Misplaced Pages

Permissible stress design

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Permissible stress design is a design philosophy used by mechanical engineers and civil engineers .

#971028

107-563: The civil designer ensures that the stresses developed in a structure due to service loads do not exceed the elastic limit . This limit is usually determined by ensuring that stresses remain within the limits through the use of factors of safety . In structural engineering , the permissible stress design approach has generally been replaced internationally by limit state design (also known as ultimate stress design, or in USA, Load and Resistance Factor Design, LRFD) as far as structural engineering

214-420: A flow of viscous liquid , the force F may not be perpendicular to S ; hence the stress across a surface must be regarded a vector quantity, not a scalar. Moreover, the direction and magnitude generally depend on the orientation of S . Thus the stress state of the material must be described by a tensor , called the (Cauchy) stress tensor ; which is a linear function that relates the normal vector n of

321-509: A "factor" against various failure mechanisms such as leakage, yield, ultimate load prior to plastic failure, buckling, brittle fracture, fatigue, and vibration/harmonic effects. However, the predicted stresses almost always assumes the material is linear elastic. The "factor" is sometimes called a factor of safety, although this is technically incorrect because the factor includes allowance for matters such as local stresses and manufacturing imperfections that are not specifically calculated; exceeding

428-439: A "particle" as being an infinitesimal patch of the plate's surface, so that the boundary between adjacent particles becomes an infinitesimal line element; both are implicitly extended in the third dimension, normal to (straight through) the plate. "Stress" is then redefined as being a measure of the internal forces between two adjacent "particles" across their common line element, divided by the length of that line. Some components of

535-474: A Keesom interaction depends on the inverse sixth power of the distance, unlike the interaction energy of two spatially fixed dipoles, which depends on the inverse third power of the distance. The Keesom interaction can only occur among molecules that possess permanent dipole moments, i.e., two polar molecules. Also Keesom interactions are very weak van der Waals interactions and do not occur in aqueous solutions that contain electrolytes. The angle averaged interaction

642-392: A coordinate system with axes e 1 , e 2 , e 3 {\displaystyle e_{1},e_{2},e_{3}} , the stress tensor is a diagonal matrix, and has only the three normal components λ 1 , λ 2 , λ 3 {\displaystyle \lambda _{1},\lambda _{2},\lambda _{3}}

749-457: A cylindrical bar such as a shaft is subjected to opposite torques at its ends. In that case, the shear stress on each cross-section is parallel to the cross-section, but oriented tangentially relative to the axis, and increases with distance from the axis. Significant shear stress occurs in the middle plate (the "web") of I-beams under bending loads, due to the web constraining the end plates ("flanges"). Another simple type of stress occurs when

856-454: A differential formula for friction forces (shear stress) in parallel laminar flow . Stress is defined as the force across a small boundary per unit area of that boundary, for all orientations of the boundary. Derived from a fundamental physical quantity (force) and a purely geometrical quantity (area), stress is also a fundamental quantity, like velocity, torque or energy , that can be quantified and analyzed without explicit consideration of

963-407: A fundamental, unifying theory that is able to explain the various types of interactions such as hydrogen bonding , van der Waals force and dipole–dipole interactions. Typically, this is done by applying the ideas of quantum mechanics to molecules, and Rayleigh–Schrödinger perturbation theory has been especially effective in this regard. When applied to existing quantum chemistry methods, such

1070-522: A large number of electrons will have a greater associated London force than an atom with fewer electrons. The dispersion (London) force is the most important component because all materials are polarizable, whereas Keesom and Debye forces require permanent dipoles. The London interaction is universal and is present in atom-atom interactions as well. For various reasons, London interactions (dispersion) have been considered relevant for interactions between macroscopic bodies in condensed systems. Hamaker developed

1177-466: A material may arise by various mechanisms, such as stress as applied by external forces to the bulk material (like gravity ) or to its surface (like contact forces , external pressure, or friction ). Any strain (deformation) of a solid material generates an internal elastic stress , analogous to the reaction force of a spring , that tends to restore the material to its original non-deformed state. In liquids and gases , only deformations that change

SECTION 10

#1732780753972

1284-475: A net attraction between them. Examples of polar molecules include hydrogen chloride (HCl) and chloroform (CHCl 3 ). Often molecules contain dipolar groups of atoms, but have no overall dipole moment on the molecule as a whole. This occurs if there is symmetry within the molecule that causes the dipoles to cancel each other out. This occurs in molecules such as tetrachloromethane and carbon dioxide . The dipole–dipole interaction between two individual atoms

1391-414: A quantum mechanical explanation of intermolecular interactions provides an array of approximate methods that can be used to analyze intermolecular interactions. One of the most helpful methods to visualize this kind of intermolecular interactions, that we can find in quantum chemistry, is the non-covalent interaction index , which is based on the electron density of the system. London dispersion forces play

1498-438: A significant restructuring of the electronic structure of the interacting particles. (This is only partially true. For example, all enzymatic and catalytic reactions begin with a weak intermolecular interaction between a substrate and an enzyme or a molecule with a catalyst , but several such weak interactions with the required spatial configuration of the active center of the enzyme lead to significant restructuring changes

