A crankcase is the housing in a piston engine that surrounds the crankshaft . In most modern engines, the crankcase is integrated into the engine block .
77-429: Two-stroke engines typically use a crankcase-compression design, resulting in the fuel/air mixture passing through the crankcase before entering the cylinder(s) . This design of the engine does not include an oil sump in the crankcase. Four-stroke engines typically have an oil sump at the bottom of the crankcase and the majority of the engine's oil is held within the crankcase. The fuel/air mixture does not pass through
154-415: A power-valve system . The valves are normally in or around the exhaust ports. They work in one of two ways; either they alter the exhaust port by closing off the top part of the port, which alters port timing, such as Rotax R.A.V.E, Yamaha YPVS, Honda RC-Valve, Kawasaki K.I.P.S., Cagiva C.T.S., or Suzuki AETC systems, or by altering the volume of the exhaust, which changes the resonant frequency of
231-421: A rotary valve is that it enables the two-stroke engine's intake timing to be asymmetrical, which is not possible with piston-port type engines. The piston-port type engine's intake timing opens and closes before and after top dead center at the same crank angle, making it symmetrical, whereas the rotary valve allows the opening to begin and close earlier. Rotary valve engines can be tailored to deliver power over
308-421: A DKW design that proved reasonably successful employing loop charging. The original SAAB 92 had a two-cylinder engine of comparatively low efficiency. At cruising speed, reflected-wave, exhaust-port blocking occurred at too low a frequency. Using the asymmetrical three-port exhaust manifold employed in the identical DKW engine improved fuel economy. The 750-cc standard engine produced 36 to 42 hp, depending on
385-448: A crossflow engine) is always best and support is good. In some engines, the small end is offset to reduce thrust in the intended rotational direction and the forward face of the piston has been made thinner and lighter to compensate, but when running backward, this weaker forward face suffers increased mechanical stress it was not designed to resist. This can be avoided by the use of crossheads and also using thrust bearings to isolate
462-592: A four-stroke engine, since their power stroke occurs twice as often. Two-stroke engines can also have fewer moving parts , and thus be cheaper to manufacture and weigh less. In countries and regions with stringent emissions regulation, two-stroke engines have been phased out in automotive and motorcycle uses. In regions where regulations are less stringent, small displacement two-stroke engines remain popular in mopeds and motorcycles. They are also used in power tools such as chainsaws and leaf blowers . The first commercial two-stroke engine involving cylinder compression
539-452: A lighter alloy could be used. To produce pistons that could survive engine combustion temperatures, it was necessary to develop new alloys such as Y alloy and Hiduminium , specifically for use as pistons. A few early gas engines had double-acting cylinders , but otherwise effectively all internal combustion engine pistons are single-acting . During World War II , the US submarine Pompano
616-411: A messy environment, because oil spray from the moving parts was not contained. Another disadvantage was that dirt and dust could get into moving engine parts, causing excessive wear and possible malfunction of the engine. Frequent cleaning of the engine was required to keep it in normal working order. Some two-stroke diesel engines, such as the large slow-speed engines used in ships, have the crankcase as
693-483: A modern internal-combustion engine.) Another factor is that since almost all steam engines use crossheads to translate the force to the drive rod, there are few lateral forces acting to try and "rock" the piston, so a cylinder-shaped piston skirt isn't necessary. Piston pumps can be used to move liquids or compress gases . There are two special type of pistons used in air cannons : close tolerance pistons and double pistons. In close tolerance pistons O-rings serve as
770-685: A number of narrow iron rings, fitted loosely into grooves in the piston, just below the crown. The rings are split at a point in the rim, allowing them to press against the cylinder with a light spring pressure. Two types of ring are used: the upper rings have solid faces and provide gas sealing; lower rings have narrow edges and a U-shaped profile, to act as oil scrapers. There are many proprietary and detail design features associated with piston rings. Pistons are usually cast or forged from aluminium alloys . For better strength and fatigue life, some racing pistons may be forged instead. Billet pistons are also used in racing engines because they do not rely on
