Misplaced Pages

AIM-120 AMRAAM

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A beyond-visual-range missile is an air-to-air missile that is capable of engaging at ranges around 40 km (22 nmi) or beyond. This range has been achieved using dual pulse rocket motors or booster rocket motor and ramjet sustainer motor. Medium-range, long-range, and very-long-range air-to-air missiles fall under the category of beyond-visual-range missiles. Older BVR missiles generally used the semi-active radar homing , and modern BVR missiles use the active radar homing guidance .

#36963

68-455: The AIM-120 Advanced Medium-Range Air-to-Air Missile (AMRAAM) ( / æ m r æ m / AM -ram ) is an American beyond-visual-range air-to-air missile capable of all-weather day-and-night operations. It uses active transmit-receive radar guidance instead of semi-active receive-only radar guidance. When an AMRAAM missile is launched, NATO pilots use the brevity code " Fox Three ". As of 2008 more than 14,000 had been produced for

136-558: A laser-guided bomb homes in on the reflected laser radiation. Some of the longest-range missiles in use today still use this technology. An AIM-7 variant called Sparrow II was the first attempt at producing a semi-active radar homing missile, however the first air-to-air missile to introduce a terminal active seeker operationally was the AIM-54 Phoenix carried by the F-14 Tomcat, which entered service in 1972. This relieved

204-612: A QF-4 target drone at the White Sands Missile Range . The range of the AIM-120D is classified, but is thought to extend to about 100 miles (160 km) or potentially up to 112 miles (180 km). The AIM-120D (P3I Phase 4) is a development of the AIM-120C with a two-way data link, more accurate navigation using a GPS-enhanced IMU, an expanded no-escape envelope, improved HOBS (high off-boresight) capability, and

272-466: A Tomcat with a six-Phoenix load the unprecedented capability of tracking and destroying up to six targets beyond visual range, as far as 100 miles (160 km) away—the only US fighter with such capability. A full load of six Phoenix missiles and its 2,000 lb (910 kg) dedicated launcher exceeded a typical Vietnam-era bomb load. Its service in the US Navy was primarily as a deterrent, as its use

340-639: A US Boeing F/A-18E Super Hornet engaged and shot down a Sukhoi Su-22 of the Syrian Air Force over northern Syria, using an AIM-120. An AIM-9X Sidewinder had failed to bring down the Syrian jet. Some sources have claimed the AIM-9X was decoyed by flares, although the F/A-18E pilot, Lieutenant Commander Michael "MOB" Tremel stated it was unclear why the AIM-9X failed, mentioning no use of flares by

408-429: A max speed of Mach 4. The AIM-120D is a joint USAF/USN project for which Follow-on Operational Test and Evaluation (FOT&E) was completed in 2014. The USN was scheduled to field it from 2014, and AIM-120D will be carried by all Pacific carrier groups by 2020, although the 2013 sequestration cuts could push back this later date to 2022. The Royal Australian Air Force requested 450 AIM-120D missiles, which would make it

476-560: A new generation of digital electronics, to produce an effective active-radar air-to-air missile as compact as the Sparrow. The US Navy later developed the AIM-54 Phoenix long-range missile (LRM) for the fleet air defense mission. It was a large 1,000 lb (500 kg), Mach 5 missile designed to counter cruise missiles and the bombers that launched them. Originally intended for the straight-wing Douglas F6D Missileer and then

544-509: A number of towed batteries (containing six AMRAAM launching canisters with integrated launching rails) along with separate radar trucks and control station vehicles. The US Marine Corps and the US Army tested launching AMRAAM missiles from a six-rail carrier on HMMWV as part of their CLAWS (Complementary Low-Attitude Weapon System) and SLAMRAAM (Surface Launched AMRAAM) programs, which were canceled due to budgetary cuts. A more recent version

612-612: A proof of its usage during the engagement. During the Yemeni War , Saudi Arabia extensively used F-15 and Typhoon aircraft together with Patriot batteries to intercept and down Yemeni drones and missiles. In November 2021, a possible Foreign Military Sales contract was notified to the US Congress regarding the provision to Saudi Arabia for a mix of 280 AIM-120C-7 and C-8 missiles and related support equipment and service that would be used on Saudi F-15 and Typhoon aircraft. The deal