1605-404: A solid or liquid, i.e., a condensed phase. Lower temperature favors the formation of a condensed phase. In a condensed phase, there is very nearly a balance between the attractive and repulsive forces. Intermolecular forces observed between atoms and molecules can be described phenomenologically as occurring between permanent and instantaneous dipoles, as outlined above. Alternatively, one may seek

1712-463: A stretched elastic band, is subject to tensile stress and may undergo elongation . An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has dimension of force per area, with SI units of newtons per square meter (N/m ) or pascal (Pa). Stress expresses

1819-452: A surface S to the traction vector T across S . With respect to any chosen coordinate system , the Cauchy stress tensor can be represented as a symmetric matrix of 3×3 real numbers. Even within a homogeneous body, the stress tensor may vary from place to place, and may change over time; therefore, the stress within a material is, in general, a time-varying tensor field . In general,

1926-1007: A surface will always be a linear function of the surface's normal vector n {\displaystyle n} , the unit-length vector that is perpendicular to it. That is, T = σ ( n ) {\displaystyle T={\boldsymbol {\sigma }}(n)} , where the function σ {\displaystyle {\boldsymbol {\sigma }}} satisfies σ ( α u + β v ) = α σ ( u ) + β σ ( v ) {\displaystyle {\boldsymbol {\sigma }}(\alpha u+\beta v)=\alpha {\boldsymbol {\sigma }}(u)+\beta {\boldsymbol {\sigma }}(v)} for any vectors u , v {\displaystyle u,v} and any real numbers α , β {\displaystyle \alpha ,\beta } . The function σ {\displaystyle {\boldsymbol {\sigma }}} , now called

2033-434: A surface with normal vector n {\displaystyle n} (which is covariant - "row; horizontal" - vector) with coordinates n 1 , n 2 , n 3 {\displaystyle n_{1},n_{2},n_{3}} is then a matrix product T = n ⋅ σ {\displaystyle T=n\cdot {\boldsymbol {\sigma }}} (where T in upper index

2140-413: A system must be balanced by internal reaction forces, which are almost always surface contact forces between adjacent particles — that is, as stress. Since every particle needs to be in equilibrium, this reaction stress will generally propagate from particle to particle, creating a stress distribution throughout the body. The typical problem in stress analysis is to determine these internal stresses, given

2247-434: A system of partial differential equations involving the stress tensor field and the strain tensor field, as unknown functions to be determined. The external body forces appear as the independent ("right-hand side") term in the differential equations, while the concentrated forces appear as boundary conditions. The basic stress analysis problem is therefore a boundary-value problem . Stress analysis for elastic structures

SECTION 20

#1732780753972

2354-489: A two-dimensional one, and/or replace the general stress and strain tensors by simpler models like uniaxial tension/compression, simple shear, etc. Still, for two- or three-dimensional cases one must solve a partial differential equation problem. Analytical or closed-form solutions to the differential equations can be obtained when the geometry, constitutive relations, and boundary conditions are simple enough. Otherwise one must generally resort to numerical approximations such as

2461-1092: Is transposition , and as a result we get covariant (row) vector) (look on Cauchy stress tensor ), that is [ T 1 T 2 T 3 ] = [ n 1 n 2 n 3 ] ⋅ [ σ 11 σ 21 σ 31 σ 12 σ 22 σ 32 σ 13 σ 23 σ 33 ] {\displaystyle {\begin{bmatrix}T_{1}&T_{2}&T_{3}\end{bmatrix}}={\begin{bmatrix}n_{1}&n_{2}&n_{3}\end{bmatrix}}\cdot {\begin{bmatrix}\sigma _{11}&\sigma _{21}&\sigma _{31}\\\sigma _{12}&\sigma _{22}&\sigma _{32}\\\sigma _{13}&\sigma _{23}&\sigma _{33}\end{bmatrix}}} The linear relation between T {\displaystyle T} and n {\displaystyle n} follows from

2568-418: Is a noncovalent, or intermolecular interaction which is usually referred to as ion pairing or salt bridge. It is essentially due to electrostatic forces, although in aqueous medium the association is driven by entropy and often even endothermic. Most salts form crystals with characteristic distances between the ions; in contrast to many other noncovalent interactions, salt bridges are not directional and show in

2675-410: Is actually the average of a very large number of atomic forces between their molecules; and physical quantities like mass, velocity, and forces that act through the bulk of three-dimensional bodies, like gravity, are assumed to be smoothly distributed over them. Depending on the context, one may also assume that the particles are large enough to allow the averaging out of other microscopic features, like

2782-583: Is an essential tool in engineering for the study and design of structures such as tunnels, dams, mechanical parts, and structural frames, under prescribed or expected loads. It is also important in many other disciplines; for example, in geology, to study phenomena like plate tectonics , vulcanism and avalanches ; and in biology, to understand the anatomy of living beings. Stress analysis is generally concerned with objects and structures that can be assumed to be in macroscopic static equilibrium . By Newton's laws of motion , any external forces being applied to such

