to his ability to break plates with just two fingers. In 1579 he was in Madrid , convalescent, and received some income from Felipe II in recognition of his actions in Flanders . The following year, he commanded a detachment to participate, under the orders of Sancho Dávila , in the Portuguese campaign. In 1581 he prevented the attack that a Frenchman planned against Felipe II. In 1582, under
2380-508: The call of the Duke of Alba . He participated in the battle of Gembloux , in 1578, and in the assault on the city of Zierikzee he carried out one of his legendary feats when, badly wounded, he continued to fight until he got rid of his attackers. It was these events that Lope de Vega reflected on later in his comedy titled Lo que pasa en una tarde (What happens in an afternoon , 1617), referring to him as "the new Alcides " and "the knight with
2448-401: The efficiency of the steam cycle. For safety reasons, nearly all steam engines are equipped with mechanisms to monitor the boiler, such as a pressure gauge and a sight glass to monitor the water level. Many engines, stationary and mobile, are also fitted with a governor to regulate the speed of the engine without the need for human interference. The most useful instrument for analyzing
2516-578: The fleet established in Barcelona , giving way, since then, to the current naval base . In 1589 he gathered a Murcian troop and, together with his brother Francés, who had also gathered Navarrese troops at his expense, went to La Coruña in support of Juan Padilla, captain of the garrison, where a determined María Pita successfully stopped Francis Drake and his Counter Armada . He was also governor of Martos until 1597. He died from an illness in Madrid , in 1613. According to his wishes, his body
2584-463: The higher volumes at reduced pressures, giving improved efficiency. These stages were called expansions, with double- and triple-expansion engines being common, especially in shipping where efficiency was important to reduce the weight of coal carried. Steam engines remained the dominant source of power until the early 20th century, when advances in the design of the steam turbine , electric motors , and internal combustion engines gradually resulted in
2652-402: The inventor of the first commercially used steam powered device, a steam pump that used steam pressure operating directly on the water. The first commercially successful engine that could transmit continuous power to a machine was developed in 1712 by Thomas Newcomen . James Watt made a critical improvement in 1764, by removing spent steam to a separate vessel for condensation, greatly improving
2720-429: The late 18th century. At least one engine was still known to be operating in 1820. The first commercially successful engine that could transmit continuous power to a machine was the atmospheric engine , invented by Thomas Newcomen around 1712. It improved on Savery's steam pump, using a piston as proposed by Papin. Newcomen's engine was relatively inefficient, and mostly used for pumping water. It worked by creating
2788-523: The museum, that also has World Heritage status because of its link to the Stelling van Amsterdam. The Cruquius Pumping Station was named a Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers in 1991. 52°20′17″N 4°38′18″E / 52.33806°N 4.63833°E / 52.33806; 4.63833 Steam engine A steam engine is
Museum De Cruquius - Misplaced Pages Continue
2856-399: The nature of the gas although compressed air has been used in steam engines without change. As with all heat engines, the majority of primary energy must be emitted as waste heat at relatively low temperature. The simplest cold sink is to vent the steam to the environment. This is often used on steam locomotives to avoid the weight and bulk of condensers. Some of the released steam
2924-460: The orders of John of Austria . Failing the defense of La Goleta , in 1574 he was assigned to Lombardy , where he served under the command of Alexander Farnese for a few years. He made the Spanish Road , from Milan to Namur , together with his companions from the tercio under the command of Lope de Figueroa , in the record time of 32 days, in the middle of winter, to go to Flanders at
2992-753: The orders of the Marquis of Santa Cruz , he boarded the ships that headed for the Azores participated in the Battle of Vila Franca do Campo . For this courage and bravery, the king awarded him the Military Order of Calatrava . On May 7, 1582, he had received the Ballesteros de Calatrava Commandery and years later, on January 30, 1595, he would receive the Abanilla Commandery. In 1587 he
3060-518: The pace of the Industrial Revolution. The meaning of high pressure, together with an actual value above ambient, depends on the era in which the term was used. For early use of the term Van Reimsdijk refers to steam being at a sufficiently high pressure that it could be exhausted to atmosphere without reliance on a vacuum to enable it to perform useful work. Ewing 1894 , p. 22 states that Watt's condensing engines were known, at
