120-636: The BMW M51 is an inline-6 cylinder Diesel engine produced by the Upper Austrian BMW plant in Steyr from July 1991 through February 2000. Its predecessor is the BMW M21 , the successor is the BMW M57 . The M51 is a water-cooled and turbocharged inline six-cylinder diesel engine with a Bosch VP37- swirl-chamber-injection . The displacement is 2.5 L; 152.4 cu in (2,497 cc) and
240-414: A carcinogen or "probable carcinogen" and is known to increase the risk of heart and respiratory diseases. In principle, a diesel engine does not require any sort of electrical system. However, most modern diesel engines are equipped with an electrical fuel pump, and an electronic engine control unit. However, there is no high-voltage electrical ignition system present in a diesel engine. This eliminates
360-497: A closed space (e.g., combustion chamber , firebox , furnace). In the case of model or toy steam engines and a few full scale cases, the heat source can be an electric heating element . Boilers are pressure vessels that contain water to be boiled, and features that transfer the heat to the water as effectively as possible. The two most common types are: Fire-tube boilers were the main type used for early high-pressure steam (typical steam locomotive practice), but they were to
480-423: A common four-way rotary valve connected directly to a steam boiler. The next major step occurred when James Watt developed (1763–1775) an improved version of Newcomen's engine, with a separate condenser . Boulton and Watt 's early engines used half as much coal as John Smeaton 's improved version of Newcomen's. Newcomen's and Watt's early engines were "atmospheric". They were powered by air pressure pushing
600-452: A diesel engine drops at lower loads, however, it does not drop quite as fast as the Otto (spark ignition) engine's. Diesel engines are combustion engines and, therefore, emit combustion products in their exhaust gas . Due to incomplete combustion, diesel engine exhaust gases include carbon monoxide , hydrocarbons , particulate matter , and nitrogen oxides pollutants. About 90 per cent of
720-407: A diesel engine, particularly at idling speeds, is sometimes called "diesel clatter". This noise is largely caused by the sudden ignition of the diesel fuel when injected into the combustion chamber, which causes a pressure wave that sounds like knocking. Steam engine A steam engine is a heat engine that performs mechanical work using steam as its working fluid . The steam engine uses
840-516: A few degrees releasing the pressure and is controlled by a mechanical governor, consisting of weights rotating at engine speed constrained by springs and a lever. The injectors are held open by the fuel pressure. On high-speed engines the plunger pumps are together in one unit. The length of fuel lines from the pump to each injector is normally the same for each cylinder in order to obtain the same pressure delay. Direct injected diesel engines usually use orifice-type fuel injectors. Electronic control of
960-407: A finite area, and the net output of work during a cycle is positive. The fuel efficiency of diesel engines is better than most other types of combustion engines, due to their high compression ratio, high air–fuel equivalence ratio (λ) , and the lack of intake air restrictions (i.e. throttle valves). Theoretically, the highest possible efficiency for a diesel engine is 75%. However, in practice
1080-438: A flywheel and crankshaft to provide rotative motion from an improved Newcomen engine. In 1720, Jacob Leupold described a two-cylinder high-pressure steam engine. The invention was published in his major work "Theatri Machinarum Hydraulicarum". The engine used two heavy pistons to provide motion to a water pump. Each piston was raised by the steam pressure and returned to its original position by gravity. The two pistons shared
1200-452: A fuel consumption of 519 g·kW ·h . However, despite proving the concept, the engine caused problems, and Diesel could not achieve any substantial progress. Therefore, Krupp considered rescinding the contract they had made with Diesel. Diesel was forced to improve the design of his engine and rushed to construct a third prototype engine. Between 8 November and 20 December 1895, the second prototype had successfully covered over 111 hours on
1320-409: A full set of valves, two-stroke diesel engines have simple intake ports, and exhaust ports (or exhaust valves). When the piston approaches bottom dead centre, both the intake and the exhaust ports are "open", which means that there is atmospheric pressure inside the cylinder. Therefore, some sort of pump is required to blow the air into the cylinder and the combustion gasses into the exhaust. This process
SECTION 10
#17327982023261440-423: A given cylinder size than previous engines and could be made small enough for transport applications. Thereafter, technological developments and improvements in manufacturing techniques (partly brought about by the adoption of the steam engine as a power source) resulted in the design of more efficient engines that could be smaller, faster, or more powerful, depending on the intended application. The Cornish engine