2889-464: Is an extreme form of dipole-dipole bonding, referring to the attraction between a hydrogen atom that is bonded to an element with high electronegativity , usually nitrogen , oxygen , or fluorine . The hydrogen bond is often described as a strong electrostatic dipole–dipole interaction. However, it also has some features of covalent bonding: it is directional, stronger than a van der Waals force interaction, produces interatomic distances shorter than

2996-406: Is assumed fixed, the normal component can be expressed by a single number, the dot product T · n . This number will be positive if P is "pulling" on Q (tensile stress), and negative if P is "pushing" against Q (compressive stress). The shear component is then the vector T − ( T · n ) n . The dimension of stress is that of pressure , and therefore its coordinates are measured in

3103-478: Is based on the theory of elasticity and infinitesimal strain theory . When the applied loads cause permanent deformation, one must use more complicated constitutive equations, that can account for the physical processes involved ( plastic flow , fracture , phase change , etc.). Engineered structures are usually designed so the maximum expected stresses are well within the range of linear elasticity (the generalization of Hooke's law for continuous media); that is,

3210-728: Is called the Debye force , named after Peter J. W. Debye . One example of an induction interaction between permanent dipole and induced dipole is the interaction between HCl and Ar. In this system, Ar experiences a dipole as its electrons are attracted (to the H side of HCl) or repelled (from the Cl side) by HCl. The angle averaged interaction is given by the following equation: where α 2 {\displaystyle \alpha _{2}} = polarizability. This kind of interaction can be expected between any polar molecule and non-polar/symmetrical molecule. The induction-interaction force

3317-414: Is considered, except for some isolated cases. In USA structural engineering construction, allowable stress design (ASD) has not yet been completely superseded by limit state design except in the case of Suspension bridges , which changed from allowable stress design to limit state design in the 1960s. Wood, steel, and other materials are still frequently designed using allowable stress design, although LRFD

Permissible stress design - Misplaced Pages Continue

3424-408: Is equal to the common number between number of hydrogens the donor has and the number of lone pairs the acceptor has. Though both not depicted in the diagram, water molecules have four active bonds. The oxygen atom’s two lone pairs interact with a hydrogen each, forming two additional hydrogen bonds, and the second hydrogen atom also interacts with a neighbouring oxygen. Intermolecular hydrogen bonding

3531-603: Is far weaker than dipole–dipole interaction, but stronger than the London dispersion force . The third and dominant contribution is the dispersion or London force (fluctuating dipole–induced dipole), which arises due to the non-zero instantaneous dipole moments of all atoms and molecules. Such polarization can be induced either by a polar molecule or by the repulsion of negatively charged electron clouds in non-polar molecules. Thus, London interactions are caused by random fluctuations of electron density in an electron cloud. An atom with

3638-538: Is given by virial coefficients and intermolecular pair potentials , such as the Mie potential , Buckingham potential or Lennard-Jones potential . In the broadest sense, it can be understood as such interactions between any particles ( molecules , atoms , ions and molecular ions ) in which the formation of chemical (that is, ionic, covalent or metallic) bonds does not occur. In other words, these interactions are significantly weaker than covalent ones and do not lead to

3745-489: Is given by the following equation: where d = electric dipole moment, ε 0 {\displaystyle \varepsilon _{0}} = permittivity of free space, ε r {\displaystyle \varepsilon _{r}} = dielectric constant of surrounding material, T = temperature, k B {\displaystyle k_{\text{B}}} = Boltzmann constant, and r = distance between molecules. The second contribution

3852-641: Is given in the article on viscosity . The same for normal viscous stresses can be found in Sharma (2019). The relation between stress and its effects and causes, including deformation and rate of change of deformation, can be quite complicated (although a linear approximation may be adequate in practice if the quantities are small enough). Stress that exceeds certain strength limits of the material will result in permanent deformation (such as plastic flow , fracture , cavitation ) or even change its crystal structure and chemical composition . In some situations,

3959-407: Is more important depends on temperature and pressure (see compressibility factor ). In a gas, the distances between molecules are generally large, so intermolecular forces have only a small effect. The attractive force is not overcome by the repulsive force, but by the thermal energy of the molecules. Temperature is the measure of thermal energy, so increasing temperature reduces the influence of

4066-505: Is not so for big moving systems like enzyme molecules interacting with substrate molecules. Here the numerous intramolecular (most often - hydrogen bonds ) bonds form an active intermediate state where the intermolecular bonds cause some of the covalent bond to be broken, while the others are formed, in this way proceeding the thousands of enzymatic reactions , so important for living organisms . Intermolecular forces are repulsive at short distances and attractive at long distances (see

4173-513: Is often used for safety certification and monitoring. Most stress is analysed by mathematical methods, especially during design. The basic stress analysis problem can be formulated by Euler's equations of motion for continuous bodies (which are consequences of Newton's laws for conservation of linear momentum and angular momentum ) and the Euler-Cauchy stress principle , together with the appropriate constitutive equations. Thus one obtains