3128-456: The performance of steam engines is the steam engine indicator. Early versions were in use by 1851, but the most successful indicator was developed for the high speed engine inventor and manufacturer Charles Porter by Charles Richard and exhibited at London Exhibition in 1862. The steam engine indicator traces on paper the pressure in the cylinder throughout the cycle, which can be used to spot various problems and calculate developed horsepower. It
3196-456: The piston axis in vertical position. In time the horizontal arrangement became more popular, allowing compact, but powerful engines to be fitted in smaller spaces. The acme of the horizontal engine was the Corliss steam engine , patented in 1849, which was a four-valve counter flow engine with separate steam admission and exhaust valves and automatic variable steam cutoff. When Corliss was given
3264-478: The piston is 144 inches (3.7 m). Outside, the ringvaart canal 's system of sluices , mills, and bridges , are all part of the Stelling van Amsterdam , the main dike of which runs just north of Cruquius , through Vijfhuizen . Fort Vijfhuizen is used for art exhibitions and is a short walk north of the museum along the ringvaart . What is less known is that there is also a fort Cruquius, just south of
3332-406: The reciprocating steam engine is no longer in widespread commercial use, various companies are exploring or exploiting the potential of the engine as an alternative to internal combustion engines. There are two fundamental components of a steam plant: the boiler or steam generator , and the "motor unit", referred to itself as a "steam engine". Stationary steam engines in fixed buildings may have
3400-417: The replacement of reciprocating (piston) steam engines, with merchant shipping relying increasingly upon diesel engines , and warships on the steam turbine. As the development of steam engines progressed through the 18th century, various attempts were made to apply them to road and railway use. In 1784, William Murdoch , a Scottish inventor, built a model steam road locomotive. An early working model of
3468-578: The river is injected into the exhaust steam from the engine. Cooling water and condensate mix. While this was also applied for sea-going vessels, generally after only a few days of operation the boiler would become coated with deposited salt, reducing performance and increasing the risk of a boiler explosion. Starting about 1834, the use of surface condensers on ships eliminated fouling of the boilers, and improved engine efficiency. Evaporated water cannot be used for subsequent purposes (other than rain somewhere), whereas river water can be re-used. In all cases,
SECTION 50
#17327725732013536-414: The steam available for expansive work. When the expanding steam reaches low pressure (especially during the exhaust stroke), the previously deposited water droplets that had just been formed within the cylinder/ports now boil away (re-evaporation) and this steam does no further work in the cylinder. Jer%C3%B3nimo de Ayanz y Beaumont Jerónimo de Ayanz y Beaumont (1553 – 23 March 1613 AD)
3604-412: The steam plant boiler feed water, which must be kept pure, is kept separate from the cooling water or air. Most steam boilers have a means to supply water whilst at pressure, so that they may be run continuously. Utility and industrial boilers commonly use multi-stage centrifugal pumps ; however, other types are used. Another means of supplying lower-pressure boiler feed water is an injector , which uses
3672-489: The temperature of the steam above its saturated vapour point, and various mechanisms to increase the draft for fireboxes. When coal is used, a chain or screw stoking mechanism and its drive engine or motor may be included to move the fuel from a supply bin (bunker) to the firebox. The heat required for boiling the water and raising the temperature of the steam can be derived from various sources, most commonly from burning combustible materials with an appropriate supply of air in
3740-482: The time, as low pressure compared to high pressure, non-condensing engines of the same period. Watt's patent prevented others from making high pressure and compound engines. Shortly after Watt's patent expired in 1800, Richard Trevithick and, separately, Oliver Evans in 1801 introduced engines using high-pressure steam; Trevithick obtained his high-pressure engine patent in 1802, and Evans had made several working models before then. These were much more powerful for
3808-505: Was a Spanish soldier, painter, astronomer, musician and inventor. He pioneered the use and design of the steam engine, as well as mining ventilation systems, improved scientific instrumentation, developed windmills and new types of furnaces for metallurgical, industrial, military, and even domestic operations. He invented a diving bell, patented an immersion suit tested before the court of Felipe III in Pisuerga, on August 2, 1602, and designed
3876-645: Was appointed general administrator of Minas del Reino (Kingdom Mines), the management of the 550 mines that were then in Spain and those that were exploited in America . He was able to solve some of the serious mining problems of that time. Settled and residing in Murcia , where he would act as alderman for a long time, he was concerned about the safety of the coast, achieving the establishment in Cartagena of part of