1560-562: A heterogeneous air-fuel mixture. The torque a diesel engine produces is controlled by manipulating the air-fuel ratio (λ) ; instead of throttling the intake air, the diesel engine relies on altering the amount of fuel that is injected, and thus the air-fuel ratio is usually high. The diesel engine has the highest thermal efficiency (see engine efficiency ) of any practical internal or external combustion engine due to its very high expansion ratio and inherent lean burn, which enables heat dissipation by excess air. A small efficiency loss
1680-416: A large extent displaced by more economical water tube boilers in the late 19th century for marine propulsion and large stationary applications. Many boilers raise the temperature of the steam after it has left that part of the boiler where it is in contact with the water. Known as superheating it turns ' wet steam ' into ' superheated steam '. It avoids the steam condensing in the engine cylinders, and gives
1800-403: A low-pressure loop at the bottom of the diagram. At 1 it is assumed that the exhaust and induction strokes have been completed, and the cylinder is again filled with air. The piston-cylinder system absorbs energy between 1 and 2 – this is the work needed to compress the air in the cylinder, and is provided by mechanical kinetic energy stored in the flywheel of the engine. Work output is done by
1920-532: A more efficient replacement for stationary steam engines . Since the 1910s, they have been used in submarines and ships. Use in locomotives , buses, trucks, heavy equipment , agricultural equipment and electricity generation plants followed later. In the 1930s, they slowly began to be used in some automobiles . Since the 1970s energy crisis , demand for higher fuel efficiency has resulted in most major automakers, at some point, offering diesel-powered models, even in very small cars. According to Konrad Reif (2012),
2040-681: A notable exception being the EMD 567 , 645 , and 710 engines, which are all two-stroke. The power output of medium-speed diesel engines can be as high as 21,870 kW, with the effective efficiency being around 47-48% (1982). Most larger medium-speed engines are started with compressed air direct on pistons, using an air distributor, as opposed to a pneumatic starting motor acting on the flywheel, which tends to be used for smaller engines. Medium-speed engines intended for marine applications are usually used to power ( ro-ro ) ferries, passenger ships or small freight ships. Using medium-speed engines reduces
2160-409: A partial vacuum by condensing steam under a piston within a cylinder. It was employed for draining mine workings at depths originally impractical using traditional means, and for providing reusable water for driving waterwheels at factories sited away from a suitable "head". Water that passed over the wheel was pumped up into a storage reservoir above the wheel. In 1780 James Pickard patented the use of
2280-535: A petroleum engine with glow-tube ignition in the early 1890s; he claimed against his own better judgement that his glow-tube ignition engine worked the same way Diesel's engine did. His claims were unfounded and he lost a patent lawsuit against Diesel. Other engines, such as the Akroyd engine and the Brayton engine , also use an operating cycle that is different from the diesel engine cycle. Friedrich Sass says that
2400-405: A piston into the partial vacuum generated by condensing steam, instead of the pressure of expanding steam. The engine cylinders had to be large because the only usable force acting on them was atmospheric pressure . Watt developed his engine further, modifying it to provide a rotary motion suitable for driving machinery. This enabled factories to be sited away from rivers, and accelerated
2520-415: A poorer power-to-mass ratio than an equivalent petrol engine. The lower engine speeds (RPM) of typical diesel engines results in a lower power output. Also, the mass of a diesel engine is typically higher, since the higher operating pressure inside the combustion chamber increases the internal forces, which requires stronger (and therefore heavier) parts to withstand these forces. The distinctive noise of
SECTION 20
#17327982023262640-408: A regular trunk-piston. Two-stroke engines have a limited rotational frequency and their charge exchange is more difficult, which means that they are usually bigger than four-stroke engines and used to directly power a ship's propeller. Four-stroke engines on ships are usually used to power an electric generator. An electric motor powers the propeller. Both types are usually very undersquare , meaning
