Misplaced Pages

Albion Mills, Southwark

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#700299

66-508: Albion Mills was a steam-powered flour mill situated on the southeastern side of Blackfriars Bridge in northern Southwark , London, then in the parish of Christchurch , Surrey. Matthew Boulton began plans for the mill as early as 1783; it was completed in 1786, and gutted by fire in 1791. Most of the notable engineering drawings and depictions of Albion Mills are in the Birmingham Central Library . The building

132-722: A steam engine with a separate condenser. This made much more efficient use of its fuel than the older Newcomen engine . Initially the business was based at the Soho Manufactory near Boulton's Soho House on the southern edge of the then-rural parish of Handsworth . However most of the components for their engines were made by others, for example the cylinders by John Wilkinson . In 1795, they began to make steam engines themselves at their Soho Foundry in Smethwick , near Birmingham , England . Between 1775 and 1800, Boulton and Watt produced 496 engines. The partnership

198-497: A closed space (e.g., combustion chamber , firebox , furnace). In the case of model or toy steam engines and a few full scale cases, the heat source can be an electric heating element . Boilers are pressure vessels that contain water to be boiled, and features that transfer the heat to the water as effectively as possible. The two most common types are: Fire-tube boilers were the main type used for early high-pressure steam (typical steam locomotive practice), but they were to

264-423: A common four-way rotary valve connected directly to a steam boiler. The next major step occurred when James Watt developed (1763–1775) an improved version of Newcomen's engine, with a separate condenser . Boulton and Watt 's early engines used half as much coal as John Smeaton 's improved version of Newcomen's. Newcomen's and Watt's early engines were "atmospheric". They were powered by air pressure pushing

330-415: A few other uses recorded in the 16th century. In 1606 Jerónimo de Ayanz y Beaumont patented his invention of the first steam-powered water pump for draining mines. Thomas Savery is considered the inventor of the first commercially used steam powered device, a steam pump that used steam pressure operating directly on the water. The first commercially successful engine that could transmit continuous power to

396-438: A flywheel and crankshaft to provide rotative motion from an improved Newcomen engine. In 1720, Jacob Leupold described a two-cylinder high-pressure steam engine. The invention was published in his major work "Theatri Machinarum Hydraulicarum". The engine used two heavy pistons to provide motion to a water pump. Each piston was raised by the steam pressure and returned to its original position by gravity. The two pistons shared

462-423: A given cylinder size than previous engines and could be made small enough for transport applications. Thereafter, technological developments and improvements in manufacturing techniques (partly brought about by the adoption of the steam engine as a power source) resulted in the design of more efficient engines that could be smaller, faster, or more powerful, depending on the intended application. The Cornish engine

528-416: A large extent displaced by more economical water tube boilers in the late 19th century for marine propulsion and large stationary applications. Many boilers raise the temperature of the steam after it has left that part of the boiler where it is in contact with the water. Known as superheating it turns ' wet steam ' into ' superheated steam '. It avoids the steam condensing in the engine cylinders, and gives

594-508: A machine was developed in 1712 by Thomas Newcomen . James Watt made a critical improvement in 1764, by removing spent steam to a separate vessel for condensation, greatly improving the amount of work obtained per unit of fuel consumed. By the 19th century, stationary steam engines powered the factories of the Industrial Revolution . Steam engines replaced sails for ships on paddle steamers , and steam locomotives operated on

660-478: A new engine and mill were eventually rejected and the old mill was converted into houses. According to Graham Gibberd , the Albion Mills building became "London's symbol for the impending industrial revolution", and the shell of the building was the inspiration for William Blake 's "dark satanic mills" in his poem And did those feet in ancient time . Most of the notable engineering drawings and depictions of

726-409: A partial vacuum by condensing steam under a piston within a cylinder. It was employed for draining mine workings at depths originally impractical using traditional means, and for providing reusable water for driving waterwheels at factories sited away from a suitable "head". Water that passed over the wheel was pumped up into a storage reservoir above the wheel. In 1780 James Pickard patented the use of