847-470: A patent in 1880 in Germany. The first truly practical two-stroke engine is attributed to Yorkshireman Alfred Angas Scott , who started producing twin-cylinder water-cooled motorcycles in 1908. Two-stroke gasoline engines with electrical spark ignition are particularly useful in lightweight or portable applications such as chainsaws and motorcycles. However, when weight and size are not an issue,
SECTION 10
#1732801199556924-449: A scavenging function. The units run in pairs, with the lower half of one piston charging an adjacent combustion chamber. The upper section of the piston still relies on total-loss lubrication, but the other engine parts are sump lubricated with cleanliness and reliability benefits. The mass of the piston is only about 20% more than a loop-scavenged engine's piston because skirt thicknesses can be less. Many modern two-stroke engines employ
1001-428: A separate scavenge blower or supercharger to draw the fuel/air mixture into the compression chamber. Therefore the crankcases are similar to a four-stroke engine in that they are solely used for lubrication purposes. Most four-stroke engines use a crankcase that contains the engine's lubricating oil, as either a wet sump system or the less common dry sump system. Unlike a two-stroke (crankcase-compression) engine,
1078-404: A separate space from the cylinders, or as an open crank. The spaces between the crosshead piston and the crankshaft, may be largely open for maintenance access. Two-stroke engine A two-stroke (or two-stroke cycle ) engine is a type of internal combustion engine that completes a power cycle with two strokes of the piston (one up and one down movement) in one revolution of
1155-658: A similar system. Traditional flywheel magnetos (using contact-breaker points, but no external coil) worked equally well in reverse because the cam controlling the points is symmetrical, breaking contact before top dead center equally well whether running forward or backward. Reed-valve engines run backward just as well as piston-controlled porting, though rotary valve engines have asymmetrical inlet timing and do not run very well. Serious disadvantages exist for running many engines backward under load for any length of time, and some of these reasons are general, applying equally to both two-stroke and four-stroke engines. This disadvantage
1232-465: A steep face on the inlet side and a gentle curve on the exhaust. Despite this, cross scavenging was never as effective as hoped. Most engines today use Schnuerle porting instead. This places a pair of transfer ports in the sides of the cylinder and encourages gas flow to rotate around a vertical axis, rather than a horizontal axis. [REDACTED] Media related to Deflector pistons at Wikimedia Commons In racing engines, piston strength and stiffness
1309-518: A turbocharger. Crankcase-compression two-stroke engines, such as common small gasoline-powered engines, are lubricated by a petroil mixture in a total-loss system . Oil is mixed in with their petrol fuel beforehand, in a fuel-to-oil ratio of around 32:1. This oil then forms emissions, either by being burned in the engine or as droplets in the exhaust, historically resulting in more exhaust emissions, particularly hydrocarbons, than four-stroke engines of comparable power output. The combined opening time of
1386-400: A wider speed range or higher power over a narrower speed range than either a piston-port or reed-valve engine. Where a portion of the rotary valve is a portion of the crankcase itself, of particular importance, no wear should be allowed to take place. In a cross-flow engine, the transfer and exhaust ports are on opposite sides of the cylinder, and a deflector on the top of the piston directs
1463-399: Is a piston for a petrol engine that has been reduced in size and weight as much as possible. In the extreme case, they are reduced to the piston crown, support for the piston rings, and just enough of the piston skirt remaining to leave two lands so as to stop the piston rocking in the bore. The sides of the piston skirt around the gudgeon pin are reduced away from the cylinder wall. The purpose
1540-413: Is accepted in most cases where cost, weight, and size are major considerations. The problem comes about because in "forward" running, the major thrust face of the piston is on the back face of the cylinder, which in a two-stroke particularly, is the coolest and best-lubricated part. The forward face of the piston in a trunk engine is less well-suited to be the major thrust face, since it covers and uncovers
1617-422: Is attributed to Scottish engineer Dugald Clerk , who patented his design in 1881. However, unlike most later two-stroke engines, his had a separate charging cylinder. The crankcase -scavenged engine, employing the area below the piston as a charging pump, is generally credited to Englishman Joseph Day . On 31 December 1879, German inventor Karl Benz produced a two-stroke gas engine, for which he received
SECTION 20