2760-433: A set speed, because it would assume a new constant speed in response to load changes. The governor was able to handle smaller variations such as those caused by fluctuating heat load to the boiler. Also, there was a tendency for oscillation whenever there was a speed change. As a consequence, engines equipped only with this governor were not suitable for operations requiring constant speed, such as cotton spinning. The governor
2880-522: A significantly higher efficiency . In a steam engine, a piston or steam turbine or any other similar device for doing mechanical work takes a supply of steam at high pressure and temperature and gives out a supply of steam at lower pressure and temperature, using as much of the difference in steam energy as possible to do mechanical work. These "motor units" are often called 'steam engines' in their own right. Engines using compressed air or other gases differ from steam engines only in details that depend on
3000-435: A simple mechanical injection system since exact injection timing is not as critical. Most modern automotive engines are DI which have the benefits of greater efficiency and easier starting; however, IDI engines can still be found in the many ATV and small diesel applications. Indirect injected diesel engines use pintle-type fuel injectors. Early diesel engines injected fuel with the assistance of compressed air, which atomised
3120-536: A single orifice injector. The pre-chamber has the disadvantage of lowering efficiency due to increased heat loss to the engine's cooling system, restricting the combustion burn, thus reducing the efficiency by 5–10%. IDI engines are also more difficult to start and usually require the use of glow plugs. IDI engines may be cheaper to build but generally require a higher compression ratio than the DI counterpart. IDI also makes it easier to produce smooth, quieter running engines with
3240-527: A single speed for long periods. Two-stroke engines use a combustion cycle which is completed in two strokes instead of four strokes. Filling the cylinder with air and compressing it takes place in one stroke, and the power and exhaust strokes are combined. The compression in a two-stroke diesel engine is similar to the compression that takes place in a four-stroke diesel engine: As the piston passes through bottom centre and starts upward, compression commences, culminating in fuel injection and ignition. Instead of
3360-426: A small chamber called a swirl chamber, precombustion chamber, pre chamber or ante-chamber, which is connected to the cylinder by a narrow air passage. Generally the goal of the pre chamber is to create increased turbulence for better air / fuel mixing. This system also allows for a smoother, quieter running engine, and because fuel mixing is assisted by turbulence, injector pressures can be lower. Most IDI systems use
3480-530: A source of radio frequency emissions (which can interfere with navigation and communication equipment), which is why only diesel-powered vehicles are allowed in some parts of the American National Radio Quiet Zone . To control the torque output at any given time (i.e. when the driver of a car adjusts the accelerator pedal ), a governor adjusts the amount of fuel injected into the engine. Mechanical governors have been used in
3600-400: A spark plug ( compression ignition rather than spark ignition ). In the diesel engine, only air is initially introduced into the combustion chamber. The air is then compressed with a compression ratio typically between 15:1 and 23:1. This high compression causes the temperature of the air to rise. At about the top of the compression stroke, fuel is injected directly into the compressed air in
3720-414: A steam jet usually supplied from the boiler. Injectors became popular in the 1850s but are no longer widely used, except in applications such as steam locomotives. It is the pressurization of the water that circulates through the steam boiler that allows the water to be raised to temperatures well above 100 °C (212 °F) boiling point of water at one atmospheric pressure, and by that means to increase
BMW M51 - Misplaced Pages Continue
3840-445: A steam pump that used steam pressure operating directly on the water. The first commercially successful engine that could transmit continuous power to a machine was developed in 1712 by Thomas Newcomen . James Watt made a critical improvement in 1764, by removing spent steam to a separate vessel for condensation, greatly improving the amount of work obtained per unit of fuel consumed. By the 19th century, stationary steam engines powered
3960-628: A steam rail locomotive was designed and constructed by steamboat pioneer John Fitch in the United States probably during the 1780s or 1790s. His steam locomotive used interior bladed wheels guided by rails or tracks. The first full-scale working railway steam locomotive was built by Richard Trevithick in the United Kingdom and, on 21 February 1804, the world's first railway journey took place as Trevithick's steam locomotive hauled 10 tones of iron, 70 passengers and five wagons along