4280-408: Is perpendicular to the layer, the net internal force across S , and hence the stress, will be zero. As in the case of an axially loaded bar, in practice the shear stress may not be uniformly distributed over the layer; so, as before, the ratio F / A will only be an average ("nominal", "engineering") stress. That average is often sufficient for practical purposes. Shear stress is observed also when

4387-399: Is probably more commonly taught in the USA university system. In mechanical engineering design such as design of pressure equipment, the method uses the actual loads predicted to be experienced in practice to calculate stress and deflection. Such loads may include pressure thrusts and the weight of materials. The predicted stresses and deflections are compared with allowable values that have

Permissible stress design - Misplaced Pages Continue

4494-451: Is responsible for the high boiling point of water (100 °C) compared to the other group 16 hydrides , which have little capability to hydrogen bond. Intramolecular hydrogen bonding is partly responsible for the secondary , tertiary , and quaternary structures of proteins and nucleic acids . It also plays an important role in the structure of polymers , both synthetic and natural. The attraction between cationic and anionic sites

4601-492: Is stronger than the London forces but is weaker than ion-ion interaction because only partial charges are involved. These interactions tend to align the molecules to increase attraction (reducing potential energy ). An example of a dipole–dipole interaction can be seen in hydrogen chloride (HCl): the positive end of a polar molecule will attract the negative end of the other molecule and influence its position. Polar molecules have

4708-412: Is subjected to tension by opposite forces of magnitude F {\displaystyle F} along its axis. If the system is in equilibrium and not changing with time, and the weight of the bar can be neglected, then through each transversal section of the bar the top part must pull on the bottom part with the same force, F with continuity through the full cross-sectional area , A . Therefore,

4815-567: Is the induction (also termed polarization) or Debye force, arising from interactions between rotating permanent dipoles and from the polarizability of atoms and molecules (induced dipoles). These induced dipoles occur when one molecule with a permanent dipole repels another molecule's electrons. A molecule with permanent dipole can induce a dipole in a similar neighboring molecule and cause mutual attraction. Debye forces cannot occur between atoms. The forces between induced and permanent dipoles are not as temperature dependent as Keesom interactions because

4922-437: Is then reduced to a scalar (tension or compression of the bar), but one must take into account also a bending stress (that tries to change the bar's curvature, in some direction perpendicular to the axis) and a torsional stress (that tries to twist or un-twist it about its axis). Stress analysis is a branch of applied physics that covers the determination of the internal distribution of internal forces in solid objects. It

5029-576: Is too small to be detected. In a solid material, such strain will in turn generate an internal elastic stress, analogous to the reaction force of a stretched spring , tending to restore the material to its original undeformed state. Fluid materials (liquids, gases and plasmas ) by definition can only oppose deformations that would change their volume. If the deformation changes with time, even in fluids there will usually be some viscous stress, opposing that change. Such stresses can be either shear or normal in nature. Molecular origin of shear stresses in fluids

5136-445: Is usually zero, since atoms rarely carry a permanent dipole. The Keesom interaction is a van der Waals force. It is discussed further in the section "Van der Waals forces". Ion–dipole and ion–induced dipole forces are similar to dipole–dipole and dipole–induced dipole interactions but involve ions, instead of only polar and non-polar molecules. Ion–dipole and ion–induced dipole forces are stronger than dipole–dipole interactions because

5243-505: The (Cauchy) stress tensor , completely describes the stress state of a uniformly stressed body. (Today, any linear connection between two physical vector quantities is called a tensor , reflecting Cauchy's original use to describe the "tensions" (stresses) in a material.) In tensor calculus , σ {\displaystyle {\boldsymbol {\sigma }}} is classified as a second-order tensor of type (0,2) or (1,1) depending on convention. Like any linear map between vectors,

5350-473: The Lennard-Jones potential ). In a gas, the repulsive force chiefly has the effect of keeping two molecules from occupying the same volume. This gives a real gas a tendency to occupy a larger volume than an ideal gas at the same temperature and pressure. The attractive force draws molecules closer together and gives a real gas a tendency to occupy a smaller volume than an ideal gas. Which interaction

5457-610: The capitals , arches , cupolas , trusses and the flying buttresses of Gothic cathedrals . Ancient and medieval architects did develop some geometrical methods and simple formulas to compute the proper sizes of pillars and beams, but the scientific understanding of stress became possible only after the necessary tools were invented in the 17th and 18th centuries: Galileo Galilei 's rigorous experimental method , René Descartes 's coordinates and analytic geometry , and Newton 's laws of motion and equilibrium and calculus of infinitesimals . With those tools, Augustin-Louis Cauchy

SECTION 50

#1732780753972

5564-538: The electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. atoms or ions . Intermolecular forces are weak relative to intramolecular forces – the forces which hold a molecule together. For example, the covalent bond , involving sharing electron pairs between atoms, is much stronger than the forces present between neighboring molecules. Both sets of forces are essential parts of force fields frequently used in molecular mechanics . The first reference to