#17328011995561694-597: Is being phased out. Honda , for instance, ceased selling two-stroke off-road motorcycles in the United States in 2007, after abandoning road-going models considerably earlier. Due to their high power-to-weight ratio and ability to be used in any orientation, two-stroke engines are common in handheld outdoor power tools including leaf blowers , chainsaws , and string trimmers . Two-stroke diesel engines are found mostly in large industrial and marine applications, as well as some trucks and heavy machinery. Although
1771-574: Is common in on-road, off-road, and stationary two-stroke engines ( Detroit Diesel ), certain small marine two-stroke engines ( Gray Marine Motor Company , which adapted the Detroit Diesel Series 71 for marine use ), certain railroad two-stroke diesel locomotives ( Electro-Motive Diesel ) and large marine two-stroke main propulsion engines ( Wärtsilä ). Ported types are represented by the opposed piston design in which two pistons are in each cylinder, working in opposite directions such as
1848-399: Is contained by a cylinder and is made gas-tight by piston rings . In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod . In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder. In some engines,
1925-478: Is less common. Both sides of the piston are used as working surfaces: the upper side is the power piston, the lower side acts as a pump. Therefore an inlet valve is not required. Unlike other types of engines, there is no supply of oil to the crankcase, because it handles the fuel/air mixture. Instead, two-stroke oil is mixed with the fuel used by the engine and burned in the combustion chamber. Large two-stroke engines do not use crankcase compression, but instead
2002-446: Is mostly to reduce the reciprocating mass, thus making it easier to balance the engine and so permit high speeds. In racing applications, slipper piston skirts can be configured to yield extremely light weight while maintaining the rigidity and strength of a full skirt. Reduced inertia also improves mechanical efficiency of the engine: the forces required to accelerate and decelerate the reciprocating parts cause more piston friction with
2079-428: Is mounted within the piston: unlike the steam engine, there is no piston rod or crosshead (except big two stroke engines). The typical piston design is on the picture. This type of piston is widely used in car diesel engines . According to purpose, supercharging level and working conditions of engines the shape and proportions can be changed. High-power diesel engines work in difficult conditions. Maximum pressure in
2156-421: Is squirted into the crankshaft and connecting rod bearings and onto the cylinder walls, and eventually drips off into the bottom of the crankcase. Even in a wet sump system, the crankshaft has minimal contact with the sump oil. Otherwise, the high-speed rotation of the crankshaft would cause the oil to froth, making it difficult for the oil pump to move the oil, which can starve the engine of lubrication. Oil from
2233-432: Is that the two-stroke's crankcase is sealed and forms part of the induction process in gasoline and hot-bulb engines . Diesel two-strokes often add a Roots blower or piston pump for scavenging . The reed valve is a simple but highly effective form of check valve commonly fitted in the intake tract of the piston-controlled port. It allows asymmetric intake of the fuel charge, improving power and economy, while widening
2310-435: Is typically much higher than that of a passenger car engine, while the weight is much less, to achieve the high engine RPM necessary in racing. Hydraulic cylinders can be both single-acting or double-acting . A hydraulic actuator controls the movement of the piston back and/or forth. Guide rings guides the piston and rod and absorb the radial forces that act perpendicularly to the cylinder and prevent contact between sliding
2387-409: Is under every circumstance more efficient than cross-flow scavenging. In a uniflow engine, the mixture, or "charge air" in the case of a diesel, enters at one end of the cylinder controlled by the piston and the exhaust exits at the other end controlled by an exhaust valve or piston. The scavenging gas-flow is, therefore, in one direction only, hence the name uniflow. The design using exhaust valve(s)
Crankcase - Misplaced Pages Continue
2464-464: The Junkers Jumo 205 and Napier Deltic . The once-popular split-single design falls into this class, being effectively a folded uniflow. With advanced-angle exhaust timing, uniflow engines can be supercharged with a crankshaft-driven blower, either piston or Roots-type. The piston of this engine is "top-hat"-shaped; the upper section forms the regular cylinder, and the lower section performs