4080-417: A swirl chamber or pre-chamber are called indirect injection (IDI) engines. Most direct injection diesel engines have a combustion cup in the top of the piston where the fuel is sprayed. Many different methods of injection can be used. Usually, an engine with helix-controlled mechanic direct injection has either an inline or a distributor injection pump. For each engine cylinder, the corresponding plunger in
4200-612: A trio of locomotives, concluding with the Catch Me Who Can in 1808. Only four years later, the successful twin-cylinder locomotive Salamanca by Matthew Murray was used by the edge railed rack and pinion Middleton Railway . In 1825 George Stephenson built the Locomotion for the Stockton and Darlington Railway . This was the first public steam railway in the world and then in 1829, he built The Rocket which
4320-422: A two-stroke ship diesel engine has a single-stage turbocharger with a turbine that has an axial inflow and a radial outflow. In general, there are three types of scavenging possible: Crossflow scavenging is incomplete and limits the stroke, yet some manufacturers used it. Reverse flow scavenging is a very simple way of scavenging, and it was popular amongst manufacturers until the early 1980s. Uniflow scavenging
4440-561: A very limited lift height and were prone to boiler explosions . Savery's engine was used in mines, pumping stations and supplying water to water wheels powering textile machinery. One advantage of Savery's engine was its low cost. Bento de Moura Portugal introduced an improvement of Savery's construction "to render it capable of working itself", as described by John Smeaton in the Philosophical Transactions published in 1751. It continued to be manufactured until
4560-473: A water pump for draining inundated mines. Frenchman Denis Papin did some useful work on the steam digester in 1679, and first used a piston to raise weights in 1690. The first commercial steam-powered device was a water pump, developed in 1698 by Thomas Savery . It used condensing steam to create a vacuum which raised water from below and then used steam pressure to raise it higher. Small engines were effective though larger models were problematic. They had
4680-461: Is a combustion engine that is more efficient than a diesel engine, but due to its mass and dimensions, is unsuitable for many vehicles, including watercraft and some aircraft . The world's largest diesel engines put in service are 14-cylinder, two-stroke marine diesel engines; they produce a peak power of almost 100 MW each. Diesel engines may be designed with either two-stroke or four-stroke combustion cycles . They were originally used as
4800-423: Is a simplified and idealised representation of the events involved in a diesel engine cycle, arranged to illustrate the similarity with a Carnot cycle . Starting at 1, the piston is at bottom dead centre and both valves are closed at the start of the compression stroke; the cylinder contains air at atmospheric pressure. Between 1 and 2 the air is compressed adiabatically – that is without heat transfer to or from
4920-431: Is also avoided compared with non-direct-injection gasoline engines, as unburned fuel is not present during valve overlap, and therefore no fuel goes directly from the intake/injection to the exhaust. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) can reach effective efficiencies of up to 55%. The combined cycle gas turbine (Brayton and Rankine cycle)
BMW M51 - Misplaced Pages Continue
5040-403: Is approximately 5 MW. Medium-speed engines are used in large electrical generators, railway diesel locomotives , ship propulsion and mechanical drive applications such as large compressors or pumps. Medium speed diesel engines operate on either diesel fuel or heavy fuel oil by direct injection in the same manner as low-speed engines. Usually, they are four-stroke engines with trunk pistons;
5160-429: Is called scavenging . The pressure required is approximately 10-30 kPa. Due to the lack of discrete exhaust and intake strokes, all two-stroke diesel engines use a scavenge blower or some form of compressor to charge the cylinders with air and assist in scavenging. Roots-type superchargers were used for ship engines until the mid-1950s, however since 1955 they have been widely replaced by turbochargers. Usually,
5280-580: Is controlled by the ECU Bosch DDE 2.1, which was replaced after the first technical revision by the DDE 2.2 This results in greater torque at lower revs. For lubrication SAE 5W-40 oil is used. Applications: Diesel engine The diesel engine , named after the German engineer Rudolf Diesel , is an internal combustion engine in which ignition of the fuel is caused by the elevated temperature of
5400-431: Is cylinder condensation and re-evaporation. The steam cylinder and adjacent metal parts/ports operate at a temperature about halfway between the steam admission saturation temperature and the saturation temperature corresponding to the exhaust pressure. As high-pressure steam is admitted into the working cylinder, much of the high-temperature steam is condensed as water droplets onto the metal surfaces, significantly reducing