SECTION 10

#1732773220701

792-405: A piston into the partial vacuum generated by condensing steam, instead of the pressure of expanding steam. The engine cylinders had to be large because the only usable force acting on them was atmospheric pressure . Watt developed his engine further, modifying it to provide a rotary motion suitable for driving machinery. This enabled factories to be sited away from rivers, and accelerated

858-433: A set speed, because it would assume a new constant speed in response to load changes. The governor was able to handle smaller variations such as those caused by fluctuating heat load to the boiler. Also, there was a tendency for oscillation whenever there was a speed change. As a consequence, engines equipped only with this governor were not suitable for operations requiring constant speed, such as cotton spinning. The governor

924-522: A significantly higher efficiency . In a steam engine, a piston or steam turbine or any other similar device for doing mechanical work takes a supply of steam at high pressure and temperature and gives out a supply of steam at lower pressure and temperature, using as much of the difference in steam energy as possible to do mechanical work. These "motor units" are often called 'steam engines' in their own right. Engines using compressed air or other gases differ from steam engines only in details that depend on

990-414: A steam jet usually supplied from the boiler. Injectors became popular in the 1850s but are no longer widely used, except in applications such as steam locomotives. It is the pressurization of the water that circulates through the steam boiler that allows the water to be raised to temperatures well above 100 °C (212 °F) boiling point of water at one atmospheric pressure, and by that means to increase

1056-628: A steam rail locomotive was designed and constructed by steamboat pioneer John Fitch in the United States probably during the 1780s or 1790s. His steam locomotive used interior bladed wheels guided by rails or tracks. The first full-scale working railway steam locomotive was built by Richard Trevithick in the United Kingdom and, on 21 February 1804, the world's first railway journey took place as Trevithick's steam locomotive hauled 10 tones of iron, 70 passengers and five wagons along

1122-612: A trio of locomotives, concluding with the Catch Me Who Can in 1808. Only four years later, the successful twin-cylinder locomotive Salamanca by Matthew Murray was used by the edge railed rack and pinion Middleton Railway . In 1825 George Stephenson built the Locomotion for the Stockton and Darlington Railway . This was the first public steam railway in the world and then in 1829, he built The Rocket which

1188-561: A very limited lift height and were prone to boiler explosions . Savery's engine was used in mines, pumping stations and supplying water to water wheels powering textile machinery. One advantage of Savery's engine was its low cost. Bento de Moura Portugal introduced an improvement of Savery's construction "to render it capable of working itself", as described by John Smeaton in the Philosophical Transactions published in 1751. It continued to be manufactured until

1254-473: A water pump for draining inundated mines. Frenchman Denis Papin did some useful work on the steam digester in 1679, and first used a piston to raise weights in 1690. The first commercial steam-powered device was a water pump, developed in 1698 by Thomas Savery . It used condensing steam to create a vacuum which raised water from below and then used steam pressure to raise it higher. Small engines were effective though larger models were problematic. They had

1320-474: Is called the Rankine cycle . In general usage, the term steam engine can refer to either complete steam plants (including boilers etc.), such as railway steam locomotives and portable engines , or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine . As noted, steam-driven devices such as the aeolipile were known in the first century AD, and there were

1386-431: Is cylinder condensation and re-evaporation. The steam cylinder and adjacent metal parts/ports operate at a temperature about halfway between the steam admission saturation temperature and the saturation temperature corresponding to the exhaust pressure. As high-pressure steam is admitted into the working cylinder, much of the high-temperature steam is condensed as water droplets onto the metal surfaces, significantly reducing

SECTION 20

#1732773220701

1452-413: Is most commonly applied to reciprocating engines as just described, although some authorities have also referred to the steam turbine and devices such as Hero's aeolipile as "steam engines". The essential feature of steam engines is that they are external combustion engines , where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process

1518-399: Is then pumped back up to pressure and sent back to the boiler. A dry-type cooling tower is similar to an automobile radiator and is used in locations where water is costly. Waste heat can also be ejected by evaporative (wet) cooling towers, which use a secondary external water circuit that evaporates some of flow to the air. River boats initially used a jet condenser in which cold water from