5671-514: The finite element method , the finite difference method , and the boundary element method . Other useful stress measures include the first and second Piola–Kirchhoff stress tensors , the Biot stress tensor , and the Kirchhoff stress tensor . Intermolecular force An intermolecular force ( IMF ; also secondary force ) is the force that mediates interaction between molecules, including

5778-993: The orthogonal shear stresses . The Cauchy stress tensor obeys the tensor transformation law under a change in the system of coordinates. A graphical representation of this transformation law is the Mohr's circle of stress distribution. As a symmetric 3×3 real matrix, the stress tensor σ {\displaystyle {\boldsymbol {\sigma }}} has three mutually orthogonal unit-length eigenvectors e 1 , e 2 , e 3 {\displaystyle e_{1},e_{2},e_{3}} and three real eigenvalues λ 1 , λ 2 , λ 3 {\displaystyle \lambda _{1},\lambda _{2},\lambda _{3}} , such that σ e i = λ i e i {\displaystyle {\boldsymbol {\sigma }}e_{i}=\lambda _{i}e_{i}} . Therefore, in

5885-457: The principal stresses . If the three eigenvalues are equal, the stress is an isotropic compression or tension, always perpendicular to any surface, there is no shear stress, and the tensor is a diagonal matrix in any coordinate frame. In general, stress is not uniformly distributed over a material body, and may vary with time. Therefore, the stress tensor must be defined for each point and each moment, by considering an infinitesimal particle of

5992-442: The strain rate can be quite complicated, although a linear approximation may be adequate in practice if the quantities are sufficiently small. Stress that exceeds certain strength limits of the material will result in permanent deformation (such as plastic flow , fracture , cavitation ) or even change its crystal structure and chemical composition . Humans have known about stress inside materials since ancient times. Until

6099-445: The 17th century, this understanding was largely intuitive and empirical, though this did not prevent the development of relatively advanced technologies like the composite bow and glass blowing . Over several millennia, architects and builders in particular, learned how to put together carefully shaped wood beams and stone blocks to withstand, transmit, and distribute stress in the most effective manner, with ingenious devices such as

6206-430: The absence of external forces; such built-in stress is important, for example, in prestressed concrete and tempered glass . Stress may also be imposed on a material without the application of net forces , for example by changes in temperature or chemical composition, or by external electromagnetic fields (as in piezoelectric and magnetostrictive materials). The relation between mechanical stress, strain, and

6313-404: The allowable values is not considered to be good practice (i.e. is not "safe"). The permissible stress method is also known in some national standards as the working stress method because the predicted stresses are the unfactored stresses expected during operation of the equipment (e.g. AS1210, AS3990). This mechanical engineering approach differs from an ultimate design approach which factors up

6420-419: The attraction between permanent dipoles (dipolar molecules) and are temperature dependent. They consist of attractive interactions between dipoles that are ensemble averaged over different rotational orientations of the dipoles. It is assumed that the molecules are constantly rotating and never get locked into place. This is a good assumption, but at some point molecules do get locked into place. The energy of

6527-406: The attractive force. In contrast, the influence of the repulsive force is essentially unaffected by temperature. When a gas is compressed to increase its density, the influence of the attractive force increases. If the gas is made sufficiently dense, the attractions can become large enough to overcome the tendency of thermal motion to cause the molecules to disperse. Then the gas can condense to form

SECTION 60

#1732780753972

6634-449: The bulk of the material, varying continuously with position and time. Other agents (like external loads and friction, ambient pressure, and contact forces) may create stresses and forces that are concentrated on certain surfaces, lines or points; and possibly also on very short time intervals (as in the impulses due to collisions). In active matter , self-propulsion of microscopic particles generates macroscopic stress profiles. In general,

6741-492: The charge of any ion is much greater than the charge of a dipole moment. Ion–dipole bonding is stronger than hydrogen bonding. An ion–dipole force consists of an ion and a polar molecule interacting. They align so that the positive and negative groups are next to one another, allowing maximum attraction. An important example of this interaction is hydration of ions in water which give rise to hydration enthalpy . The polar water molecules surround themselves around ions in water and

6848-511: The charges, the interaction of e.g. a doubly charged phosphate anion with a single charged ammonium cation accounts for about 2x5 = 10 kJ/mol. The ΔG values depend on the ionic strength I of the solution, as described by the Debye-Hückel equation, at zero ionic strength one observes ΔG = 8 kJ/mol. Dipole–dipole interactions (or Keesom interactions) are electrostatic interactions between molecules which have permanent dipoles. This interaction

6955-496: The cohesion of condensed phases and physical absorption of gases, but also to a universal force of attraction between macroscopic bodies. The first contribution to van der Waals forces is due to electrostatic interactions between rotating permanent dipoles, quadrupoles (all molecules with symmetry lower than cubic), and multipoles. It is termed the Keesom interaction , named after Willem Hendrik Keesom . These forces originate from