680-501: A radar lock after the missile seeker goes active and guides itself to the targets. The missile also features the ability to "Home on Jamming," giving it the ability to switch over from active radar homing to passive homing – homing on jamming signals from the target aircraft. Software on board the missile allows it to detect if it is being jammed, and guide on its target using the proper guidance system. AMRAAM uses two-stage guidance when fired at long range. The aircraft passes data to

748-439: A result, most BVR missiles are fired at visual range. Western airforces only scored 4 BVR kills out of 528 kills made during 1965–1982; most kills during that period were made with guns or WVR missiles ( AIM-9 Sidewinder ). The increased success rate of BVR combat during 1991 Gulf War may have significantly depended on other factors, such as assistance of AWACS , NCTR system of F-15Cs , as well as enemy incompetence. None of

SECTION 10

#1732771802037

816-566: A self-homing distance where it will be close enough to "catch" the target aircraft in the basket (the missile's radar field of view in which it will be able to lock onto the target aircraft, unassisted by the launch aircraft). Not all armed services using the AMRAAM have elected to purchase the mid-course update option, which limits AMRAAM's effectiveness in some scenarios. The RAF initially opted not to use mid-course update for its Tornado F3 force, only to discover that without it, testing proved

884-682: Is an Evolved Sea Sparrow Missile using AMRAAM head with two-stage guidance system. It was first shown at the Paris Air Show 2007 and was test-fired in 2008. Following the cancellation of SLAMRAAM funding in 2011, development of the NASAMS version restarted in 2014. In February 2015 Raytheon announced the AMRAAM-ER missile option for NASAMS, with expected production in 2019, and the first flight test took place in August 2016. Engagement envelope

952-826: Is likely driven by the PL-15 performance. The AIM-120D-3 and the AIM-120C-8 variant for international customers were developed under the Form, Fit, Function Refresh (F3R) program and feature 15 upgraded circuit cards in the missile guidance section and the capability to continuously upgrade future software enhancements. All AMRAAMs planned for production are either the AIM-120D-3 or the AIM-120C-8 incorporating F3R functionality as of April 2023. The Norwegian Advanced Surface-to-Air Missile System (NASAMS), developed by Kongsberg Defence & Aerospace and fielded in 1994–1995, consists of

1020-627: Is the High Mobility Launcher for the NASAMS, made in cooperation with Raytheon (Kongsberg Defence & Aerospace was already a subcontractor on the SLAMRAAM system), where the launch-vehicle is a Humvee (M1152A1 HMMWV), containing four AMRAAMs and two optional AIM-9X Sidewinder missiles. As part of the SLAMRAAM project, Raytheon offered the Extended Range upgrade to surface-launched AMRAAM, called AMRAAM-ER. The missile

1088-467: Is the missile used the radiation produced by the launching aircraft to guide it to the target. The latest generation of BVR missiles use a combination of semi-active and active radar. The first such missiles were relatively simple beam riding designs. The Sparrow 1 mounted on the US Navy's Skyknight became the first operational BVR missile in 1954. These primitive BVR missiles were soon replaced by missiles using semi-active radar homing (SARH). This

1156-487: Is where the launching aircraft's radar is "locked" onto the target in a single target track (STT) mode, directing radar energy at the target that the missile seeker can "see" as it reflects off the target. The radar antenna must "illuminate" the target until impact. Missiles like the Raytheon AIM-7 Sparrow and Vympel R-27 ( NATO designation AA-10 'Alamo') home in on the reflected radiation, much as

1224-558: The MICA concept that used a common airframe for separate radar-guided and infrared-guided versions. The AMRAAM was used operationally for the first time on December 27, 1992, when a USAF General Dynamics F-16D Fighting Falcon shot down an Iraqi MiG-25 that violated the southern no-fly-zone. This missile had been returned from the flight line as defective a day earlier. The AMRAAM gained a second victory in January 1993 when an Iraqi MiG-23

