The angstrom ( / ˈ æ ŋ s t r əm / ; ANG -strəm ) is a unit of length equal to 10 m ; that is, one ten- billionth of a metre , a hundred-millionth of a centimetre , 0.1 nanometre , or 100 picometres . The unit is named after the Swedish physicist Anders Jonas Ångström (1814–1874). It was originally spelled with Swedish letters , as Ångström and later as ångström ( / ˈ ɒ ŋ s t r əm / ). The latter spelling is still listed in some dictionaries, but is now rare in English texts. Some popular US dictionaries list only the spelling angstrom .
99-460: The Apollo Telescope Mount , or ATM , was a crewed solar observatory that was a part of Skylab , the first American space station . It could observe the Sun in wavelengths ranging from soft X-rays, ultra-violet, and visible light. The ATM was manually operated by the astronauts aboard Skylab from 1973–74, yielding data principally as exposed photographic film that was returned to Earth with
198-549: A bar of platinum - iridium alloy, kept at the BIPM in Paris in a carefully controlled environment. Reliance on that material standard had led to an early error of about one part in 6000 in the tabulated wavelengths. Ångström took the precaution of having the standard bar he used checked against a standard in Paris, but the metrologist Henri Tresca reported it to be so incorrect that Ångström's corrected results were more in error than
297-614: A code point U+212B Å ANGSTROM SIGN for the angstrom symbol, which is accessible in HTML as the entity Å , Å , or Å . However, version 5 of the standard already deprecates that code point and has it normalized into the code for the Swedish letter U+00C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE (HTML entity Å , Å , or Å ), which should be used instead. In older publications, where
396-515: A distance of one astronomical unit (AU) from the Sun (that is, at or near Earth's orbit). Sunlight on the surface of Earth is attenuated by Earth's atmosphere , so that less power arrives at the surface (closer to 1,000 W/m ) in clear conditions when the Sun is near the zenith . Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light. The atmosphere filters out over 70% of solar ultraviolet, especially at
495-403: A fairly small amount of power being generated per cubic metre . Theoretical models of the Sun's interior indicate a maximum power density, or energy production, of approximately 276.5 watts per cubic metre at the center of the core, which, according to Karl Kruszelnicki , is about the same power density inside a compost pile . The fusion rate in the core is in a self-correcting equilibrium:
594-414: A few millimeters. Re-emission happens in a random direction and usually at slightly lower energy. With this sequence of emissions and absorptions, it takes a long time for radiation to reach the Sun's surface. Estimates of the photon travel time range between 10,000 and 170,000 years. In contrast, it takes only 2.3 seconds for neutrinos , which account for about 2% of the total energy production of
693-401: A granular appearance called the solar granulation at the smallest scale and supergranulation at larger scales. Turbulent convection in this outer part of the solar interior sustains "small-scale" dynamo action over the near-surface volume of the Sun. The Sun's thermal columns are Bénard cells and take the shape of roughly hexagonal prisms. The visible surface of the Sun, the photosphere,
792-469: A material artifact, was not accurate enough for their work. So, around 1907 they defined their own unit of length, which they called "Ångström", based on the wavelength of a specific spectral line. It was only in 1960, when the metre was redefined in the same way, that the angstrom became again equal to 10 metre. Yet the angstrom was never part of the SI system of units, and has been increasingly replaced by
891-473: A need for a separate unit of comparable size defined directly in terms of spectroscopy. In 1965, J.A. Bearden defined the Angstrom Star (symbol: Å*) as 0.202901 times the wavelength of the tungsten κ α 1 {\textstyle \kappa _{\alpha 1}} line. This auxiliary unit was intended to be accurate to within 5 parts per million of the version derived from
990-520: A period known as the Maunder minimum . This coincided in time with the era of the Little Ice Age , when Europe experienced unusually cold temperatures. Earlier extended minima have been discovered through analysis of tree rings and appear to have coincided with lower-than-average global temperatures. The temperature of the photosphere is approximately 6,000 K, whereas the temperature of
1089-485: A phenomenon described by Hale's law . During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number and size. At solar-cycle minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, differential rotation shifts magnetic energy back from
SECTION 10
