The Advanced Propulsion Physics Laboratory or " Eagleworks Laboratories " at NASA 's Johnson Space Center is a small research group investigating a variety of theories regarding new forms of spacecraft propulsion . The principal investigator is Dr. Harold G. White .
60-721: The group is developing the White–Juday warp-field interferometer in the hope of observing small disturbances of spacetime and also testing small prototypes of thrusters that do not use reaction mass , with currently inconclusive results. The proposed principle of operation of these quantum vacuum plasma thrusters , such as the RF resonant cavity thruster ('EM Drive'), has been shown to be inconsistent with known laws of physics , including conservation of momentum and conservation of energy . No plausible theory of operation for such drives has been proposed. The Advanced Propulsion Physics Laboratory
120-466: A B.S. degree in mechanical engineering from University of South Alabama , an M.S. degree in mechanical engineering from Wichita State University in 1999, and a Ph.D. degree in Physics from Rice University in 2008. White attracted the attention of the press when he began presenting his ideas at space conventions and publishing proposals for Alcubierre drive concepts. In 2011, he released
180-585: A Riemannian manifold , as well as the structure of an abelian Lie group. Perhaps the simplest example of this is when L = Z 2 {\displaystyle \mathbb {Z} ^{2}} : R 2 / Z 2 {\displaystyle \mathbb {R} ^{2}/\mathbb {Z} ^{2}} , which can also be described as the Cartesian plane under the identifications ( x , y ) ~ ( x + 1, y ) ~ ( x , y + 1) . This particular flat torus (and any uniformly scaled version of it)
240-449: A closed path that circles the torus' "hole" (say, a circle that traces out a particular latitude) and then circles the torus' "body" (say, a circle that traces out a particular longitude) can be deformed to a path that circles the body and then the hole. So, strictly 'latitudinal' and strictly 'longitudinal' paths commute. An equivalent statement may be imagined as two shoelaces passing through each other, then unwinding, then rewinding. If
300-418: A donut or doughnut . If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution , also known as a ring torus . If the axis of revolution is tangent to the circle, the surface is a horn torus . If the axis of revolution passes twice through the circle, the surface is a spindle torus (or self-crossing torus or self-intersecting torus ). If
360-514: A fiber bundle over S (the Hopf bundle ). The surface described above, given the relative topology from R 3 {\displaystyle \mathbb {R} ^{3}} , is homeomorphic to a topological torus as long as it does not intersect its own axis. A particular homeomorphism is given by stereographically projecting the topological torus into R 3 {\displaystyle \mathbb {R} ^{3}} from
420-593: A maximal torus ; that is, a closed subgroup which is a torus of the largest possible dimension. Such maximal tori T have a controlling role to play in theory of connected G . Toroidal groups are examples of protori , which (like tori) are compact connected abelian groups, which are not required to be manifolds . Automorphisms of T are easily constructed from automorphisms of the lattice Z n {\displaystyle \mathbb {Z} ^{n}} , which are classified by invertible integral matrices of size n with an integral inverse; these are just
480-752: A product of a Euclidean open disk and a circle. The volume of this solid torus and the surface area of its torus are easily computed using Pappus's centroid theorem , giving: A = ( 2 π r ) ( 2 π R ) = 4 π 2 R r , V = ( π r 2 ) ( 2 π R ) = 2 π 2 R r 2 . {\displaystyle {\begin{aligned}A&=\left(2\pi r\right)\left(2\pi R\right)=4\pi ^{2}Rr,\\[5mu]V&=\left(\pi r^{2}\right)\left(2\pi R\right)=2\pi ^{2}Rr^{2}.\end{aligned}}} These formulas are
540-521: A 1/3 twist (120°): the 3-dimensional interior corresponds to the points on the 3-torus where all 3 coordinates are distinct, the 2-dimensional face corresponds to points with 2 coordinates equal and the 3rd different, while the 1-dimensional edge corresponds to points with all 3 coordinates identical. These orbifolds have found significant applications to music theory in the work of Dmitri Tymoczko and collaborators (Felipe Posada, Michael Kolinas, et al.), being used to model musical triads . A flat torus