5520-404: Is done on the system to which the engine is connected. During this expansion phase the volume of the gas rises, and its temperature and pressure both fall. At 4 the exhaust valve opens, and the pressure falls abruptly to atmospheric (approximately). This is unresisted expansion and no useful work is done by it. Ideally the adiabatic expansion should continue, extending the line 3–4 to the right until
5640-464: Is more complicated to make but allows the highest fuel efficiency; since the early 1980s, manufacturers such as MAN and Sulzer have switched to this system. It is standard for modern marine two-stroke diesel engines. So-called dual-fuel diesel engines or gas diesel engines burn two different types of fuel simultaneously , for instance, a gaseous fuel and diesel engine fuel. The diesel engine fuel auto-ignites due to compression ignition, and then ignites
5760-496: Is that they are external combustion engines , where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle . In general usage, the term steam engine can refer to either complete steam plants (including boilers etc.), such as railway steam locomotives and portable engines , or may refer to the piston or turbine machinery alone, as in
5880-399: Is then pumped back up to pressure and sent back to the boiler. A dry-type cooling tower is similar to an automobile radiator and is used in locations where water is costly. Waste heat can also be ejected by evaporative (wet) cooling towers, which use a secondary external water circuit that evaporates some of flow to the air. River boats initially used a jet condenser in which cold water from
6000-542: Is vented up the chimney so as to increase the draw on the fire, which greatly increases engine power, but reduces efficiency. Sometimes the waste heat from the engine is useful itself, and in those cases, very high overall efficiency can be obtained. Steam engines in stationary power plants use surface condensers as a cold sink. The condensers are cooled by water flow from oceans, rivers, lakes, and often by cooling towers which evaporate water to provide cooling energy removal. The resulting condensed hot water ( condensate ),
6120-507: The EU average for diesel cars at the time accounted for half of newly registered cars. However, air pollution and overall emissions are more difficult to control in diesel engines compared to gasoline engines, and the use of diesel auto engines in the U.S. is now largely relegated to larger on-road and off-road vehicles . Though aviation has traditionally avoided using diesel engines, aircraft diesel engines have become increasingly available in
SECTION 50
#17327982023266240-468: The Rumford Medal , the committee said that "no one invention since Watt's time has so enhanced the efficiency of the steam engine". In addition to using 30% less steam, it provided more uniform speed due to variable steam cut off, making it well suited to manufacturing, especially cotton spinning. The first experimental road-going steam-powered vehicles were built in the late 18th century, but it
6360-659: The United Kingdom , and the United States for "Method of and Apparatus for Converting Heat into Work". In 1894 and 1895, he filed patents and addenda in various countries for his engine; the first patents were issued in Spain (No. 16,654), France (No. 243,531) and Belgium (No. 113,139) in December 1894, and in Germany (No. 86,633) in 1895 and the United States (No. 608,845) in 1898. Diesel
6480-418: The beam engine and stationary steam engine . As noted, steam-driven devices such as the aeolipile were known in the first century AD, and there were a few other uses recorded in the 16th century. In 1606 Jerónimo de Ayanz y Beaumont patented his invention of the first steam-powered water pump for draining mines. Thomas Savery is considered the inventor of the first commercially used steam powered device,
6600-498: The compression ratio is 22.0:1. Some engine variants have an intercooler in addition to the turbocharger, they can be identified by the tds . The M51 is an engine made of cast iron, it has one chain driven overhead camshaft and two valves per cylinder. Compared to the M21 the M51 now has tappets and a hydraulic valve lash adjustment. The fuel injection in the first engines and all E36 models
6720-626: The tramway from the Pen-y-darren ironworks, near Merthyr Tydfil to Abercynon in south Wales . The design incorporated a number of important innovations that included using high-pressure steam which reduced the weight of the engine and increased its efficiency. Trevithick visited the Newcastle area later in 1804 and the colliery railways in north-east England became the leading centre for experimentation and development of steam locomotives. Trevithick continued his own experiments using