1584-542: Is vented up the chimney so as to increase the draw on the fire, which greatly increases engine power, but reduces efficiency. Sometimes the waste heat from the engine is useful itself, and in those cases, very high overall efficiency can be obtained. Steam engines in stationary power plants use surface condensers as a cold sink. The condensers are cooled by water flow from oceans, rivers, lakes, and often by cooling towers which evaporate water to provide cooling energy removal. The resulting condensed hot water ( condensate ),

1650-468: The Rumford Medal , the committee said that "no one invention since Watt's time has so enhanced the efficiency of the steam engine". In addition to using 30% less steam, it provided more uniform speed due to variable steam cut off, making it well suited to manufacturing, especially cotton spinning. The first experimental road-going steam-powered vehicles were built in the late 18th century, but it

1716-462: The sun and planet gear , and the piston rods. Repairs were completed in April 1786. The cost of erecting the mill proved to be considerably in excess of the original estimate, and Watt soon feared that it would turn out to be a losing concern. He had no doubt that the engines or the machinery would be able to do all that had been promised; but he feared that the absence of business capacity on the part of

1782-626: The tramway from the Pen-y-darren ironworks, near Merthyr Tydfil to Abercynon in south Wales . The design incorporated a number of important innovations that included using high-pressure steam which reduced the weight of the engine and increased its efficiency. Trevithick visited the Newcastle area later in 1804 and the colliery railways in north-east England became the leading centre for experimentation and development of steam locomotives. Trevithick continued his own experiments using

1848-514: The 1860s to the 1920s. Steam road vehicles were used for many applications. In the 20th century, the rapid development of internal combustion engine technology led to the demise of the steam engine as a source of propulsion of vehicles on a commercial basis, with relatively few remaining in use beyond the Second World War . Many of these vehicles were acquired by enthusiasts for preservation, and numerous examples are still in existence. In

1914-562: The 1960s, the air pollution problems in California gave rise to a brief period of interest in developing and studying steam-powered vehicles as a possible means of reducing the pollution. Apart from interest by steam enthusiasts, the occasional replica vehicle, and experimental technology, no steam vehicles are in production at present. Near the end of the 19th century, compound engines came into widespread use. Compound engines exhausted steam into successively larger cylinders to accommodate

1980-408: The 20th century, where their efficiency, higher speed appropriate to generator service, and smooth rotation were advantages. Today most electric power is provided by steam turbines. In the United States, 90% of the electric power is produced in this way using a variety of heat sources. Steam turbines were extensively applied for propulsion of large ships throughout most of the 20th century. Although

2046-533: The Albion Mills are in the Boulton & Watt Archive of Birmingham Central Library. Bibliography Steam engine A steam engine is a heat engine that performs mechanical work using steam as its working fluid . The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder . This pushing force can be transformed by a connecting rod and crank into rotational force for work. The term "steam engine"

Albion Mills, Southwark - Misplaced Pages Continue

2112-475: The atmosphere or into a condenser. As steam expands in passing through a high-pressure engine, its temperature drops because no heat is being added to the system; this is known as adiabatic expansion and results in steam entering the cylinder at high temperature and leaving at lower temperature. This causes a cycle of heating and cooling of the cylinder with every stroke, which is a source of inefficiency. The dominant efficiency loss in reciprocating steam engines

2178-522: The backing of City financiers and Joah Bates , an organ player and composer who "embarked all his own money and 10,000/ belonging to his wife" to build it. It was the first steam-powered commercial flour mill in the United Kingdom. James Watt , an associate of Boulton, was personally hired to build a steam engine for the mill to grind corn. Watt's engine was tested before numerous spectators, including Sir Joseph Banks , but encountered problems with

2244-403: The bearings of brass . The mill's double engine, producing 50 horsepower (37 kW), drove 20 pairs of millstones , each grinding some nine bushels of corn an hour. It also provided power for raising corn, fanning it to free it of impurities, sifting it, dressing the meal and lowering it into the barges, which made the process more efficient. The mill was built in 1786 by Matthew Boulton, with