2541-512: The expansion chamber , such as the Suzuki SAEC and Honda V-TACS system. The result is an engine with better low-speed power without sacrificing high-speed power. However, as power valves are in the hot gas flow, they need regular maintenance to perform well. Direct injection has considerable advantages in two-stroke engines. In carburetted two-strokes, a major problem is a portion of the fuel/air mixture going directly out, unburned, through
2618-479: The oil reservoir does not depend on gravity. A number of mainstream automobile manufacturers have used two-stroke engines in the past, including the Swedish Saab , German manufacturers DKW , Auto-Union , VEB Sachsenring Automobilwerke Zwickau , VEB Automobilwerk Eisenach , and VEB Fahrzeug- und Jagdwaffenwerk , and Polish manufacturers FSO and FSM . The Japanese manufacturers Suzuki and Subaru did
2695-528: The 1960s due in no small way to the increased power afforded by loop scavenging. An additional benefit of loop scavenging was the piston could be made nearly flat or slightly domed, which allowed the piston to be appreciably lighter and stronger, and consequently to tolerate higher engine speeds. The "flat top" piston also has better thermal properties and is less prone to uneven heating, expansion, piston seizures, dimensional changes, and compression losses. SAAB built 750- and 850-cc three-cylinder engines based on
2772-407: The 1960s, especially for motorcycles, but for smaller or slower engines using direct injection, the deflector piston can still be an acceptable approach. This method of scavenging uses carefully shaped and positioned transfer ports to direct the flow of fresh mixture toward the combustion chamber as it enters the cylinder. The fuel/air mixture strikes the cylinder head , then follows the curvature of
2849-452: The German inventor of an early form in the mid-1920s, it became widely adopted in Germany country during the 1930s and spread further afield after World War II . Loop scavenging is the most common type of fuel/air mixture transfer used on modern two-stroke engines. Suzuki was one of the first manufacturers outside of Europe to adopt loop-scavenged, two-stroke engines. This operational feature
2926-401: The benefit is reduced. [REDACTED] Media related to Slipper pistons at Wikimedia Commons Deflector pistons are used in two-stroke engines with crankcase compression, where the gas flow within the cylinder must be carefully directed in order to provide efficient scavenging . With cross scavenging , the transfer (inlet to the cylinder) and exhaust ports are on directly facing sides of
3003-423: The bore diameter for reasonable piston ring life. Beyond this, the piston rings bulge into the exhaust port and wear quickly. A maximum 70% of bore width is possible in racing engines, where rings are changed every few races. Intake duration is between 120 and 160°. Transfer port time is set at a minimum of 26°. The strong, low-pressure pulse of a racing two-stroke expansion chamber can drop the pressure to -7 psi when
3080-432: The combustion chamber can reach 20 MPa and the maximum temperature of some piston surfaces can exceed 450 °C. It is possible to improve piston cooling by creating a special cooling cavity. Injector supplies this cooling cavity «A» with oil through oil supply channel «B». For better temperature reduction construction should be carefully calculated and analysed. Oil flow in the cooling cavity should be not less than 80% of
3157-459: The combustion chamber, and then is deflected downward. This not only prevents the fuel/air mixture from traveling directly out the exhaust port, but also creates a swirling turbulence which improves combustion efficiency , power, and economy. Usually, a piston deflector is not required, so this approach has a distinct advantage over the cross-flow scheme (above). Often referred to as "Schnuerle" (or "Schnürle") loop scavenging after Adolf Schnürle,
Crankcase - Misplaced Pages Continue
3234-406: The connecting rod is angled for much of its rotation, there is also a side force that reacts along the side of the piston against the cylinder wall. A longer piston helps to support this. Trunk pistons have been a common design of piston since the early days of the reciprocating internal combustion engine. They were used for both petrol and diesel engines, although high speed engines have now adopted
3311-468: The crankcase in a four-stroke engine is not used for the fuel/air mixture. Engine oil is recirculated around a four-stroke engine (rather than burning it as happens in a two-stroke engine) and much of this occurs within the crankcase. Oil is stored either at the bottom of the crankcase (in a wet sump engine) or in a separate reservoir (in a dry sump system). From here the oil is pressurized by an oil pump (and usually passes through an oil filter ) before it
3388-424: The crankcase, contamination of the oil and rust from condensation. To prevent this, modern engines use a crankcase ventilation system to expel the combustion gases from the crankcase. In most cases, the gases are passed through to the intake manifold. Early engines were of the "open-crank" style, that is, there was no enclosed crankcase. The crankshaft and associated parts were open to the environment. That made for