#17327722454341188-473: A result, the outward-flowing solar wind stretches the interplanetary magnetic field outward, forcing it into a roughly radial structure. For a simple dipolar solar magnetic field, with opposite hemispherical polarities on either side of the solar magnetic equator, a thin current sheet is formed in the solar wind. At great distances, the rotation of the Sun twists the dipolar magnetic field and corresponding current sheet into an Archimedean spiral structure called
1287-410: A slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the density and hence the fusion rate and correcting the perturbation ; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the density and increasing the fusion rate and again reverting it to its present rate. The radiative zone
1386-406: A transition layer, the tachocline . This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear between the two—a condition where successive horizontal layers slide past one another. Presently, it is hypothesized that a magnetic dynamo, or solar dynamo , within this layer generates
1485-649: A variety of wavelengths, including X-Rays, Ultraviolet, and Visible light. ATM was integrated with the Skylab space station, which was used to point the observatory. Likewise, Skylab used power from the ATM solar arrays. As of 2006, the original exposures were on file (and accessible to interested parties) at the Naval Research Laboratory in Washington, D.C. The ATM was actively cooled to maintain
1584-460: A wide variety of ways to use the infrastructure developed for the Apollo program in the 1970s. Among these concepts were various extended-stay lunar missions, a permanent lunar base, long-duration space missions, a number of large observatories, and eventually the " wet workshop " space station. In the case of the ATM, the initial idea was to mount the instrumentation in a deployable unit attached to
1683-570: Is 1 astronomical unit ( 1.496 × 10 km ) or about 8 light-minutes away. Its diameter is about 1,391,400 km ( 864,600 mi ), 109 times that of Earth. Its mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. Roughly three-quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen , carbon , neon , and iron . The Sun
1782-677: Is Å , which is a letter of the Swedish alphabet , regardless of how the unit is spelled. However, "A" or "A.U." may be used in less formal contexts or typographically limited media. The angstrom is often used in the natural sciences and technology to express sizes of atoms , molecules , microscopic biological structures, and lengths of chemical bonds , arrangement of atoms in crystals , wavelengths of electromagnetic radiation , and dimensions of integrated circuit parts. The atomic (covalent) radii of phosphorus , sulfur , and chlorine are about 1 angstrom, while that of hydrogen
1881-494: Is a G-type main-sequence star (G2V), informally called a yellow dwarf , though its light is actually white. It formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud . Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System . The central mass became so hot and dense that it eventually initiated nuclear fusion in its core . Every second,
1980-412: Is about 0.5 angstroms. Visible light has wavelengths in the range of 4000–7000 Å. In the late 19th century, spectroscopists adopted 10 of a metre as a convenient unit to express the wavelengths of characteristic spectral lines ( monochromatic components of the emission spectrum ) of chemical elements . However, they soon realized that the definition of the metre at the time, based on
2079-643: Is by far the brightest object in the Earth's sky , with an apparent magnitude of −26.74. This is about 13 billion times brighter than the next brightest star, Sirius , which has an apparent magnitude of −1.46. One astronomical unit (about 150 million kilometres; 93 million miles) is defined as the mean distance between the centres of the Sun and the Earth. The instantaneous distance varies by about ± 2.5 million km or 1.55 million miles as Earth moves from perihelion on ~ January 3rd to aphelion on ~ July 4th. At its average distance, light travels from
SECTION 20
#17327722454342178-436: Is defined to begin at the distance where the flow of the solar wind becomes superalfvénic —that is, where the flow becomes faster than the speed of Alfvén waves, at approximately 20 solar radii ( 0.1 AU ). Turbulence and dynamic forces in the heliosphere cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through
2277-402: Is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma. The transition region does not occur at a well-defined altitude, but forms a kind of nimbus around chromospheric features such as spicules and filaments , and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but
2376-409: Is only 84% of what it was in the protostellar phase (before nuclear fusion in the core started). In the future, helium will continue to accumulate in the core, and in about 5 billion years this gradual build-up will eventually cause the Sun to exit the main sequence and become a red giant . The chemical composition of the photosphere is normally considered representative of the composition of