600-492: A flat torus into 3-dimensional Euclidean space R 3 {\displaystyle \mathbb {R} ^{3}} was found. It is a flat torus in the sense that, as a metric space, it is isometric to a flat square torus. It is similar in structure to a fractal as it is constructed by repeatedly corrugating an ordinary torus at smaller scales. Like fractals, it has no defined Gaussian curvature. However, unlike fractals, it does have defined surface normals , yielding
660-406: A new thruster concept, another concept White claims works by utilizing effects predicted by quantum mechanics . To support this research, White's team also is developing a "micro-balance" that is capable of measuring the extremely small forces predicted to be produced by this thruster. To calibrate this balance the team plans to repeat an unsuccessful 2006 Woodward effect experiment, this time using
SECTION 10
#1732790128760720-478: A paper titled Warp Field Mechanics 101 that outlined an updated concept of Miguel Alcubierre 's faster-than-light propulsion concept, including methods to prove the feasibility of the project. Alcubierre's concept had been considered infeasible because it required far more power than any viable energy source could produce. White re-calculated the Alcubierre concept and proposed that if the warp bubble around
780-429: A rectangle together, choosing the other two sides instead will cause the same reversal of orientation. The first homology group of the torus is isomorphic to the fundamental group (this follows from Hurewicz theorem since the fundamental group is abelian ). The 2-torus is a twofold branched cover of the 2-sphere, with four ramification points . Every conformal structure on the 2-torus can be represented as such
840-406: A regular torus. For example, in the following map: If R and P in the above flat torus parametrization form a unit vector ( R , P ) = (cos( η ), sin( η )) then u , v , and 0 < η < π /2 parameterize the unit 3-sphere as Hopf coordinates . In particular, for certain very specific choices of a square flat torus in the 3-sphere S , where η = π /4 above, the torus will partition
900-454: A so-called "smooth fractal". The key to obtaining the smoothness of this corrugated torus is to have the amplitudes of successive corrugations decreasing faster than their "wavelengths". (These infinitely recursive corrugations are used only for embedding into three dimensions; they are not an intrinsic feature of the flat torus.) This is the first time that any such embedding was defined by explicit equations or depicted by computer graphics. In
960-402: A spacecraft were shaped like a torus , it would be much more energy efficient and make the concept feasible. White has stated that "warp travel" has not yet seen a " Chicago Pile-1 " experiment, a reference to the very first nuclear reactor , the breakthrough demonstration that paved the way for nuclear power . To investigate the feasibility of a warp drive, White and his team have designed
1020-544: A sphere — by adding one additional point that represents the limiting case as a rectangular torus approaches an aspect ratio of 0 in the limit. The result is that this compactified moduli space is a sphere with three points each having less than 2π total angle around them. (Such a point is termed a "cusp", and may be thought of as the vertex of a cone, also called a "conepoint".) This third conepoint will have zero total angle around it. Due to symmetry, M* may be constructed by glueing together two congruent geodesic triangles in
1080-461: A torus is a closed surface defined as the product of two circles : S × S . This can be viewed as lying in C and is a subset of the 3-sphere S of radius √2. This topological torus is also often called the Clifford torus . In fact, S is filled out by a family of nested tori in this manner (with two degenerate circles), a fact which is important in the study of S as
1140-425: A torus is punctured and turned inside out then another torus results, with lines of latitude and longitude interchanged. This is equivalent to building a torus from a cylinder, by joining the circular ends together, in two ways: around the outside like joining two ends of a garden hose, or through the inside like rolling a sock (with the toe cut off). Additionally, if the cylinder was made by gluing two opposite sides of