1292-623: The Sidewinder missile. In place of a proximity-fuzed warhead, the NCADE will use a kinetic energy hit-to-kill vehicle based on the one used in the Navy's RIM-161 Standard Missile 3 . The -120A and -120B models are currently nearing the end of their service life while the -120D variant achieved initial operational capability in 2015. AMRAAM was due to be replaced by the USAF , the U.S. Navy , and

1360-484: The Syrian Air Force using two AIM-120C-7s. On 3 March 2020, a Syrian Air Force L-39 was shot down over Idlib by Turkish Air Force F-16s from inside Turkish airspace with AIM-120C-7 at a distance of about 45 km (28 mi). As of 2020, this has been the longest range AIM-120 kill. On 27 February 2019, India stated that Pakistan Air Force (PAF) used AMRAAMs during Operation Swift Retort . Indian officials displayed fragments of an alleged AIM-120C-5 missile as

1428-607: The U.S. Marine Corps after 2020 by the Joint Dual Role Air Dominance Missile ( Next Generation Missile ), but it was terminated in the 2013 budget plan. Exploratory work was started in 2017 on a replacement called Long-Range Engagement Weapon . In 2017, work on the AIM-260 Joint Advanced Tactical Missile (JATM) began to create a longer-ranged replacement for the AMRAAM to contend with foreign weapons like

SECTION 20

#1732771802037

1496-550: The U.S. Navy replace the F-14 Tomcats with F/A-18E/F Super Hornets – the loss of the F-14's long-range AIM-54 Phoenix missiles (already retired) is offset with a longer-range AMRAAM-D. The lighter weight of the enhanced AMRAAM enables an F/A-18E/F pilot greater bring-back weight upon carrier landings. The AIM-120D is an upgraded version of the AMRAAM with improvements in almost all areas, including 50% greater range (than

1564-661: The United States Air Force , the United States Navy , and 33 international customers. The AMRAAM has been used in several engagements, achieving 16 air-to-air kills in conflicts over Iraq , Bosnia , Kosovo , India , and Syria . The AIM-7 Sparrow medium range missile (MRM) was purchased by the US Navy from original developer Hughes Aircraft in the 1950s as its first operational air-to-air missile with " beyond visual range " (BVR) capability. With an effective range of about 12 miles (19 km), it

1632-672: The AMRAAM became one of the primary air-to-air weapons of the new Lockheed Martin F-22 Raptor fighter, which needed to place all of its weapons into internal weapons bays in order to help achieve an extremely low radar cross-section . AMRAAM was developed as the result of an agreement (the Family of Weapons MOA, no longer in effect by 1990), among the United States and several other NATO nations to develop air-to-air missiles and to share production technology. Under this agreement,

1700-512: The AMRAAM was less effective in beyond visual range (BVR) engagements than the older semi-active radar homing BAE Skyflash (a development of the Sparrow), since the AIM-120's own radar is necessarily of lesser range and power as compared to that of the launch aircraft. Once the missile closes to self-homing distance, it turns on its active radar seeker and searches for the target aircraft. If

1768-463: The AMRAAMs being informally named "slammer" in the second half of the 1990s. In 1994, two USAF F-15 fighters patrolling Iraq's Northern No-Fly Zone mistook a pair of US Army Black Hawk helicopters for Iraqi helicopters, and shot them down . One was downed with an AIM-120, and one with an AIM-9 Sidewinder. In 1998 and 1999 AMRAAMs were again fired by USAF F-15 fighters at Iraqi aircraft violating

1836-679: The British Advanced Short Range Air-to-Air Missile (ASRAAM), entering service in 1998. While the U.S. never adopted the ASRAAM — instead opting to continue upgrading the Sidewinder — the ASRAAM did enter into service with the British, Indian, and Australian militaries. The UK has continued to upgrade the ASRAAM, with the ‘Block 6’ variant entering service in 2022. By the 1990s, the reliability of

1904-628: The Chinese PL-15 . Flight tests are planned to begin in 2021 and initial operational capability is slated for 2022, facilitating the end of AMRAAM production by 2026. In July 2022, Raytheon announced the AIM-120D-3 became the longest-range variant in testing, as well as an air-launched adaptation of the NASAMS-based AMRAAM-ER called the AMRAAM-AXE (air-launched extended envelope). The development of AIM-120D-3 and AMRAAM-AXE