3465-415: The crankcase, though a small amount of exhaust gasses often enter as "blow-by" from the combustion chamber , particularly in engines with worn rings. The crankcase often forms the upper half of the main bearing journals (with the bearing caps forming the other half), although in some engines the crankcase completely surrounds the main bearing journals. An open-crank engine has no crankcase. This design
3542-453: The crankshaft commonly spins in the same axis and direction as do the wheels i.e. "forward". Some of the considerations discussed here apply to four-stroke engines (which cannot reverse their direction of rotation without considerable modification), almost all of which spin forward, too. It is also useful to note that the "front" and "back" faces of the piston are - respectively - the exhaust port and intake port sides of it, and are not to do with
3619-412: The crankshaft. (A four-stroke engine requires four strokes of the piston to complete a power cycle, in two crankshaft revolutions.) In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust (or scavenging ) functions occurring at the same time. Two-stroke engines often have a higher power-to-weight ratio than
3696-415: The cycle's potential for high thermodynamic efficiency makes it ideal for diesel compression ignition engines operating in large, weight-insensitive applications, such as marine propulsion , railway locomotives , and electricity generation . In a two-stroke engine, the exhaust gases transfer less heat to the cooling system than a four-stroke, which means more energy to drive the piston, and if present,
3773-399: The cylinder wall than the fluid pressure on the piston head. A secondary benefit may be some reduction in friction with the cylinder wall, since the area of the skirt, which slides up and down in the cylinder is reduced by half. However, most friction is due to the piston rings , which are the parts which actually fit the tightest in the bore and the bearing surfaces of the wrist pin, and thus
3850-418: The cylinder wall. To prevent the incoming mixture passing straight across from one port to the other, the piston has a raised rib on its crown. This is intended to deflect the incoming mixture upwards, around the combustion chamber . Much effort, and many different designs of piston crown, went into developing improved scavenging. The crowns developed from a simple rib to a large asymmetric bulge, usually with
3927-400: The engine from end loads. Large two-stroke ship diesels are sometimes made to be reversible. Like four-stroke ship engines (some of which are also reversible), they use mechanically operated valves, so require additional camshaft mechanisms. These engines use crossheads to eliminate sidethrust on the piston and isolate the under-piston space from the crankcase. On top of other considerations,
SECTION 50
#17328011995564004-415: The exhaust port in the cylinder, the hottest part of the engine, where piston lubrication is at its most marginal. The front face of the piston is also more vulnerable since the exhaust port, the largest in the engine, is in the front wall of the cylinder. Piston skirts and rings risk being extruded into this port, so having them pressing hardest on the opposite wall (where there are only the transfer ports in
4081-409: The exhaust port, and direct injection effectively eliminates this problem. Two systems are in use: low-pressure air-assisted injection and high-pressure injection. Since the fuel does not pass through the crankcase, a separate source of lubrication is needed. For the purpose of this discussion, it is convenient to think in motorcycle terms, where the exhaust pipe faces into the cooling air stream, and
4158-427: The first engine design to place the gudgeon pin directly within the piston. Otherwise these trunk engine pistons bore little resemblance to the trunk piston; they were extremely large diameter and double-acting. Their 'trunk' was a narrow cylinder mounted in the centre of the piston. [REDACTED] Media related to Trunk pistons at Wikimedia Commons Large slow-speed Diesel engines may require additional support for
4235-413: The fresh intake charge into the upper part of the cylinder, pushing the residual exhaust gas down the other side of the deflector and out the exhaust port. The deflector increases the piston's weight and exposed surface area, and the fact that it makes piston cooling and achieving an effective combustion chamber shape more difficult is why this design has been largely superseded by uniflow scavenging after