1200-426: A torus is the product of two circles, a modified version of the spherical coordinate system is sometimes used. In traditional spherical coordinates there are three measures, R , the distance from the center of the coordinate system, and θ and φ , angles measured from the center point. As a torus has, effectively, two center points, the centerpoints of the angles are moved; φ measures the same angle as it does in
1260-563: A torus without stretching the paper (unless some regularity and differentiability conditions are given up, see below). A simple 4-dimensional Euclidean embedding of a rectangular flat torus (more general than the square one) is as follows: where R and P are positive constants determining the aspect ratio. It is diffeomorphic to a regular torus but not isometric . It can not be analytically embedded ( smooth of class C , 2 ≤ k ≤ ∞ ) into Euclidean 3-space. Mapping it into 3 -space requires one to stretch it, in which case it looks like
SECTION 20
#17327901287601320-469: A two-sheeted cover of the 2-sphere. The points on the torus corresponding to the ramification points are the Weierstrass points . In fact, the conformal type of the torus is determined by the cross-ratio of the four points. The torus has a generalization to higher dimensions, the n-dimensional torus , often called the n -torus or hypertorus for short. (This is the more typical meaning of
1380-476: A warp field interferometer test bed to demonstrate warp field phenomena. The experiments are taking place at NASA's Advanced Propulsion Physics Laboratory ("Eagleworks") at the Johnson Space Center. White and his team claim that this modified Michelson interferometer will detect distortion of spacetime, a warp field effect. In May 2021 White and his team announced that they might have found
1440-459: Is R n {\displaystyle \mathbb {R} ^{n}} modulo the action of the integer lattice Z n {\displaystyle \mathbb {Z} ^{n}} (with the action being taken as vector addition). Equivalently, the n -torus is obtained from the n -dimensional hypercube by gluing the opposite faces together. An n -torus in this sense is an example of an n- dimensional compact manifold . It
1500-510: Is a stub . You can help Misplaced Pages by expanding it . This article about transportation in Texas is a stub . You can help Misplaced Pages by expanding it . White%E2%80%93Juday warp-field interferometer Harold G. "Sonny" White (born October 8, 1965) is a mechanical engineer , aerospace engineer , and applied physicist who is known for proposing new Alcubierre drive concepts and promoting advanced propulsion projects. White obtained
1560-1005: Is a Latin word for "a round, swelling, elevation, protuberance". A torus of revolution in 3-space can be parametrized as: x ( θ , φ ) = ( R + r cos θ ) cos φ y ( θ , φ ) = ( R + r cos θ ) sin φ z ( θ , φ ) = r sin θ {\displaystyle {\begin{aligned}x(\theta ,\varphi )&=(R+r\cos \theta )\cos {\varphi }\\y(\theta ,\varphi )&=(R+r\cos \theta )\sin {\varphi }\\z(\theta ,\varphi )&=r\sin \theta \\\end{aligned}}} using angular coordinates θ , φ ∈ [ 0 , 2 π ) , {\displaystyle \theta ,\varphi \in [0,2\pi ),} representing rotation around
1620-461: Is a member of the Lie group SO(4). It is known that there exists no C (twice continuously differentiable) embedding of a flat torus into 3-space. (The idea of the proof is to take a large sphere containing such a flat torus in its interior, and shrink the radius of the sphere until it just touches the torus for the first time. Such a point of contact must be a tangency. But that would imply that part of
1680-411: Is a torus with the metric inherited from its representation as the quotient , R 2 {\displaystyle \mathbb {R} ^{2}} / L , where L is a discrete subgroup of R 2 {\displaystyle \mathbb {R} ^{2}} isomorphic to Z 2 {\displaystyle \mathbb {Z} ^{2}} . This gives the quotient the structure of