1972-489: The F-14 Tomcat and F-15 Eagle equipped with Sparrow and Sidewinder missiles as the blue force and aggressor F-5E aircraft equipped with AIM-9L all-aspect Sidewinders as the red force. This joint test and evaluation (JT&E) was designated Air Combat Evaluation/Air Intercept Missile Evaluation (ACEVAL/AIMVAL). A principal finding was that the necessity to produce illumination for the Sparrow until impact resulted in

2040-639: The F-16, and fit in the same spaces that were designed to fit the Sparrow on the F-4 Phantom. The European partners needed AMRAAM to be integrated on aircraft as small as the BAe Sea Harrier . The US Navy needed the AMRAAM to be carried on the F/A-18 Hornet and wanted capability for two to be carried on a launcher that normally carried one Sparrow to allow for more air-to-ground weapons. Finally,

2108-479: The Iraqi pilots took any evasive measures, either because of poor training or their radar warning receivers malfunctioned. One major issue with BVR is still unreliable IFF technology ( Identification friend or foe ). However, new generation engines such as  ramjet , along with the latest sensors such as  active radar , increase the hit probability of the latest BVR missiles, such as Meteor , and also increase

AIM-120 AMRAAM - Misplaced Pages Continue

2176-628: The No-Fly-Zone, but this time they failed to hit their targets. During spring 1999, AMRAAMs saw their main combat action during Operation Allied Force , the Kosovo bombing campaign . Six Serbian MiG-29s were shot down by NATO (four USAF F-15Cs, one USAF F-16C, and one Dutch F-16A MLU), all of them using AIM-120 missiles (the supposed kill by the F-16C may have actually been friendly fire, a man-portable SA-7 fired by Serbian infantry). On 18 June 2017,

2244-491: The Sparrow II was developed to address these drawbacks, but the U.S. Navy pulled out of the project in 1956. The Royal Canadian Air Force , which took over development in the hopes of using the missile to arm their prospective Avro Canada CF-105 Arrow interceptor, soon followed in 1958. The electronics of the time simply could not be miniaturized enough to make Sparrow II a viable working weapon. It would take decades, and

2312-793: The Sparrow had improved significantly, relative to its use in Vietnam, with it accounting for the largest number of aerial targets destroyed in the Desert Storm phase of the Gulf War. However, while the USAF had passed on the Phoenix and its own similar AIM-47 Falcon / Lockheed YF-12 to optimize dogfight performance, it still needed a multiple-launch fire-and-forget capability for the F-15 and F-16. The AMRAAM would need to be fitted on fighters as small as

2380-551: The Su-22, saying "I [lost] the smoke trail, and I have no idea what happened to the missile at that point". On 23 March 2014 a Turkish Air Force F-16 from 182 Squadron shot down a Syrian Arab Air Force MiG-23BN with an AIM-120C-7. On 24 November 2015 a Turkish Air Force F-16 shot down a Russian Su-24M strike aircraft with an AIM-120 missile over northern Syria after it allegedly crossed into Turkish airspace. On 1 March 2020, Turkish Air Force F-16s downed two Su-24s belonging to

2448-522: The U.S. was to develop the next generation medium range missile (AMRAAM) and Europe would develop the next generation short range missile (ASRAAM). Although Europe initially adopted the AMRAAM, an effort to develop the MDBA Meteor , a competitor to AMRAAM, was begun in UK. Eventually, the ASRAAM was developed solely by the British, but using another source for its infrared seeker. After protracted development,

2516-510: The USAF F-22 Raptor from four to six AMRAAMs. AIM-120B deliveries began in 1994. The AIM-120C deliveries began in 1996. The C-variant has been steadily upgraded since it was introduced. The AIM-120C-5 and above have an improved HOBs (High Off Bore-Sight) capability which improves its G overload and seekers field of view over the previous variants allowing the missile to be more maneuverable and be used at targets that are offset from

2584-460: The USAF as lead service. The MOA also saw an agreement to develop a replacement for the Sidewinder, specifically; an advanced ‘dogfight’ air-to-air missile, capable of better covering the range disparity that would emerge between such short-range missiles and the eventual AMRAAM. This task fell to a British-German design team, with the Germans leaving the project in 1989. The missile would emerge as