2310-404: The boiler and engine in separate buildings some distance apart. For portable or mobile use, such as steam locomotives , the two are mounted together. The widely used reciprocating engine typically consisted of a cast-iron cylinder, piston, connecting rod and beam or a crank and flywheel, and miscellaneous linkages. Steam was alternately supplied and exhausted by one or more valves. Speed control

2376-407: The building, devastating Bates financially. The building was completely gutted within two hours. Several houses near the mills were also burnt down. Damage was estimated at £150,000. Over 500 people became unemployed. Arson was strongly suspected, but Rennie and Wyatt, the manager of the mill, blamed a lack of grease on a corn machine in front of the kiln, and called the fire an accident. In response to

2442-631: The business of designing and making marine and stationary steam engines . Founded in the English West Midlands around Birmingham in 1775 as a partnership between the English manufacturer Matthew Boulton and the Scottish engineer James Watt , the firm had a major role in the Industrial Revolution and grew to be a major producer of steam engines in the 19th century. The partnership was formed in 1775 to exploit Watt's patent for

2508-401: The efficiency of the steam cycle. For safety reasons, nearly all steam engines are equipped with mechanisms to monitor the boiler, such as a pressure gauge and a sight glass to monitor the water level. Many engines, stationary and mobile, are also fitted with a governor to regulate the speed of the engine without the need for human interference. The most useful instrument for analyzing

2574-485: The gradual replacement of steam engines in commercial usage. Steam turbines replaced reciprocating engines in power generation, due to lower cost, higher operating speed, and higher efficiency. Note that small scale steam turbines are much less efficient than large ones. As of 2023 , large reciprocating piston steam engines are still being manufactured in Germany. As noted, one recorded rudimentary steam-powered engine

2640-463: The higher volumes at reduced pressures, giving improved efficiency. These stages were called expansions, with double- and triple-expansion engines being common, especially in shipping where efficiency was important to reduce the weight of coal carried. Steam engines remained the dominant source of power until the early 20th century, when advances in the design of the steam turbine , electric motors , and internal combustion engines gradually resulted in

2706-429: The late 18th century. At least one engine was still known to be operating in 1820. The first commercially successful engine that could transmit continuous power to a machine was the atmospheric engine , invented by Thomas Newcomen around 1712. It improved on Savery's steam pump, using a piston as proposed by Papin. Newcomen's engine was relatively inefficient, and mostly used for pumping water. It worked by creating

Albion Mills, Southwark - Misplaced Pages Continue

2772-554: The loss of the Albion Mills, the proprietors of mills at Blackwall , Limehouse and Poplar , Middlesex and Rotherhithe , Surrey restarted business, their mills having been idle for more than three years. The gutting of the mill and the end of a period during which the Albion Mills Company held a virtual monopoly on the London flour market was warmly received by some rivals in London, particularly when plans to build

2838-461: The managers would be fatal to the mill's commercial success. In September 1786, the Duke of Milan visited the mills. By 1789, a second engine had been installed. The business thrived, and by June 1790 the mill was producing sales of £6,800 in flour a week. However, problems remained with its running and maintenance, and Boulton was dissatisfied with the results. At 06:30 on 2 March 1791, a fire gutted

2904-399: The nature of the gas although compressed air has been used in steam engines without change. As with all heat engines, the majority of primary energy must be emitted as waste heat at relatively low temperature. The simplest cold sink is to vent the steam to the environment. This is often used on steam locomotives to avoid the weight and bulk of condensers. Some of the released steam

2970-518: The pace of the Industrial Revolution. The meaning of high pressure, together with an actual value above ambient, depends on the era in which the term was used. For early use of the term Van Reimsdijk refers to steam being at a sufficiently high pressure that it could be exhausted to atmosphere without reliance on a vacuum to enable it to perform useful work. Ewing 1894 , p. 22 states that Watt's condensing engines were known, at