2475-441: Is readily observable from space by instruments sensitive to extreme ultraviolet . The corona is the next layer of the Sun. The low corona, near the surface of the Sun, has a particle density around 10 m to 10 m . The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K. Although no complete theory yet exists to account for
2574-410: Is strongly attenuated by Earth's ozone layer , so that the amount of UV varies greatly with latitude and has been partially responsible for many biological adaptations, including variations in human skin color . High-energy gamma ray photons initially released with fusion reactions in the core are almost immediately absorbed by the solar plasma of the radiative zone, usually after traveling only
2673-422: Is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium , relative to the abundances of these elements in so-called Population II , heavy-element-poor, stars. The heavy elements could most plausibly have been produced by endothermic nuclear reactions during a supernova, or by transmutation through neutron absorption within a massive second-generation star. The Sun
2772-470: Is tens to hundreds of kilometers thick, and is slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening . The spectrum of sunlight has approximately the spectrum of a black-body radiating at 5,772 K (9,930 °F), interspersed with atomic absorption lines from
2871-437: Is the layer below which the Sun becomes opaque to visible light. Photons produced in this layer escape the Sun through the transparent solar atmosphere above it and become solar radiation, sunlight. The change in opacity is due to the decreasing amount of H ions , which absorb visible light easily. Conversely, the visible light perceived is produced as electrons react with hydrogen atoms to produce H ions. The photosphere
2970-424: Is the most prominent variation in which the number and size of sunspots waxes and wanes. The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma carries the Sun's magnetic field into space, forming what is called the interplanetary magnetic field . In an approximation known as ideal magnetohydrodynamics , plasma particles only move along magnetic field lines. As
3069-531: Is the only region of the Sun that produces an appreciable amount of thermal energy through fusion; 99% of the Sun's power is generated in the innermost 24% of its radius, and almost no fusion occurs beyond 30% of the radius. The rest of the Sun is heated by this energy as it is transferred outward through many successive layers, finally to the solar photosphere where it escapes into space through radiation (photons) or advection (massive particles). The proton–proton chain occurs around 9.2 × 10 times each second in
Apollo Telescope Mount - Misplaced Pages Continue
3168-420: Is the thickest layer of the Sun, at 0.45 solar radii. From the core out to about 0.7 solar radii , thermal radiation is the primary means of energy transfer. The temperature drops from approximately 7 million to 2 million kelvins with increasing distance from the core. This temperature gradient is less than the value of the adiabatic lapse rate and hence cannot drive convection, which explains why
3267-444: Is theorized to become a super dense black dwarf , giving off negligible energy. The English word sun developed from Old English sunne . Cognates appear in other Germanic languages , including West Frisian sinne , Dutch zon , Low German Sünn , Standard German Sonne , Bavarian Sunna , Old Norse sunna , and Gothic sunnō . All these words stem from Proto-Germanic * sunnōn . This
3366-538: Is ultimately related to the word for sun in other branches of the Indo-European language family, though in most cases a nominative stem with an l is found, rather than the genitive stem in n , as for example in Latin sōl , ancient Greek ἥλιος ( hēlios ), Welsh haul and Czech slunce , as well as (with *l > r ) Sanskrit स्वर् ( svár ) and Persian خور ( xvar ). Indeed,
3465-402: Is wave heating, in which sound, gravitational or magnetohydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient matter in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in
3564-547: The Alfvén surface , the boundary separating the corona from the solar wind, defined as where the coronal plasma's Alfvén speed and the large-scale solar wind speed are equal. During the flyby, Parker Solar Probe passed into and out of the corona several times. This proved the predictions that the Alfvén critical surface is not shaped like a smooth ball, but has spikes and valleys that wrinkle its surface. The Sun emits light across
3663-510: The International Astronomical Union ) defined the international angstrom as precisely 1/6438.4696 of the wavelength of that line (in dry air at 15 °C (hydrogen scale) and 760 mmHg under a gravity of 9.8067 m/s ). This definition was endorsed at the 7th General Conference on Weights and Measures (CGPM) in 1927, but the material definition of the metre was retained until 1960. From 1927 to 1960,