1740-457: Is also an example of a compact abelian Lie group . This follows from the fact that the unit circle is a compact abelian Lie group (when identified with the unit complex numbers with multiplication). Group multiplication on the torus is then defined by coordinate-wise multiplication. Toroidal groups play an important part in the theory of compact Lie groups . This is due in part to the fact that in any compact Lie group G one can always find
1800-594: Is enabled by section 2.3.7 of the NASA Technology Roadmap TA 2: In Space Propulsion Technologies: Breakthrough Propulsion: Breakthrough propulsion is an area of technology development that seeks to explore and develop a deeper understanding of the nature of space-time, gravitation, inertial frames, quantum vacuum, and other fundamental physical phenomena, with the overall objective of developing advanced propulsion applications and systems that will revolutionize how NASA explores space. The lab's purpose
1860-466: Is formed by rotating a disk , rather than a circle, around an axis. A solid torus is a torus plus the volume inside the torus. Real-world objects that approximate a solid torus include O-rings , non-inflatable lifebuoys , ring doughnuts , and bagels . In topology , a ring torus is homeomorphic to the Cartesian product of two circles : S 1 × S 1 {\displaystyle S^{1}\times S^{1}} , and
Advanced Propulsion Physics Laboratory - Misplaced Pages Continue
1920-447: Is known as the "square" flat torus. This metric of the square flat torus can also be realised by specific embeddings of the familiar 2-torus into Euclidean 4-space or higher dimensions. Its surface has zero Gaussian curvature everywhere. It is flat in the same sense that the surface of a cylinder is flat. In 3 dimensions, one can bend a flat sheet of paper into a cylinder without stretching the paper, but this cylinder cannot be bent into
1980-545: Is the n -fold product of the circle, the n -torus is the configuration space of n ordered, not necessarily distinct points on the circle. Symbolically, T n = ( S 1 ) n {\displaystyle \mathbb {T} ^{n}=(\mathbb {S} ^{1})^{n}} . The configuration space of unordered , not necessarily distinct points is accordingly the orbifold T n / S n {\displaystyle \mathbb {T} ^{n}/\mathbb {S} _{n}} , which
2040-491: Is the quotient of the torus by the symmetric group on n letters (by permuting the coordinates). For n = 2, the quotient is the Möbius strip , the edge corresponding to the orbifold points where the two coordinates coincide. For n = 3 this quotient may be described as a solid torus with cross-section an equilateral triangle , with a twist ; equivalently, as a triangular prism whose top and bottom faces are connected with
2100-400: Is the standard 2-torus, T 2 {\displaystyle \mathbb {T} ^{2}} . And similar to the 2-torus, the n -torus, T n {\displaystyle \mathbb {T} ^{n}} can be described as a quotient of R n {\displaystyle \mathbb {R} ^{n}} under integral shifts in any coordinate. That is, the n -torus
2160-415: Is to explore, investigate, and pursue advanced and theoretical propulsion technologies that are intended to allow human exploration of the solar system in the next 50 years with the ultimate goal of interstellar travel by the turn of the century. The 30x40 ft floor of the lab facility floats on large pneumatic piers in order to isolate it from any seismic activity. The pneumatic piers were originally built for
2220-454: The Euler characteristic of the n -torus is 0 for all n . The cohomology ring H ( T n {\displaystyle \mathbb {T} ^{n}} , Z ) can be identified with the exterior algebra over the Z - module Z n {\displaystyle \mathbb {Z} ^{n}} whose generators are the duals of the n nontrivial cycles. As the n -torus
2280-478: The hyperbolic plane along their (identical) boundaries, where each triangle has angles of π/2, π/3, and 0. (The three angles of a hyperbolic triangle T determine T up to congruence.) As a result, the Gauss-Bonnet theorem shows that the area of each triangle can be calculated as π - (π/2 + π/3 + 0) = π/6, so it follows that the compactified moduli space M* has area equal to π/3. The other two cusps occur at
2340-454: The square root gives a quartic equation , ( x 2 + y 2 + z 2 + R 2 − r 2 ) 2 = 4 R 2 ( x 2 + y 2 ) . {\displaystyle \left(x^{2}+y^{2}+z^{2}+R^{2}-r^{2}\right)^{2}=4R^{2}\left(x^{2}+y^{2}\right).} The three classes of standard tori correspond to