6840-514: The 1860s to the 1920s. Steam road vehicles were used for many applications. In the 20th century, the rapid development of internal combustion engine technology led to the demise of the steam engine as a source of propulsion of vehicles on a commercial basis, with relatively few remaining in use beyond the Second World War . Many of these vehicles were acquired by enthusiasts for preservation, and numerous examples are still in existence. In
6960-562: The 1960s, the air pollution problems in California gave rise to a brief period of interest in developing and studying steam-powered vehicles as a possible means of reducing the pollution. Apart from interest by steam enthusiasts, the occasional replica vehicle, and experimental technology, no steam vehicles are in production at present. Near the end of the 19th century, compound engines came into widespread use. Compound engines exhausted steam into successively larger cylinders to accommodate
7080-408: The 20th century, where their efficiency, higher speed appropriate to generator service, and smooth rotation were advantages. Today most electric power is provided by steam turbines. In the United States, 90% of the electric power is produced in this way using a variety of heat sources. Steam turbines were extensively applied for propulsion of large ships throughout most of the 20th century. Although
7200-416: The 21st century. Since the late 1990s, for various reasons—including the diesel's inherent advantages over gasoline engines, but also for recent issues peculiar to aviation—development and production of diesel engines for aircraft has surged, with over 5,000 such engines delivered worldwide between 2002 and 2018, particularly for light airplanes and unmanned aerial vehicles . In 1878, Rudolf Diesel , who
7320-454: The Carnot cycle. Diesel was also introduced to a fire piston , a traditional fire starter using rapid adiabatic compression principles which Linde had acquired from Southeast Asia . After several years of working on his ideas, Diesel published them in 1893 in the essay Theory and Construction of a Rational Heat Motor . Diesel was heavily criticised for his essay, but only a few found
SECTION 60
#17327982023267440-451: The air in the cylinder due to mechanical compression ; thus, the diesel engine is called a compression-ignition engine (CI engine). This contrasts with engines using spark plug -ignition of the air-fuel mixture, such as a petrol engine ( gasoline engine) or a gas engine (using a gaseous fuel like natural gas or liquefied petroleum gas ). Diesel engines work by compressing only air, or air combined with residual combustion gases from
7560-400: The amount of fuel injected into the engine. Due to the amount of air being constant (for a given RPM) while the amount of fuel varies, very high ("lean") air-fuel ratios are used in situations where minimal torque output is required. This differs from a petrol engine, where a throttle is used to also reduce the amount of intake air as part of regulating the engine's torque output. Controlling
7680-475: The atmosphere or into a condenser. As steam expands in passing through a high-pressure engine, its temperature drops because no heat is being added to the system; this is known as adiabatic expansion and results in steam entering the cylinder at high temperature and leaving at lower temperature. This causes a cycle of heating and cooling of the cylinder with every stroke, which is a source of inefficiency. The dominant efficiency loss in reciprocating steam engines
7800-404: The boiler and engine in separate buildings some distance apart. For portable or mobile use, such as steam locomotives , the two are mounted together. The widely used reciprocating engine typically consisted of a cast-iron cylinder, piston, connecting rod and beam or a crank and flywheel, and miscellaneous linkages. Steam was alternately supplied and exhausted by one or more valves. Speed control
7920-470: The bore is smaller than the stroke. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) often have an effective efficiency of up to 55%. Like medium-speed engines, low-speed engines are started with compressed air, and they use heavy oil as their primary fuel. Four-stroke engines use the combustion cycle described earlier. Most smaller diesels, for vehicular use, for instance, typically use
8040-448: The combustion chamber, the droplets continue to vaporise from their surfaces and burn, getting smaller, until all the fuel in the droplets has been burnt. Combustion occurs at a substantially constant pressure during the initial part of the power stroke. The start of vaporisation causes a delay before ignition and the characteristic diesel knocking sound as the vapour reaches ignition temperature and causes an abrupt increase in pressure above
8160-418: The combustion chamber. This may be into a (typically toroidal ) void in the top of the piston or a pre-chamber depending upon the design of the engine. The fuel injector ensures that the fuel is broken down into small droplets, and that the fuel is distributed evenly. The heat of the compressed air vaporises fuel from the surface of the droplets. The vapour is then ignited by the heat from the compressed air in