2652-494: The aerial combat capabilities of US and allied aircraft to meet the threat of enemy air-to-air weapons as they existed in 1991. AMRAAM serves as a follow-on to the AIM-7 Sparrow missile series. The new missile is faster, smaller, and lighter, and has improved capabilities against low-altitude targets. It also incorporates a datalink to guide the missile to a point where its active radar turns on and makes terminal intercept of

2720-560: The already-extended range AIM-120C-7) and better guidance over its entire flight envelope yielding an improved kill probability ( P k ). Initial production began in 2006 under the Engineering and Manufacturing Development phase of program testing and ceased in September 2009. Raytheon began testing the D model on August 5, 2008, the company reported that an AIM-120D launched from an F/A-18F Super Hornet passed within lethal distance of

2788-595: The deployment of AMRAAM (AIM-120A) began in September 1991 in US Air Force McDonnell Douglas F-15 Eagle fighter squadrons . The US Navy soon followed (in 1993) in its McDonnell Douglas F/A-18 Hornet squadrons. The Russian Air Force counterpart of AMRAAM is the somewhat similar R-77 (NATO codename AA-12 Adder), sometimes referred to in the West as the "AMRAAMski". Likewise, France began its own air-to-air missile development with

AIM-120 AMRAAM - Misplaced Pages Continue

2856-748: The first foreign operator of the missile. The procurement, approved by the US Government in April 2016, will cost $ 1.1 billion and will be integrated for use on the F/A-18F Super Hornet, EA-18G Growler and the F-35 Lightning II aircraft. There were also plans for Raytheon to develop a ramjet -powered derivative of the AMRAAM, the Future Medium Range Air-Air Missile ( FMRAAM ). The FMRAAM

2924-558: The first thing it sees. This mode can be used for defensive shots, i.e. when the enemy has numerical superiority. There are currently four main variants of AMRAAM, all in service with the United States Air Force , United States Navy , and the United States Marine Corps. The AIM-120A is no longer in production and shares the enlarged wings and fins with the successor AIM-120B . The AIM-120C has smaller "clipped" aerosurfaces to enable increased internal carriage on

2992-909: The initial guidance and then passive infra-red guidance for the final stage. This type of missile requires active guidance for a longer part of the flight than fire-and-forget missiles but will still guide to the target even if radar lock is broken in the crucial final seconds of the engagement and may be harder to spoof with chaff due to the dual-type guidance. The efficiency of BVR air-to-air missiles has been criticized. A 2005 paper by USAF officer Patrick Higby showed that BVR missiles fell short of expected performance, despite incurring great cost. Because such missiles required large radars, they made aircraft heavier and increased drag, increasing aircraft procurement and operating costs. Fighters with BVR tended to be less agile than previous ones. Fighter pilots have been reluctant to use BVR missiles at BVR range because of difficulty in distinguishing friends and foes. As

3060-760: The launch platform of the need to illuminate the target until impact, putting it at risk. The Phoenix and its associated Tomcat radar, the AWG-9 was capable of multiple track and launch capability, which was unique to the Tomcat/Phoenix until the advent of AMRAAM in 1991. Newer fire-and-forget type missiles like the Raytheon AIM-120 AMRAAM and the Russian R-77 ( NATO reporting name AA-12 "Adder") instead use an inertial navigation system (INS) combined with initial target information from

3128-451: The launching aircraft and updates from a one or two-way data link in order to launch beyond visual range, and then switch to a terminal homing mode, typically active radar guidance . These types of missiles have the advantage of not requiring the launching aircraft to illuminate the target with radar energy for the entire flight of the missile, and in fact do not require a radar lock to launch at all, only target tracking information. This gives

3196-452: The launching aircraft frontal view which allows for greater flexibility during air-to-air combat. The AIM-120C-6 contained an improved fuze (Target Detection Device) compared to its predecessor. The AIM-120C-7 development began in 1998 and included improvements in homing and greater range (actual amount of improvement unspecified). It was successfully tested in 2003 and is currently being produced for both domestic and foreign customers. It helped