2400-433: The " moduli space " of the torus to contain one point for each conformal equivalence class, with the appropriate topology. It turns out that this moduli space M may be identified with a punctured sphere that is smooth except for two points that have less angle than 2π (radians) around them: One has total angle = π and the other has total angle = 2π/3. M may be turned into a compact space M* — topologically equivalent to
2460-406: The 3-sphere into two congruent solid tori subsets with the aforesaid flat torus surface as their common boundary . One example is the torus T defined by Other tori in S having this partitioning property include the square tori of the form Q ⋅ T , where Q is a rotation of 4-dimensional space R 4 {\displaystyle \mathbb {R} ^{4}} , or in other words Q
Advanced Propulsion Physics Laboratory - Misplaced Pages Continue
2520-603: The Apollo program and used to perform work involving inertial measurement units (IMU) before being brought out of retirement. This article related to the National Aeronautics and Space Administration is a stub . You can help Misplaced Pages by expanding it . This article about an organization or institute connected with astronomy is a stub . You can help Misplaced Pages by expanding it . This article about an organization or institute connected with physics
2580-405: The axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere . If the revolved curve is not a circle, the surface is called a toroid , as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings , inner tubes and ringette rings . A torus should not be confused with a solid torus , which
2640-430: The field of topology , a torus is any topological space that is homeomorphic to a torus. The surface of a coffee cup and a doughnut are both topological tori with genus one. An example of a torus can be constructed by taking a rectangular strip of flexible material such as rubber, and joining the top edge to the bottom edge, and the left edge to the right edge, without any half-twists (compare Klein bottle ). Torus
2700-406: The integral matrices with determinant ±1. Making them act on R n {\displaystyle \mathbb {R} ^{n}} in the usual way, one has the typical toral automorphism on the quotient. The fundamental group of an n -torus is a free abelian group of rank n . The k -th homology group of an n -torus is a free abelian group of rank n choose k . It follows that
2760-477: The latter is taken to be the definition in that context. It is a compact 2-manifold of genus 1. The ring torus is one way to embed this space into Euclidean space , but another way to do this is the Cartesian product of the embedding of S 1 {\displaystyle S^{1}} in the plane with itself. This produces a geometric object called the Clifford torus , a surface in 4-space . In
2820-835: The new micro-balance. In 2006, White was awarded the NASA Exceptional Achievement Medal by the NASA administrator for his role in getting the Thermal Protection System robotic inspection tools built, delivered, and certified during the Space Shuttle 's return to flight . White has also received the Silver Snoopy Award from the NASA crew office for "his actions in the discovery and disposition of critical damage to
2880-430: The north pole of S . The torus can also be described as a quotient of the Cartesian plane under the identifications or, equivalently, as the quotient of the unit square by pasting the opposite edges together, described as a fundamental polygon ABA B . The fundamental group of the torus is just the direct product of the fundamental group of the circle with itself: Intuitively speaking, this means that
2940-636: The proposed EM Drive. The proposed principle of operation for this device was shown to be inconsistent with known laws of physics , including conservation of momentum and conservation of energy . No plausible theory of operation for such drives has been proposed. In March 2021, physicists at the Dresden University of Technology published three papers claiming that all results showing thrust were false positives, explained by outside forces. White and his team are also working on several other "breakthrough space technology" projects, including