3762-524: The Parker spiral . Sunspots are visible as dark patches on the Sun's photosphere and correspond to concentrations of magnetic field where convective transport of heat is inhibited from the solar interior to the surface. As a result, sunspots are slightly cooler than the surrounding photosphere, so they appear dark. At a typical solar minimum , few sunspots are visible, and occasionally none can be seen at all. Those that do appear are at high solar latitudes. As
3861-510: The Service Module , this was then changed to use a modified Apollo Lunar Module to house controls, observation instruments and recording systems, while the lunar descent stage was replaced with a large solar telescope and solar panels to power it all. After launch, it would be met in orbit by a three-crew Apollo CSM who would operate it and retrieve data before returning to Earth. As many of the other concepts were dropped, eventually only
3960-410: The corona , and the heliosphere . The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100 K . This part of the Sun is cool enough to allow for the existence of simple molecules such as carbon monoxide and water. The chromosphere, transition region, and corona are much hotter than the surface of
4059-614: The l -stem survived in Proto-Germanic as well, as * sōwelan , which gave rise to Gothic sauil (alongside sunnō ) and Old Norse prosaic sól (alongside poetic sunna ), and through it the words for sun in the modern Scandinavian languages: Swedish and Danish sol , Icelandic sól , etc. The principal adjectives for the Sun in English are sunny for sunlight and, in technical contexts, solar ( / ˈ s oʊ l ər / ), from Latin sol . From
Apollo Telescope Mount - Misplaced Pages Continue
4158-428: The photosphere . For the purpose of measurement, the Sun's radius is considered to be the distance from its center to the edge of the photosphere, the apparent visible surface of the Sun. By this measure, the Sun is a near-perfect sphere with an oblateness estimated at 9 millionths, which means that its polar diameter differs from its equatorial diameter by only 10 kilometers (6.2 mi). The tidal effect of
4257-430: The solar physics community, which adopted the unit and named it after him. It subsequently spread to the fields of astronomical spectroscopy , atomic spectroscopy , and then to other sciences that deal with atomic-scale structures. Although intended to correspond to 10 metres, that definition was not accurate enough for spectroscopy work. Until 1960 the metre was defined as the distance between two scratches on
4356-444: The visible spectrum , so its color is white , with a CIE color-space index near (0.3, 0.3), when viewed from space or when the Sun is high in the sky. The Solar radiance per wavelength peaks in the green portion of the spectrum when viewed from space. When the Sun is very low in the sky, atmospheric scattering renders the Sun yellow, red, orange, or magenta, and in rare occasions even green or blue . Some cultures mentally picture
4455-465: The Greek helios comes the rare adjective heliac ( / ˈ h iː l i æ k / ). In English, the Greek and Latin words occur in poetry as personifications of the Sun, Helios ( / ˈ h iː l i ə s / ) and Sol ( / ˈ s ɒ l / ), while in science fiction Sol may be used to distinguish the Sun from other stars. The term sol with a lowercase s is used by planetary astronomers for
4554-709: The Skylab station, it started as a separate project related to use of the Apollo spacecraft, which is why it has the name Apollo in it rather than Skylab; the Skylab station was visited by astronauts using the Apollo spacecraft launched by the Saturn IB , and the Station with its solar observatory was launched by a Saturn V . The ATM was designed and construction was managed at NASA 's Marshall Space Flight Center . It included eight major observational instruments, along with several lesser experiments. The ATM made observations at
4653-446: The Solar System . Long-term secular change in sunspot number is thought, by some scientists, to be correlated with long-term change in solar irradiance, which, in turn, might influence Earth's long-term climate. The solar cycle influences space weather conditions, including those surrounding Earth. For example, in the 17th century, the solar cycle appeared to have stopped entirely for several decades; few sunspots were observed during
4752-443: The Sun as yellow and some even red; the cultural reasons for this are debated. The Sun is classed as a G2 star, meaning it is a G-type star , with 2 indicating its surface temperature is in the second range of the G class. The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1,368 W/m (watts per square meter) at