4312-575: The gudgeon pin. Lubrication of the crosshead has advantages over the trunk piston as its lubricating oil is not subject to the heat of combustion : the oil is not contaminated by combustion soot particles, it does not break down owing to the heat and a thinner, less viscous oil may be used. The friction of both piston and crosshead may be only half of that for a trunk piston. Because of the additional weight of these pistons, they are not used for high-speed engines. [REDACTED] Media related to Crosshead pistons at Wikimedia Commons A slipper piston
4389-443: The intake and exhaust ports in some two-stroke designs can also allow some amount of unburned fuel vapors to exit in the exhaust stream. The high combustion temperatures of small, air-cooled engines may also produce NO x emissions. Two-stroke gasoline engines are preferred when mechanical simplicity, light weight, and high power-to-weight ratio are design priorities. By mixing oil with fuel, they can operate in any orientation as
4466-462: The lighter weight slipper piston . A characteristic of most trunk pistons, particularly for diesel engines, is that they have a groove for an oil ring below the gudgeon pin , in addition to the rings between the gudgeon pin and crown. The name 'trunk piston' derives from the ' trunk engine ', an early design of marine steam engine . To make these more compact, they avoided the steam engine's usual piston rod with separate crosshead and were instead
4543-433: The metal parts. Steam engines are usually double-acting (i.e. steam pressure acts alternately on each side of the piston) and the admission and release of steam is controlled by slide valves , piston valves or poppet valves . Consequently, steam engine pistons are nearly always comparatively thin discs: their diameter is several times their thickness. (One exception is the trunk engine piston, shaped more like those in
4620-475: The model year. The Monte Carlo Rally variant, 750-cc (with a filled crankshaft for higher base compression), generated 65 hp. An 850-cc version was available in the 1966 SAAB Sport (a standard trim model in comparison to the deluxe trim of the Monte Carlo). Base compression comprises a portion of the overall compression ratio of a two-stroke engine. Work published at SAE in 2012 points that loop scavenging
4697-411: The oil flow through the injector. The pin itself is of hardened steel and is fixed in the piston, but free to move in the connecting rod. A few designs use a 'fully floating' design that is loose in both components. All pins must be prevented from moving sideways and the ends of the pin digging into the cylinder wall, usually by circlips . Gas sealing is achieved by the use of piston rings . These are
SECTION 60
#17328011995564774-399: The oil pump of a modern two-stroke may not work in reverse, in which case the engine suffers oil starvation within a short time. Running a motorcycle engine backward is relatively easy to initiate, and in rare cases, can be triggered by a back-fire. It is not advisable. Model airplane engines with reed valves can be mounted in either tractor or pusher configuration without needing to change
4851-487: The other - the inlet pipe having passage to the crankcase only when the two cutouts coincide. The crankshaft itself may form one of the members, as in most glow-plug model engines. In another version, the crank disc is arranged to be a close-clearance fit in the crankcase, and is provided with a cutout that lines up with an inlet passage in the crankcase wall at the appropriate time, as in Vespa motor scooters. The advantage of
4928-433: The piston also acts as a valve by covering and uncovering ports in the cylinder. An internal combustion engine is acted upon by the pressure of the expanding combustion gases in the combustion chamber space at the top of the cylinder. This force then acts downwards through the connecting rod and onto the crankshaft . The connecting rod is attached to the piston by a swivelling gudgeon pin (US: wrist pin). This pin
5005-434: The piston covering and uncovering the ports as it moves up and down in the cylinder. In the 1970s, Yamaha worked out some basic principles for this system. They found that, in general, widening an exhaust port increases the power by the same amount as raising the port, but the power band does not narrow as it does when the port is raised. However, a mechanical limit exists to the width of a single exhaust port, at about 62% of
5082-440: The piston is at bottom dead center, and the transfer ports nearly wide open. One of the reasons for high fuel consumption in two-strokes is that some of the incoming pressurized fuel-air mixture is forced across the top of the piston, where it has a cooling action, and straight out the exhaust pipe. An expansion chamber with a strong reverse pulse stops this outgoing flow. A fundamental difference from typical four-stroke engines
5159-550: The power band. Such valves are widely used in motorcycle, ATV, and marine outboard engines. The intake pathway is opened and closed by a rotating member. A familiar type sometimes seen on small motorcycles is a slotted disk attached to the crankshaft , which covers and uncovers an opening in the end of the crankcase, allowing charge to enter during one portion of the cycle (called a disc valve). Another form of rotary inlet valve used on two-stroke engines employs two cylindrical members with suitable cutouts arranged to rotate one within