3944-456: Was called Cruquius. To service the mill, the workers who lived there founded the town of the same name. The dike was built in the 1840s, the pump started work in 1850 and in the three years that had been predicted a century before, the Haarlem lake was pumped dry. The pumping station Cruquius continued to work on and off until 1933, when it was made into a museum. The foreman's house was made into
4012-627: Was demonstrated and published in 1921 and 1928. Advances in the design of electric motors and internal combustion engines resulted in the gradual replacement of steam engines in commercial usage. Steam turbines replaced reciprocating engines in power generation, due to lower cost, higher operating speed, and higher efficiency. Note that small scale steam turbines are much less efficient than large ones. As of 2023 , large reciprocating piston steam engines are still being manufactured in Germany. As noted, one recorded rudimentary steam-powered engine
4080-546: Was developed by Trevithick and others in the 1810s. It was a compound cycle engine that used high-pressure steam expansively, then condensed the low-pressure steam, making it relatively efficient. The Cornish engine had irregular motion and torque through the cycle, limiting it mainly to pumping. Cornish engines were used in mines and for water supply until the late 19th century. Early builders of stationary steam engines considered that horizontal cylinders would be subject to excessive wear. Their engines were therefore arranged with
4148-450: Was either automatic, using a governor, or by a manual valve. The cylinder casting contained steam supply and exhaust ports. Engines equipped with a condenser are a separate type than those that exhaust to the atmosphere. Other components are often present; pumps (such as an injector ) to supply water to the boiler during operation, condensers to recirculate the water and recover the latent heat of vaporisation, and superheaters to raise
SECTION 60
#17327725732014216-531: Was entered in and won the Rainhill Trials . The Liverpool and Manchester Railway opened in 1830 making exclusive use of steam power for both passenger and freight trains. Steam locomotives continued to be manufactured until the late twentieth century in places such as China and the former East Germany (where the DR Class 52.80 was produced). The final major evolution of the steam engine design
4284-411: Was improved over time and coupled with variable steam cut off, good speed control in response to changes in load was attainable near the end of the 19th century. In a simple engine, or "single expansion engine" the charge of steam passes through the entire expansion process in an individual cylinder, although a simple engine may have one or more individual cylinders. It is then exhausted directly into
4352-479: Was not until after Richard Trevithick had developed the use of high-pressure steam, around 1800, that mobile steam engines became a practical proposition. The first half of the 19th century saw great progress in steam vehicle design, and by the 1850s it was becoming viable to produce them on a commercial basis. This progress was dampened by legislation which limited or prohibited the use of steam-powered vehicles on roads. Improvements in vehicle technology continued from
4420-496: Was routinely used by engineers, mechanics and insurance inspectors. The engine indicator can also be used on internal combustion engines. See image of indicator diagram below (in Types of motor units section). The centrifugal governor was adopted by James Watt for use on a steam engine in 1788 after Watt's partner Boulton saw one on the equipment of a flour mill Boulton & Watt were building. The governor could not actually hold
4488-763: Was the aeolipile described by Hero of Alexandria , a Hellenistic mathematician and engineer in Roman Egypt during the first century AD. In the following centuries, the few steam-powered engines known were, like the aeolipile, essentially experimental devices used by inventors to demonstrate the properties of steam. A rudimentary steam turbine device was described by Taqi al-Din in Ottoman Egypt in 1551 and by Giovanni Branca in Italy in 1629. The Spanish inventor Jerónimo de Ayanz y Beaumont received patents in 1606 for 50 steam-powered inventions, including
4556-438: Was the use of steam turbines starting in the late part of the 19th century. Steam turbines are generally more efficient than reciprocating piston type steam engines (for outputs above several hundred horsepower), have fewer moving parts, and provide rotary power directly instead of through a connecting rod system or similar means. Steam turbines virtually replaced reciprocating engines in electricity generating stations early in
4624-743: Was transferred to the city of Murcia, resting in the Convent of San Antonio. He was later moved to the Capilla del Socorro, located in the ambulatory of the Murcia Cathedral, a chapel that belonged to the Dávalos, a family with which he had become related after his marriage to Blanca de Pagán Fajardo, and widower of the latter, with his sister Luisa, after being appointed by Felipe II Commander of Abanilla (Order of Calatrava) and then Councilor of Murcia. Up to 48 inventions were recognized in 1606 by
#200799