4851-424: The Sun extends from the center to about 20–25% of the solar radius. It has a density of up to 150 g/cm (about 150 times the density of water) and a temperature of close to 15.7 million kelvin (K). By contrast, the Sun's surface temperature is about 5800 K . Recent analysis of SOHO mission data favors the idea that the core is rotating faster than the radiative zone outside it. Through most of
4950-438: The Sun into a red giant . This process will make the Sun large enough to render Earth uninhabitable approximately five billion years from the present. After the red giant phase, models suggest the Sun will shed its outer layers and become a dense type of cooling star (a white dwarf ), and no longer produce energy by fusion, but will still glow and give off heat from its previous fusion for perhaps trillions of years. After that, it
5049-413: The Sun's magnetic field . The Sun's convection zone extends from 0.7 solar radii (500,000 km) to near the surface. In this layer, the solar plasma is not dense or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. Material heated at
SECTION 50
#17327722454345148-398: The Sun's core by radiation rather than by convection (see Radiative zone below), so the fusion products are not lifted outward by heat; they remain in the core, and gradually an inner core of helium has begun to form that cannot be fused because presently the Sun's core is not hot or dense enough to fuse helium. In the current photosphere, the helium fraction is reduced, and the metallicity
5247-437: The Sun's core fuses about 600 billion kilograms (kg) of hydrogen into helium and converts 4 billion kg of matter into energy . About 4 to 7 billion years from now, when hydrogen fusion in the Sun's core diminishes to the point where the Sun is no longer in hydrostatic equilibrium , its core will undergo a marked increase in density and temperature which will cause its outer layers to expand, eventually transforming
5346-403: The Sun's horizon to Earth's horizon in about 8 minutes and 20 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. The energy of this sunlight supports almost all life on Earth by photosynthesis , and drives Earth's climate and weather. The Sun does not have a definite boundary, but its density decreases exponentially with increasing height above
5445-499: The Sun's life, energy has been produced by nuclear fusion in the core region through the proton–proton chain ; this process converts hydrogen into helium. Currently, 0.8% of the energy generated in the Sun comes from another sequence of fusion reactions called the CNO cycle ; the proportion coming from the CNO cycle is expected to increase as the Sun becomes older and more luminous. The core
5544-551: The Sun's life, they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere. All heavier elements, called metals in astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant. The Sun's original chemical composition was inherited from the interstellar medium out of which it formed. Originally it would have been about 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements. The hydrogen and most of
5643-438: The Sun, to reach the surface. Because energy transport in the Sun is a process that involves photons in thermodynamic equilibrium with matter , the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state if the rate of energy generation in its core were suddenly changed. Electron neutrinos are released by fusion reactions in
5742-402: The Sun. The reason is not well understood, but evidence suggests that Alfvén waves may have enough energy to heat the corona. Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines. It is called the chromosphere from the Greek root chroma , meaning color, because the chromosphere is visible as a colored flash at
5841-619: The US National Institute of Standards and Technology (NIST). However, it is not mentioned in the 9th edition of the official SI standard, the "BIPM Brochure" (2019) or in the NIST version of the same, and BIPM officially discourages its use. The angstrom is also not included in the European Union's catalogue of units of measure that may be used within its internal market. For compatibility reasons, Unicode assigns
5940-480: The angstrom remained a secondary unit of length for use in spectroscopy, defined separately from the metre. In 1960, the metre itself was redefined in spectroscopic terms, which allowed the angstrom to be redefined as being exactly 0.1 nanometres. After the redefinition of the metre in spectroscopic terms, the Angstrom was formally redefined to be 0.1 nanometres. However, there was briefly thought to be
6039-486: The beginning and end of total solar eclipses. The temperature of the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top. In the upper part of the chromosphere helium becomes partially ionized . Above the chromosphere, in a thin (about 200 km ) transition region, the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to 1,000,000 K . The temperature increase
SECTION 60