3036-456: The performance of steam engines is the steam engine indicator. Early versions were in use by 1851, but the most successful indicator was developed for the high speed engine inventor and manufacturer Charles Porter by Charles Richard and exhibited at London Exhibition in 1862. The steam engine indicator traces on paper the pressure in the cylinder throughout the cycle, which can be used to spot various problems and calculate developed horsepower. It

3102-456: The piston axis in vertical position. In time the horizontal arrangement became more popular, allowing compact, but powerful engines to be fitted in smaller spaces. The acme of the horizontal engine was the Corliss steam engine , patented in 1849, which was a four-valve counter flow engine with separate steam admission and exhaust valves and automatic variable steam cutoff. When Corliss was given

3168-428: The railways. Reciprocating piston type steam engines were the dominant source of power until the early 20th century. The efficiency of stationary steam engine increased dramatically until about 1922. The highest Rankine Cycle Efficiency of 91% and combined thermal efficiency of 31% was demonstrated and published in 1921 and 1928. Advances in the design of electric motors and internal combustion engines resulted in

3234-406: The reciprocating steam engine is no longer in widespread commercial use, various companies are exploring or exploiting the potential of the engine as an alternative to internal combustion engines. There are two fundamental components of a steam plant: the boiler or steam generator , and the "motor unit", referred to itself as a "steam engine". Stationary steam engines in fixed buildings may have

3300-417: The replacement of reciprocating (piston) steam engines, with merchant shipping relying increasingly upon diesel engines , and warships on the steam turbine. As the development of steam engines progressed through the 18th century, various attempts were made to apply them to road and railway use. In 1784, William Murdoch , a Scottish inventor, built a model steam road locomotive. An early working model of

3366-578: The river is injected into the exhaust steam from the engine. Cooling water and condensate mix. While this was also applied for sea-going vessels, generally after only a few days of operation the boiler would become coated with deposited salt, reducing performance and increasing the risk of a boiler explosion. Starting about 1834, the use of surface condensers on ships eliminated fouling of the boilers, and improved engine efficiency. Evaporated water cannot be used for subsequent purposes (other than rain somewhere), whereas river water can be re-used. In all cases,

SECTION 50

#1732773220701

3432-413: The steam available for expansive work. When the expanding steam reaches low pressure (especially during the exhaust stroke), the previously deposited water droplets that had just been formed within the cylinder/ports now boil away (re-evaporation) and this steam does no further work in the cylinder. Boulton and Watt Boulton & Watt was an early British engineering and manufacturing firm in

3498-412: The steam plant boiler feed water, which must be kept pure, is kept separate from the cooling water or air. Most steam boilers have a means to supply water whilst at pressure, so that they may be run continuously. Utility and industrial boilers commonly use multi-stage centrifugal pumps ; however, other types are used. Another means of supplying lower-pressure boiler feed water is an injector , which uses

3564-489: The temperature of the steam above its saturated vapour point, and various mechanisms to increase the draft for fireboxes. When coal is used, a chain or screw stoking mechanism and its drive engine or motor may be included to move the fuel from a supply bin (bunker) to the firebox. The heat required for boiling the water and raising the temperature of the steam can be derived from various sources, most commonly from burning combustible materials with an appropriate supply of air in

3630-482: The time, as low pressure compared to high pressure, non-condensing engines of the same period. Watt's patent prevented others from making high pressure and compound engines. Shortly after Watt's patent expired in 1800, Richard Trevithick and, separately, Oliver Evans in 1801 introduced engines using high-pressure steam; Trevithick obtained his high-pressure engine patent in 1802, and Evans had made several working models before then. These were much more powerful for

3696-623: Was designed by the architect Samuel Wyatt . The engines were supplied with water taken directly from the River Thames . At the time, they were "the most complete and powerful which had been produced by the Soho Manufactory ". The mill's wheels and shafts were made of iron. An exception to this were some of the cogs , which were of hard wood, though others were of cast iron , as were the pinions . The teeth, some of wood and others of iron, were manufactured by chipping and filing into epicycloidal shapes. The shafts and axles were made of iron and