7062-498: The cross-section), but will vary over the cross section: the outer part will be under tensile stress, while the inner part will be compressed. Another variant of normal stress is the hoop stress that occurs on the walls of a cylindrical pipe or vessel filled with pressurized fluid. Another simple type of stress occurs when a uniformly thick layer of elastic material like glue or rubber is firmly attached to two stiff bodies that are pulled in opposite directions by forces parallel to

7169-402: The deformations caused by internal stresses are linearly related to them. In this case the differential equations that define the stress tensor are linear, and the problem becomes much easier. For one thing, the stress at any point will be a linear function of the loads, too. For small enough stresses, even non-linear systems can usually be assumed to be linear. Stress analysis is simplified when

7276-709: The effect of gravity and other external forces can be neglected. In these situations, the stress across any imaginary internal surface turns out to be equal in magnitude and always directed perpendicularly to the surface independently of the surface's orientation. This type of stress may be called isotropic normal or just isotropic ; if it is compressive, it is called hydrostatic pressure or just pressure . Gases by definition cannot withstand tensile stresses, but some liquids may withstand very large amounts of isotropic tensile stress under some circumstances. see Z-tube . Parts with rotational symmetry , such as wheels, axles, pipes, and pillars, are very common in engineering. Often

7383-434: The elements σ x , σ y , σ z {\displaystyle \sigma _{x},\sigma _{y},\sigma _{z}} are called the orthogonal normal stresses (relative to the chosen coordinate system), and τ x y , τ x z , τ y z {\displaystyle \tau _{xy},\tau _{xz},\tau _{yz}}

7490-517: The energy released during the process is known as hydration enthalpy. The interaction has its immense importance in justifying the stability of various ions (like Cu ) in water. An ion–induced dipole force consists of an ion and a non-polar molecule interacting. Like a dipole–induced dipole force, the charge of the ion causes distortion of the electron cloud on the non-polar molecule. The van der Waals forces arise from interaction between uncharged atoms or molecules, leading not only to such phenomena as

7597-431: The energy state of molecules or substrate, which ultimately leads to the breaking of some and the formation of other covalent chemical bonds. Strictly speaking, all enzymatic reactions begin with intermolecular interactions between the substrate and the enzyme, therefore the importance of these interactions is especially great in biochemistry and molecular biology , and is the basis of enzymology ). A hydrogen bond

7704-424: The external forces that are acting on the system. The latter may be body forces (such as gravity or magnetic attraction), that act throughout the volume of a material; or concentrated loads (such as friction between an axle and a bearing , or the weight of a train wheel on a rail), that are imagined to act over a two-dimensional area, or along a line, or at single point. In stress analysis one normally disregards

7811-412: The fundamental laws of conservation of linear momentum and static equilibrium of forces, and is therefore mathematically exact, for any material and any stress situation. The components of the Cauchy stress tensor at every point in a material satisfy the equilibrium equations ( Cauchy's equations of motion for zero acceleration). Moreover, the principle of conservation of angular momentum implies that

7918-461: The grains of a metal rod or the fibers of a piece of wood . Quantitatively, the stress is expressed by the Cauchy traction vector T defined as the traction force F between adjacent parts of the material across an imaginary separating surface S , divided by the area of S . In a fluid at rest the force is perpendicular to the surface, and is the familiar pressure . In a solid , or in

8025-411: The induced dipole is free to shift and rotate around the polar molecule. The Debye induction effects and Keesom orientation effects are termed polar interactions. The induced dipole forces appear from the induction (also termed polarization ), which is the attractive interaction between a permanent multipole on one molecule with an induced (by the former di/multi-pole) 31 on another. This interaction

8132-423: The internal forces that neighbouring particles of a continuous material exert on each other, while strain is the measure of the relative deformation of the material. For example, when a solid vertical bar is supporting an overhead weight , each particle in the bar pushes on the particles immediately below it. When a liquid is in a closed container under pressure , each particle gets pushed against by all

8239-408: The layer; or a section of a soft metal bar that is being cut by the jaws of a scissors-like tool . Let F be the magnitude of those forces, and M be the midplane of that layer. Just as in the normal stress case, the part of the layer on one side of M must pull the other part with the same force F . Assuming that the direction of the forces is known, the stress across M can be expressed simply by

8346-429: The material body is under equal compression or tension in all directions. This is the case, for example, in a portion of liquid or gas at rest, whether enclosed in some container or as part of a larger mass of fluid; or inside a cube of elastic material that is being pressed or pulled on all six faces by equal perpendicular forces — provided, in both cases, that the material is homogeneous, without built-in stress, and that

8453-519: The medium surrounding that point, and taking the average stresses in that particle as being the stresses at the point. Human-made objects are often made from stock plates of various materials by operations that do not change their essentially two-dimensional character, like cutting, drilling, gentle bending and welding along the edges. The description of stress in such bodies can be simplified by modeling those parts as two-dimensional surfaces rather than three-dimensional bodies. In that view, one redefines

8560-448: The most general case, called triaxial stress , the stress is nonzero across every surface element. Combined stresses cannot be described by a single vector. Even if the material is stressed in the same way throughout the volume of the body, the stress across any imaginary surface will depend on the orientation of that surface, in a non-trivial way. Cauchy observed that the stress vector T {\displaystyle T} across