#17327722454346138-460: The core, but, unlike photons, they rarely interact with matter, so almost all are able to escape the Sun immediately. However, measurements of the number of these neutrinos produced in the Sun are lower than theories predict by a factor of 3. In 2001, the discovery of neutrino oscillation resolved the discrepancy: the Sun emits the number of electron neutrinos predicted by the theory, but neutrino detectors were missing 2 ⁄ 3 of them because
6237-501: The core, converting about 3.7 × 10 protons into alpha particles (helium nuclei) every second (out of a total of ~8.9 × 10 free protons in the Sun), or about 6.2 × 10 kg/s . However, each proton (on average) takes around 9 billion years to fuse with another using the PP chain. Fusing four free protons (hydrogen nuclei) into a single alpha particle (helium nucleus) releases around 0.7% of
6336-401: The corona reaches 1,000,000–2,000,000 K . The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere. It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first
6435-402: The crew. The film magazines had to be changed out by the crew during spacewalks , although some instruments had a live video feed that could be observed from inside the space station. Some of the first Polaroid photos (an instant film -to-hard copy camera) in space were taken of a Skylab CRT video screen displaying the Sun as recorded by an ATM instrument. Although the ATM was integrated with
6534-400: The duration of a solar day on another planet such as Mars . The astronomical symbol for the Sun is a circle with a center dot, [REDACTED] . It is used for such units as M ☉ ( Solar mass ), R ☉ ( Solar radius ) and L ☉ ( Solar luminosity ). The scientific study of the Sun is called heliology . The Sun is a G-type main-sequence star that makes up about 99.86% of
6633-468: The end of each mission. The heaviest canisters weighed 40 kg (88.1 lb) and could hold up to 16,000 frames of film. Over the course of operations almost 30 canisters were loaded and utilized, and then returned to Earth. The instruments were used for various types of observations including pre-planned experiments, including a set of student experiments. This is a chart describing an example of this: A backup ATM spare (instruments were mounted to this)
6732-491: The energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is by far the most important source of energy for life on Earth . The Sun has been an object of veneration in many cultures. It has been a central subject for astronomical research since antiquity . The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years . From Earth, it
6831-563: The external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength; but an internal toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the convective zone forces emergence of the toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west and having footprints with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle,
6930-442: The form of large solar flares and myriad similar but smaller events— nanoflares . Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona. In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms. Angstrom The unit's symbol
7029-404: The fused mass as energy, so the Sun releases energy at the mass–energy conversion rate of 4.26 billion kg/s (which requires 600 billion kg of hydrogen ), for 384.6 yottawatts ( 3.846 × 10 W ), or 9.192 × 10 megatons of TNT per second. The large power output of the Sun is mainly due to the huge size and density of its core (compared to Earth and objects on Earth), with only
7128-482: The heliosphere, forming the solar magnetic field into a spiral shape, until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause. In late 2012, Voyager 1 recorded a marked increase in cosmic ray collisions and a sharp drop in lower energy particles from the solar wind, which suggested that
7227-432: The helium in the Sun would have been produced by Big Bang nucleosynthesis in the first 20 minutes of the universe, and the heavier elements were produced by previous generations of stars before the Sun was formed, and spread into the interstellar medium during the final stages of stellar life and by events such as supernovae . Since the Sun formed, the main fusion process has involved fusing hydrogen into helium. Over
7326-505: The mass of the Solar System. It has an absolute magnitude of +4.83, estimated to be brighter than about 85% of the stars in the Milky Way , most of which are red dwarfs . It is more massive than 95% of the stars within 7 pc (23 ly). The Sun is a Population I , or heavy-element-rich, star. Its formation approximately 4.6 billion years ago may have been triggered by shockwaves from one or more nearby supernovae . This
7425-408: The nanometre ( 10 m) or picometre ( 10 m). In 1868, Swedish physicist Anders Jonas Ångström created a chart of the spectrum of sunlight , in which he expressed the wavelengths of electromagnetic radiation in the electromagnetic spectrum in multiples of one ten-millionth of a millimetre (or 10 mm .) Ångström's chart and table of wavelengths in the solar spectrum became widely used in