5236-466: The principles remain the same, the mechanical details of various two-stroke engines differ depending on the type. The design types vary according to the method of introducing the charge to the cylinder, the method of scavenging the cylinder (exchanging burnt exhaust for fresh mixture) and the method of exhausting the cylinder. Piston port is the simplest of the designs and the most common in small two-stroke engines. All functions are controlled solely by
5313-405: The propeller. These motors are compression ignition, so no ignition timing issues and little difference between running forward and running backward are seen. Piston#Crosshead pistons A piston is a component of reciprocating engines , reciprocating pumps , gas compressors , hydraulic cylinders and pneumatic cylinders , among other similar mechanisms. It is the moving component that
5390-821: The same in the 1970s. Production of two-stroke cars ended in the 1980s in the West, due to increasingly stringent regulation of air pollution . Eastern Bloc countries continued until around 1991, with the Trabant and Wartburg in East Germany. Two-stroke engines are still found in a variety of small propulsion applications, such as outboard motors , small on- and off-road motorcycles , mopeds , motor scooters , motorized bicycles , tuk-tuks , snowmobiles , go-karts , RC cars , ultralight and model airplanes. Particularly in developed countries, pollution regulations have meant that their use for many of these applications
5467-405: The side forces on the piston. These engines typically use crosshead pistons. The main piston has a large piston rod extending downwards from the piston to what is effectively a second smaller-diameter piston. The main piston is responsible for gas sealing and carries the piston rings. The smaller piston is purely a mechanical guide. It runs within a small cylinder as a trunk guide and also carries
5544-429: The size and architecture of available forgings, allowing for last-minute design changes. Although not commonly visible to the naked eye, pistons themselves are designed with a certain level of ovality and profile taper, meaning they are not perfectly round, and their diameter is larger near the bottom of the skirt than at the crown. Early pistons were of cast iron , but there were obvious benefits for engine balancing if
5621-428: The sump may splash onto the crankshaft due to g-forces or bumpy roads, which is referred to as windage . Although the piston rings are intended to seal the combustion chamber from the crankcase, it is normal for some combustion gases to escape around the piston rings and enter the crankcase. This phenomenon is known as blow-by . If these gases accumulated within the crankcase, it would cause unwanted pressurisation of
5698-520: The top or bottom of the piston. Regular gasoline two-stroke engines can run backward for short periods and under light load with little problem, and this has been used to provide a reversing facility in microcars , such as the Messerschmitt KR200 , that lacked reverse gearing. Where the vehicle has electric starting, the motor is turned off and restarted backward by turning the key in the opposite direction. Two-stroke golf carts have used
5775-400: Was fitted with a prototype of the infamously unreliable H.O.R. double-acting two-stroke diesel engine. Although compact, for use in a cramped submarine, this design of engine was not repeated. [REDACTED] Media related to Internal combustion engine pistons at Wikimedia Commons Trunk pistons are long relative to their diameter. They act both as a piston and cylindrical crosshead . As
5852-541: Was used in conjunction with the expansion chamber exhaust developed by German motorcycle manufacturer, MZ, and Walter Kaaden. Loop scavenging, disc valves, and expansion chambers worked in a highly coordinated way to significantly increase the power output of two-stroke engines, particularly from the Japanese manufacturers Suzuki, Yamaha, and Kawasaki. Suzuki and Yamaha enjoyed success in Grand Prix motorcycle racing in
5929-610: Was used in early engines and remains in use in some large marine diesel engines. Many two-stroke engines use a crankcase-compression design, where a partial vacuum draws the fuel/air mixture into the engine as the piston moves upwards. Then as the piston travels downward, the inlet port is uncovered and the compressed fuel/air mixture is pushed from the crankcase into the combustion chamber. Crankcase-compression designs are often used in small petrol (gasoline) engines for motorcycles, generator sets and garden equipment. This design has also been used in some small diesel engines, however it
#555444