8667-662: The nature of microscopic forces is found in Alexis Clairaut 's work Théorie de la figure de la Terre, published in Paris in 1743. Other scientists who have contributed to the investigation of microscopic forces include: Laplace , Gauss , Maxwell , Boltzmann and Pauling . Attractive intermolecular forces are categorized into the following types: Information on intermolecular forces is obtained by macroscopic measurements of properties like viscosity , pressure, volume, temperature (PVT) data. The link to microscopic aspects

8774-420: The nature of the material or of its physical causes. Following the basic premises of continuum mechanics, stress is a macroscopic concept. Namely, the particles considered in its definition and analysis should be just small enough to be treated as homogeneous in composition and state, but still large enough to ignore quantum effects and the detailed motions of molecules. Thus, the force between two particles

8881-452: The physical causes of the forces or the precise nature of the materials. Instead, one assumes that the stresses are related to deformation (and, in non-static problems, to the rate of deformation) of the material by known constitutive equations . Stress analysis may be carried out experimentally, by applying loads to the actual artifact or to scale model, and measuring the resulting stresses, by any of several available methods. This approach

8988-424: The physical dimensions and the distribution of loads allow the structure to be treated as one- or two-dimensional. In the analysis of trusses, for example, the stress field may be assumed to be uniform and uniaxial over each member. Then the differential equations reduce to a finite set of equations (usually linear) with finitely many unknowns. In other contexts one may be able to reduce the three-dimensional problem to

9095-445: The plate). The analysis of stress can be considerably simplified also for thin bars, beams or wires of uniform (or smoothly varying) composition and cross-section that are subjected to moderate bending and twisting. For those bodies, one may consider only cross-sections that are perpendicular to the bar's axis, and redefine a "particle" as being a piece of wire with infinitesimal length between two such cross sections. The ordinary stress

9202-448: The predicted loads for comparison with an ultimate failure limit. One method factors up the predicted load, the other method factors down the failure stress. This engineering-related article is a stub . You can help Misplaced Pages by expanding it . Stress (physics) In continuum mechanics , stress is a physical quantity that describes forces present during deformation . For example, an object being pulled apart, such as

9309-671: The same units as pressure: namely, pascals (Pa, that is, newtons per square metre ) in the International System , or pounds per square inch (psi) in the Imperial system . Because mechanical stresses easily exceed a million Pascals, MPa, which stands for megapascal, is a common unit of stress. Stress in a material body may be due to multiple physical causes, including external influences and internal physical processes. Some of these agents (like gravity, changes in temperature and phase , and electromagnetic fields) act on

9416-424: The single number τ {\displaystyle \tau } , calculated simply with the magnitude of those forces, F and the cross sectional area, A . τ = F A {\displaystyle \tau ={\frac {F}{A}}} Unlike normal stress, this simple shear stress is directed parallel to the cross-section considered, rather than perpendicular to it. For any plane S that

9523-418: The solid state usually contact determined only by the van der Waals radii of the ions. Inorganic as well as organic ions display in water at moderate ionic strength I similar salt bridge as association ΔG values around 5 to 6 kJ/mol for a 1:1 combination of anion and cation, almost independent of the nature (size, polarizability, etc.) of the ions. The ΔG values are additive and approximately a linear function of

9630-407: The stress T that a particle P applies on another particle Q across a surface S can have any direction relative to S . The vector T may be regarded as the sum of two components: the normal stress ( compression or tension ) perpendicular to the surface, and the shear stress that is parallel to the surface. If the normal unit vector n of the surface (pointing from Q towards P )

9737-507: The stress can be assumed to be uniformly distributed over any cross-section that is more than a few times D from both ends. (This observation is known as the Saint-Venant's principle ). Normal stress occurs in many other situations besides axial tension and compression. If an elastic bar with uniform and symmetric cross-section is bent in one of its planes of symmetry, the resulting bending stress will still be normal (perpendicular to

9844-411: The stress distribution in a body is expressed as a piecewise continuous function of space and time. Conversely, stress is usually correlated with various effects on the material, possibly including changes in physical properties like birefringence , polarization , and permeability . The imposition of stress by an external agent usually creates some strain (deformation) in the material, even if it

9951-475: The stress is evenly distributed over the entire cross-section. In practice, depending on how the bar is attached at the ends and how it was manufactured, this assumption may not be valid. In that case, the value σ {\displaystyle \sigma } = F / A will be only the average stress, called engineering stress or nominal stress . If the bar's length L is many times its diameter D , and it has no gross defects or built-in stress , then

10058-424: The stress is maximum for surfaces that are perpendicular to a certain direction d {\displaystyle d} , and zero across any surfaces that are parallel to d {\displaystyle d} . When the shear stress is zero only across surfaces that are perpendicular to one particular direction, the stress is called biaxial , and can be viewed as the sum of two normal or shear stresses. In