7524-444: The neutrinos had changed flavor by the time they were detected. The Sun has a stellar magnetic field that varies across its surface. Its polar field is 1–2 gauss (0.0001–0.0002 T ), whereas the field is typically 3,000 gauss (0.3 T) in features on the Sun called sunspots and 10–100 gauss (0.001–0.01 T) in solar prominences . The magnetic field varies in time and location. The quasi-periodic 11-year solar cycle
7623-592: The new metre. Within ten years, the unit had been deemed both insufficiently accurate (with accuracies closer to 15 parts per million) and obsolete due to higher precision measuring equipment. Although still widely used in physics and chemistry, the angstrom is not officially a part of the International System of Units (SI). Up to 2019, it was listed as a compatible unit by both the International Bureau of Weights and Measures (BIPM) and
7722-616: The one remaining workshop array could be deployed during the first crewed mission. There were additional astronomical and Earth observation experiments aboard Skylab. During development, the ATM was subjected to thermal vacuum testing. There were 8 major solar studies instruments on the mount. Combined, they could observe the Sun in light wavelengths from 2 to 7000 Å ( angstroms ), which corresponds to soft X-ray , ultraviolet , and visible light . Same instruments by designation: The X-Ray instruments included: UV instruments included: Hydrogen alpha and coronograph: Also, experiment S149
7821-419: The past 4.6 billion years, the amount of helium and its location within the Sun has gradually changed. The proportion of helium within the core has increased from about 24% to about 60% due to fusion, and some of the helium and heavy elements have settled from the photosphere toward the center of the Sun because of gravity . The proportions of heavier elements are unchanged. Heat is transferred outward from
7920-414: The photospheric surface. Both coronal mass ejections and high-speed streams of solar wind carry plasma and the interplanetary magnetic field outward into the Solar System. The effects of solar activity on Earth include auroras at moderate to high latitudes and the disruption of radio communications and electric power . Solar activity is thought to have played a large role in the formation and evolution of
8019-455: The planets is weak and does not significantly affect the shape of the Sun. The Sun rotates faster at its equator than at its poles . This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at
8118-473: The poles. Viewed from Earth as it orbits the Sun, the apparent rotational period of the Sun at its equator is about 28 days. Viewed from a vantage point above its north pole, the Sun rotates counterclockwise around its axis of spin. A survey of solar analogs suggest the early Sun was rotating up to ten times faster than it does today. This would have made the surface much more active, with greater X-ray and UV emission. Sun spots would have covered 5–30% of
8217-557: The poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change, then, in the overall polarity of the Sun's large-scale magnetic field. The Sun's magnetic field leads to many effects that are collectively called solar activity . Solar flares and coronal mass ejections tend to occur at sunspot groups. Slowly changing high-speed streams of solar wind are emitted from coronal holes at
8316-448: The primordial Solar System. Typically, the solar heavy-element abundances described above are measured both by using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by the settling of heavy elements. The two methods generally agree well. The core of
8415-470: The probe had passed through the heliopause and entered the interstellar medium , and indeed did so on August 25, 2012, at approximately 122 astronomical units (18 Tm) from the Sun. The heliosphere has a heliotail which stretches out behind it due to the Sun's peculiar motion through the galaxy. On April 28, 2021, NASA's Parker Solar Probe encountered the specific magnetic and particle conditions at 18.8 solar radii that indicated that it penetrated
8514-437: The shorter wavelengths. Solar ultraviolet radiation ionizes Earth's dayside upper atmosphere, creating the electrically conducting ionosphere . Ultraviolet light from the Sun has antiseptic properties and can be used to sanitize tools and water. This radiation causes sunburn , and has other biological effects such as the production of vitamin D and sun tanning . It is the main cause of skin cancer . Ultraviolet light
8613-425: The solar cycle progresses toward its maximum , sunspots tend to form closer to the solar equator, a phenomenon known as Spörer's law . The largest sunspots can be tens of thousands of kilometers across. An 11-year sunspot cycle is half of a 22-year Babcock –Leighton dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields. At solar-cycle maximum,