3264-420: The missile called AMRAAM-AXE, from "Air-launched Extended Envelope". Beyond-visual-range missile In addition to the range capability, the missile must also be capable of tracking its target at this range or of acquiring the target in flight. Systems in which a mid-course correction is transmitted to the missile have been used. . Early air-to-air missiles used semi-active radar homing guidance, that

3332-430: The missile just before launch, giving it information about the location of the target aircraft from the launch point, including its direction and speed. This information is generally obtained using the launching aircraft's radar, although it could come from an infrared search and track system, from another fighter aircraft via a data link , or from an AWACS aircraft. Using its built-in inertial navigation system (INS),

3400-594: The missile just prior to launch. This can include coordinates, radar measurements (including velocity), or an infrared image of the target. After it is fired, the missile guides itself by some combination of gyroscopes and accelerometers , GPS , onboard active radar homing , and infrared homing optics. Some systems offer the option of either continued input from the launch platform or fire-and-forget. Fire-and-forget missiles can be vulnerable to soft-kill systems on modern main battle tanks, in addition to existing hard-kill systems. As opposed to unguided RPGs which require

3468-411: The missile uses the information provided pre-launch to fly on an interception course toward the target. After launch, if the firing aircraft or surrogate continues to track the target, periodic updates, e.g. changes in the target's direction and speed, are sent from the launch aircraft to the missile, allowing the missile to adjust its course, via actuation of the rear fins, so that it is able to close to

SECTION 50

#1732771802037

3536-471: The navalized General Dynamics–Grumman F-111B , it finally saw service with the Grumman F-14 Tomcat , the only fighter capable of carrying such a heavy missile. The Phoenix was the first US fire-and-forget , multiple-launch, radar-guided missile: one which used its own active guidance system to guide itself without help from the launch aircraft when it closed on its target. This, in theory, gave

3604-468: The range. In 2015, United States Naval Air Forces commander Vice Admiral Mike Shoemaker cited the sensor fusion of the fifth-generation jet fighter Lockheed Martin F-35 Lightning II as the way to "bring that long-range ID capability and then share that information" with other platforms. Fire-and-forget Fire-and-forget is a type of missile guidance which does not require further external intervention after launch such as illumination of

3672-452: The red force's being able to launch their all-aspect Sidewinders before impact, resulting in mutual kills. What was needed was Phoenix-type multiple-launch and terminal active capability in a Sparrow-size airframe. This led to a memorandum of agreement (MOA) with European allies (principally the UK and Germany for development) for the US to develop an advanced, medium-range, air-to-air missile with

3740-579: The short-range, infrared-guided AIM-9 Sidewinder , they replaced the AIM-4 Falcon IR and radar guided series for use in air combat by the USAF as well. A disadvantage to semi-active homing was that only one target could be illuminated by the launching fighter plane at a time. Also, the launching aircraft had to remain pointed in the direction of the target (within the azimuth and elevation of its own radar set) which could be difficult or dangerous in air-to-air combat . An active-radar variant called

3808-419: The speed of the missile and the target, and how hard the target can turn. Typically, if the missile has sufficient energy during the terminal phase, which comes from being launched at close range to the target from an aircraft with an altitude and speed advantage, it will have a good chance of success. This chance drops as the missile is fired at longer ranges as it runs out of overtake speed at long ranges, and if

3876-423: The target can force the missile to turn it might bleed off enough speed that it can no longer chase the target. Operationally, the missile, which was designed for beyond visual range combat, has a P k of 0.59. The targets included six MiG-29s, a MiG-25, a MiG-23, two Su-22s, a Galeb, and a US Army Blackhawk that was targeted by mistake. AMRAAM has an all-weather, beyond-visual-range (BVR) capability. It improves

3944-445: The target is in or near the expected location, the missile will find it and guide itself to the target from this point. If the missile is fired at short range, within visual range (WVR) or the near BVR, it can use its active seeker just after launch to guide it to intercept. Apart from the radar-slaved mode, there is a free guidance mode, called "Visual". This mode is host-aircraft radar guidance-free—the missile just fires and locks onto