10165-399: The stress patterns that occur in such parts have rotational or even cylindrical symmetry . The analysis of such cylinder stresses can take advantage of the symmetry to reduce the dimension of the domain and/or of the stress tensor. Often, mechanical bodies experience more than one type of stress at the same time; this is called combined stress . In normal and shear stress, the magnitude of

10272-684: The stress state of the medium at any point and instant can be specified by only six independent parameters, rather than nine. These may be written [ σ x τ x y τ x z τ x y σ y τ y z τ x z τ y z σ z ] {\displaystyle {\begin{bmatrix}\sigma _{x}&\tau _{xy}&\tau _{xz}\\\tau _{xy}&\sigma _{y}&\tau _{yz}\\\tau _{xz}&\tau _{yz}&\sigma _{z}\end{bmatrix}}} where

10379-411: The stress tensor can be ignored, but since particles are not infinitesimal in the third dimension one can no longer ignore the torque that a particle applies on its neighbors. That torque is modeled as a bending stress that tends to change the curvature of the plate. These simplifications may not hold at welds, at sharp bends and creases (where the radius of curvature is comparable to the thickness of

10486-1620: The stress tensor can be represented in any chosen Cartesian coordinate system by a 3×3 matrix of real numbers. Depending on whether the coordinates are numbered x 1 , x 2 , x 3 {\displaystyle x_{1},x_{2},x_{3}} or named x , y , z {\displaystyle x,y,z} , the matrix may be written as [ σ 11 σ 12 σ 13 σ 21 σ 22 σ 23 σ 31 σ 32 σ 33 ] {\displaystyle {\begin{bmatrix}\sigma _{11}&\sigma _{12}&\sigma _{13}\\\sigma _{21}&\sigma _{22}&\sigma _{23}\\\sigma _{31}&\sigma _{32}&\sigma _{33}\end{bmatrix}}} or [ σ x x σ x y σ x z σ y x σ y y σ y z σ z x σ z y σ z z ] {\displaystyle {\begin{bmatrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{yx}&\sigma _{yy}&\sigma _{yz}\\\sigma _{zx}&\sigma _{zy}&\sigma _{zz}\\\end{bmatrix}}} The stress vector T = σ ( n ) {\displaystyle T={\boldsymbol {\sigma }}(n)} across

10593-431: The stress tensor is symmetric , that is σ 12 = σ 21 {\displaystyle \sigma _{12}=\sigma _{21}} , σ 13 = σ 31 {\displaystyle \sigma _{13}=\sigma _{31}} , and σ 23 = σ 32 {\displaystyle \sigma _{23}=\sigma _{32}} . Therefore,

10700-423: The stress within a body may adequately be described by a single number, or by a single vector (a number and a direction). Three such simple stress situations, that are often encountered in engineering design, are the uniaxial normal stress , the simple shear stress , and the isotropic normal stress . A common situation with a simple stress pattern is when a straight rod, with uniform material and cross section,

10807-440: The stress σ throughout the bar, across any horizontal surface, can be expressed simply by the single number σ, calculated simply with the magnitude of those forces, F , and cross sectional area, A . σ = F A {\displaystyle \sigma ={\frac {F}{A}}} On the other hand, if one imagines the bar being cut along its length, parallel to the axis, there will be no force (hence no stress) between

10914-442: The sum of their van der Waals radii , and usually involves a limited number of interaction partners, which can be interpreted as a kind of valence . The number of Hydrogen bonds formed between molecules is equal to the number of active pairs. The molecule which donates its hydrogen is termed the donor molecule, while the molecule containing lone pair participating in H bonding is termed the acceptor molecule. The number of active pairs

11021-402: The surrounding particles. The container walls and the pressure -inducing surface (such as a piston) push against them in (Newtonian) reaction . These macroscopic forces are actually the net result of a very large number of intermolecular forces and collisions between the particles in those molecules . Stress is frequently represented by a lowercase Greek letter sigma ( σ ). Strain inside

11128-578: The theory of van der Waals between macroscopic bodies in 1937 and showed that the additivity of these interactions renders them considerably more long-range. (kJ/mol) This comparison is approximate. The actual relative strengths will vary depending on the molecules involved. For instance, the presence of water creates competing interactions that greatly weaken the strength of both ionic and hydrogen bonds. We may consider that for static systems, Ionic bonding and covalent bonding will always be stronger than intermolecular forces in any given substance. But it

11235-440: The two halves across the cut. This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive stress. This analysis assumes

11342-421: The volume generate persistent elastic stress. If the deformation changes gradually with time, even in fluids there will usually be some viscous stress , opposing that change. Elastic and viscous stresses are usually combined under the name mechanical stress . Significant stress may exist even when deformation is negligible or non-existent (a common assumption when modeling the flow of water). Stress may exist in

11449-400: Was able to give the first rigorous and general mathematical model of a deformed elastic body by introducing the notions of stress and strain. Cauchy observed that the force across an imaginary surface was a linear function of its normal vector; and, moreover, that it must be a symmetric function (with zero total momentum). The understanding of stress in liquids started with Newton, who provided

#971028