8712-445: The space station and ATM remained "on the books". The plans then changed to launch the ATM and have it connect to Skylab in orbit. Both spacecraft would then be operated by the Skylab crews. With the cancellation of the later Apollo landing missions providing a Saturn V, the wet workshop concept was no longer needed. Instead, the plans were changed to orbit an expanded, dry version of the station. The ATM would now be launched attached to
8811-506: The station, as the Saturn V had enough power to launch them both at the same time. This change saved the Skylab program when a problem during launch destroyed one of the workshop solar panels and prevented the other from automatically deploying. The windmill-like arrays on the ATM, which fed power to both the ATM and the station, remained undamaged due to the protection within the launch shroud, and provided enough power for crewed operations until
8910-417: The surface. The rotation rate was gradually slowed by magnetic braking , as the Sun's magnetic field interacted with the outflowing solar wind. A vestige of this rapid primordial rotation still survives at the Sun's core, which has been found to be rotating at a rate of once per week; four times the mean surface rotation rate. The Sun consists mainly of the elements hydrogen and helium . At this time in
9009-431: The tachocline picks up heat and expands, thereby reducing its density and allowing it to rise. As a result, an orderly motion of the mass develops into thermal cells that carry most of the heat outward to the Sun's photosphere above. Once the material diffusively and radiatively cools just beneath the photospheric surface, its density increases, and it sinks to the base of the convection zone, where it again picks up heat from
9108-424: The temperature of the corona, at least some of its heat is known to be from magnetic reconnection . The corona is the extended atmosphere of the Sun, which has a volume much larger than the volume enclosed by the Sun's photosphere. A flow of plasma outward from the Sun into interplanetary space is the solar wind . The heliosphere, the tenuous outermost atmosphere of the Sun, is filled with solar wind plasma and
9207-445: The temperature of the instruments within a certain range. Pointing was done with the help of the Skylab computer, which could be commanded from the space station by astronauts or by communication link from Earth. The four external mounted solar panels deploy in an 'X' shape, and provide around 30% of the station's electrical power. The ATM was one of the projects that came out of the late 1960s Apollo Applications Program , which studied
9306-422: The tenuous layers above the photosphere. The photosphere has a particle density of ~10 m (about 0.37% of the particle number per volume of Earth's atmosphere at sea level). The photosphere is not fully ionized—the extent of ionization is about 3%, leaving almost all of the hydrogen in atomic form. The Sun's atmosphere is composed of five layers: the photosphere, the chromosphere , the transition region ,
9405-404: The top of the radiative zone and the convective cycle continues. At the photosphere, the temperature has dropped 350-fold to 5,700 K (9,800 °F) and the density to only 0.2 g/m (about 1/10,000 the density of air at sea level, and 1 millionth that of the inner layer of the convective zone). The thermal columns of the convection zone form an imprint on the surface of the Sun giving it
9504-418: The transfer of energy through this zone is by radiation instead of thermal convection. Ions of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions. The density drops a hundredfold (from 20 000 kg/m to 200 kg/m ) between 0.25 solar radii and 0.7 radii, the top of the radiative zone. The radiative zone and the convective zone are separated by
9603-611: The uncorrected ones. In 1892–1895, Albert A. Michelson and Jean-René Benoît , working at the BIPM with specially developed equipment, determined that the length of the international metre standard was equal to 1 553 163.5 times the wavelength of the red line of the emission spectrum of electrically excited cadmium vapor. In 1907, the International Union for Cooperation in Solar Research (which later became
9702-440: Was attached to one of the ATM solar panels. Six ATM experiments used film to record data, and over the course of the missions over 150,000 successful exposures were recorded. The film canister had to be manually retrieved on crewed spacewalks to the instruments during the missions. The film canisters were returned to Earth aboard the Apollo capsules when each mission ended, and were among the heaviest items that had to be returned at
9801-582: Was restored and put on display in 2015 at the Steven F. Udvar-Hazy Center in Chantilly, Virginia, US. The restoration involved repairing some Kapton layers that had degraded after 4 decades. Sun The Sun is the star at the center of the Solar System . It is a massive, nearly perfect sphere of hot plasma , heated to incandescence by nuclear fusion reactions in its core, radiating
#433566