4012-522: The target less warning that a missile has been launched and also allows the launching aircraft to turn away once the missile is in its terminal homing phase or engage other aircraft. The very longest-range missiles like the Hughes (now Raytheon) AIM-54 Phoenix missile and Vympel manufactured R-33 (NATO designation AA-9 "Amos") use this technique also. Some variants of the Vympel R-27 use SARH for

4080-414: The target or wire guidance , and can hit its target without the launcher being in line-of-sight of the target. This is an important property for a guided weapon to have, since a person or vehicle that lingers near the target to guide the missile (using, for instance, a laser designator ) is vulnerable to attack and unable to carry out other tasks. Generally, information about the target is programmed into

4148-432: The target. An inertial reference unit and micro-computer system makes the missile less dependent upon the fire-control system of the aircraft. Once the missile closes in on the target, its active radar guides it to intercept. This feature, known as "fire-and-forget", frees the aircrew from the need to further provide guidance, enabling the aircrew to aim and fire several missiles simultaneously at multiple targets and break

SECTION 60

#1732771802037

4216-522: Was expanded with a 50 percent increase in maximum range and 70 percent increase in maximum altitude. In 2019 Qatar placed an order for AMRAAM-ER missiles as part of a NASAMS purchase. The missile was testfired at Andøya Space Center in May 2021. In February 2024, Raytheon flight-tested an upgraded version of AMRAAM-ER with an improved rocket motor and control actuator system and an AIM-120C-8 guidance head. Raytheon has proposed an air-launched adaptation of

4284-653: Was hampered by restrictive rules of engagement in conflicts such as 1991 Gulf War , Southern Watch (enforcing no-fly zones), and Iraq War . The US Navy retired the Phoenix in 2004 in light of availability of the AIM-120 AMRAAM on the McDonnell Douglas F/A-18 Hornet and the pending retirement of the F-14 Tomcat from active service in late 2006. The Department of Defense conducted an extensive evaluation of air combat tactics and missile technology from 1974 to 1978 at Nellis AFB using

4352-495: Was introduced as a radar beam-riding missile and then it was improved to a semi-active radar guided missile which would home in on reflections from a target illuminated by the radar of the launching aircraft. It was effective at visual to beyond visual range. The early beam riding versions of the Sparrow missiles were integrated onto the McDonnell F3H Demon and Vought F7U Cutlass , but the definitive AIM-7 Sparrow

4420-868: Was not produced since the target market, the British Ministry of Defence, chose the Meteor missile over the FMRAAM for a BVR missile for the Eurofighter Typhoon aircraft. Raytheon is also working with the Missile Defense Agency to develop the Network Centric Airborne Defense Element (NCADE), an anti-ballistic missile derived from the AIM-120. This weapon will be equipped with a ramjet engine and an infrared homing seeker derived from

4488-485: Was required to replenish Saudi missiles stock, running low due to extensive use of AMRAAMs and Patriots against Yemeni missiles and drones. On 7 August 2018, a Spanish Air Force Eurofighter Typhoon accidentally launched a missile in Estonia. There were no human casualties, but a ten-day search operation for the missile was unsuccessful. The kill probability (P k ) is determined by several factors, including aspect (head-on interception, side-on or tail-chase), altitude,

4556-418: Was shot down by a USAF F-16C. On 28 February 1994, a Republika Srpska Air Force J-21 Jastreb aircraft was shot down by a USAF F-16C that was patrolling the UN-imposed no-fly zone over Bosnia . In that engagement, at least three other Serbian aircraft were shot down by USAF F-16Cs using AIM-9 missiles ( Banja Luka incident ). At that point, three launches in combat had resulted in three kills, resulting in

4624-517: Was the primary weapon for the all-weather McDonnell Douglas F-4 Phantom II fighter/interceptor, which lacked an internal gun in its U.S. Navy , U.S. Marine Corps , and early U.S. Air Force versions. The F-4 carried up to four AIM-7s in built-in recesses under its belly. Designed for use against non-maneuvering targets such as bombers, the missiles initially performed poorly against fighters over North Vietnam, and were progressively improved until they proved highly effective in dogfights. Together with

#36963