3000-503: The right configuration required to test a "chip-scale" Alcubierre drive. In April 2015, the space enthusiast website NASASpaceFlight.com announced, based on a post on their site's forum by NASA Eagleworks engineer Paul March, that NASA had successfully tested their EM Drive in a hard vacuum – which would be the first time any organization has claimed such a successful test. In November, 2016, Harold White, along with other colleagues at NASA's Eagleworks program published their findings on
3060-510: The robotic arm prior to the Space Shuttle STS-121 mission ." Torus In geometry , a torus ( pl. : tori or toruses ) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as
SECTION 50
#17327901287603120-431: The same as for a cylinder of length 2π R and radius r , obtained from cutting the tube along the plane of a small circle, and unrolling it by straightening out (rectifying) the line running around the center of the tube. The losses in surface area and volume on the inner side of the tube exactly cancel out the gains on the outer side. Expressing the surface area and the volume by the distance p of an outermost point on
3180-491: The spherical system, but is known as the "toroidal" direction. The center point of θ is moved to the center of r , and is known as the "poloidal" direction. These terms were first used in a discussion of the Earth's magnetic field, where "poloidal" was used to denote "the direction toward the poles". In modern use, toroidal and poloidal are more commonly used to discuss magnetic confinement fusion devices. Topologically ,
3240-449: The study of Riemann surfaces , one says that any two smooth compact geometric surfaces are "conformally equivalent" when there exists a smooth homeomorphism between them that is both angle-preserving and orientation-preserving. The Uniformization theorem guarantees that every Riemann surface is conformally equivalent to one that has constant Gaussian curvature . In the case of a torus, the constant curvature must be zero. Then one defines
3300-1057: The surface of the torus to the center, and the distance q of an innermost point to the center (so that R = p + q / 2 and r = p − q / 2 ), yields A = 4 π 2 ( p + q 2 ) ( p − q 2 ) = π 2 ( p + q ) ( p − q ) , V = 2 π 2 ( p + q 2 ) ( p − q 2 ) 2 = 1 4 π 2 ( p + q ) ( p − q ) 2 . {\displaystyle {\begin{aligned}A&=4\pi ^{2}\left({\frac {p+q}{2}}\right)\left({\frac {p-q}{2}}\right)=\pi ^{2}(p+q)(p-q),\\[5mu]V&=2\pi ^{2}\left({\frac {p+q}{2}}\right)\left({\frac {p-q}{2}}\right)^{2}={\tfrac {1}{4}}\pi ^{2}(p+q)(p-q)^{2}.\end{aligned}}} As
3360-439: The term " n -torus", the other referring to n holes or of genus n . ) Just as the ordinary torus is topologically the product space of two circles, the n -dimensional torus is topologically equivalent to the product of n circles. That is: The standard 1-torus is just the circle: T 1 = S 1 {\displaystyle \mathbb {T} ^{1}=\mathbb {S} ^{1}} . The torus discussed above
3420-426: The three possible aspect ratios between R and r : When R ≥ r , the interior ( x 2 + y 2 − R ) 2 + z 2 < r 2 {\displaystyle {\textstyle {\bigl (}{\sqrt {x^{2}+y^{2}}}-R{\bigr )}^{2}}+z^{2}<r^{2}} of this torus is diffeomorphic (and, hence, homeomorphic) to
3480-484: The torus, since it has zero curvature everywhere, must lie strictly outside the sphere, which is a contradiction.) On the other hand, according to the Nash-Kuiper theorem , which was proven in the 1950s, an isometric C embedding exists. This is solely an existence proof and does not provide explicit equations for such an embedding. In April 2012, an explicit C (continuously differentiable) isometric embedding of
3540-534: The torus. The typical doughnut confectionery has an aspect ratio of about 3 to 2. An implicit equation in Cartesian coordinates for a torus radially symmetric about the z {\displaystyle z} - axis is ( x 2 + y 2 − R ) 2 + z 2 = r 2 . {\displaystyle {\textstyle {\bigl (}{\sqrt {x^{2}+y^{2}}}-R{\bigr )}^{2}}+z^{2}=r^{2}.} Algebraically eliminating
3600-420: The tube and rotation around the torus' axis of revolution, respectively, where the major radius R {\displaystyle R} is the distance from the center of the tube to the center of the torus and the minor radius r {\displaystyle r} is the radius of the tube. The ratio R / r {\displaystyle R/r} is called the aspect ratio of
#759240