3762-546: Was developed by Trevithick and others in the 1810s. It was a compound cycle engine that used high-pressure steam expansively, then condensed the low-pressure steam, making it relatively efficient. The Cornish engine had irregular motion and torque through the cycle, limiting it mainly to pumping. Cornish engines were used in mines and for water supply until the late 19th century. Early builders of stationary steam engines considered that horizontal cylinders would be subject to excessive wear. Their engines were therefore arranged with

3828-450: Was either automatic, using a governor, or by a manual valve. The cylinder casting contained steam supply and exhaust ports. Engines equipped with a condenser are a separate type than those that exhaust to the atmosphere. Other components are often present; pumps (such as an injector ) to supply water to the boiler during operation, condensers to recirculate the water and recover the latent heat of vaporisation, and superheaters to raise

3894-531: Was entered in and won the Rainhill Trials . The Liverpool and Manchester Railway opened in 1830 making exclusive use of steam power for both passenger and freight trains. Steam locomotives continued to be manufactured until the late twentieth century in places such as China and the former East Germany (where the DR Class 52.80 was produced). The final major evolution of the steam engine design

3960-411: Was improved over time and coupled with variable steam cut off, good speed control in response to changes in load was attainable near the end of the 19th century. In a simple engine, or "single expansion engine" the charge of steam passes through the entire expansion process in an individual cylinder, although a simple engine may have one or more individual cylinders. It is then exhausted directly into

4026-479: Was not until after Richard Trevithick had developed the use of high-pressure steam, around 1800, that mobile steam engines became a practical proposition. The first half of the 19th century saw great progress in steam vehicle design, and by the 1850s it was becoming viable to produce them on a commercial basis. This progress was dampened by legislation which limited or prohibited the use of steam-powered vehicles on roads. Improvements in vehicle technology continued from

SECTION 60

#1732773220701

4092-449: Was passed to two of their sons in 1800. William Murdoch was made a partner of the firm in 1810, where he remained until his retirement 20 years later at the age of 76. The firm lasted over 120 years, albeit renamed "James Watt & Co." in 1849, and was still making steam engines in 1895, when it was sold to W & T Avery Ltd. For ten years their banker in London was Charlotte Matthews after her husband died in 1792. A woman banker

4158-496: Was routinely used by engineers, mechanics and insurance inspectors. The engine indicator can also be used on internal combustion engines. See image of indicator diagram below (in Types of motor units section). The centrifugal governor was adopted by James Watt for use on a steam engine in 1788 after Watt's partner Boulton saw one on the equipment of a flour mill Boulton & Watt were building. The governor could not actually hold

4224-763: Was the aeolipile described by Hero of Alexandria , a Hellenistic mathematician and engineer in Roman Egypt during the first century AD. In the following centuries, the few steam-powered engines known were, like the aeolipile, essentially experimental devices used by inventors to demonstrate the properties of steam. A rudimentary steam turbine device was described by Taqi al-Din in Ottoman Egypt in 1551 and by Giovanni Branca in Italy in 1629. The Spanish inventor Jerónimo de Ayanz y Beaumont received patents in 1606 for 50 steam-powered inventions, including

4290-438: Was the use of steam turbines starting in the late part of the 19th century. Steam turbines are generally more efficient than reciprocating piston type steam engines (for outputs above several hundred horsepower), have fewer moving parts, and provide rotary power directly instead of through a connecting rod system or similar means. Steam turbines virtually replaced reciprocating engines in electricity generating stations early in

4356-591: Was unusual but she became a close confidante, holidaying with Boulton, and she lent them enormous sums to fund their endeavours. When she died aged 43 in 1802 her business was run by the Boulton and Watt families. The business trained young engineers who went on to achieve notability. Among the names which were employed there in the eighteenth century were James Law, Peter Ewart , William Brunton , Isaac Perrins , William Murdoch , and John Southern . The firm left an extremely detailed archive of its activities, which

#700299