8280-425: The compressed gas. Combustion and heating occur between 2 and 3. In this interval the pressure remains constant since the piston descends, and the volume increases; the temperature rises as a consequence of the energy of combustion. At 3 fuel injection and combustion are complete, and the cylinder contains gas at a higher temperature than at 2. Between 3 and 4 this hot gas expands, again approximately adiabatically. Work
8400-452: The compression ratio in a spark-ignition engine where fuel and air are mixed before entry to the cylinder is limited by the need to prevent pre-ignition , which would cause engine damage. Since only air is compressed in a diesel engine, and fuel is not introduced into the cylinder until shortly before top dead centre ( TDC ), premature detonation is not a problem and compression ratios are much higher. The pressure–volume diagram (pV) diagram
8520-473: The compression required for his cycle: By June 1893, Diesel had realised his original cycle would not work, and he adopted the constant pressure cycle. Diesel describes the cycle in his 1895 patent application. Notice that there is no longer a mention of compression temperatures exceeding the temperature of combustion. Now it is simply stated that the compression must be sufficient to trigger ignition. In 1892, Diesel received patents in Germany , Switzerland ,
8640-416: The concept of air-blast injection from George B. Brayton , albeit that Diesel substantially improved the system. On 17 February 1894, the redesigned engine ran for 88 revolutions – one minute; with this news, Maschinenfabrik Augsburg's stock rose by 30%, indicative of the tremendous anticipated demands for a more efficient engine. On 26 June 1895, the engine achieved an effective efficiency of 16.6% and had
8760-424: The cost of smaller ships and increases their transport capacity. In addition to that, a single ship can use two smaller engines instead of one big engine, which increases the ship's safety. Low-speed diesel engines are usually very large in size and mostly used to power ships . There are two different types of low-speed engines that are commonly used: Two-stroke engines with a crosshead, and four-stroke engines with
8880-616: The diesel engine is Diesel's "very own work" and that any "Diesel myth" is " falsification of history ". Diesel sought out firms and factories that would build his engine. With the help of Moritz Schröter and Max Gutermuth [ de ] , he succeeded in convincing both Krupp in Essen and the Maschinenfabrik Augsburg . Contracts were signed in April 1893, and in early summer 1893, Diesel's first prototype engine
9000-417: The efficiency is much lower, with efficiencies of up to 43% for passenger car engines, up to 45% for large truck and bus engines, and up to 55% for large two-stroke marine engines. The average efficiency over a motor vehicle driving cycle is lower than the diesel engine's peak efficiency (for example, a 37% average efficiency for an engine with a peak efficiency of 44%). That is because the fuel efficiency of
9120-401: The efficiency of the steam cycle. For safety reasons, nearly all steam engines are equipped with mechanisms to monitor the boiler, such as a pressure gauge and a sight glass to monitor the water level. Many engines, stationary and mobile, are also fitted with a governor to regulate the speed of the engine without the need for human interference. The most useful instrument for analyzing
9240-408: The environment – by the rising piston. (This is only approximately true since there will be some heat exchange with the cylinder walls .) During this compression, the volume is reduced, the pressure and temperature both rise. At or slightly before 2 (TDC) fuel is injected and burns in the compressed hot air. Chemical energy is released and this constitutes an injection of thermal energy (heat) into
9360-406: The exhaust (known as exhaust gas recirculation , "EGR"). Air is inducted into the chamber during the intake stroke, and compressed during the compression stroke. This increases air temperature inside the cylinder so that atomised diesel fuel injected into the combustion chamber ignites. With the fuel being injected into the air just before combustion, the dispersion of fuel is uneven; this is called
9480-501: The factories of the Industrial Revolution . Steam engines replaced sails for ships on paddle steamers , and steam locomotives operated on the railways. Reciprocating piston type steam engines were the dominant source of power until the early 20th century. The efficiency of stationary steam engine increased dramatically until about 1922. The highest Rankine Cycle Efficiency of 91% and combined thermal efficiency of 31%
9600-458: The force produced by steam pressure to push a piston back and forth inside a cylinder . This pushing force can be transformed by a connecting rod and crank into rotational force for work. The term "steam engine" is most commonly applied to reciprocating engines as just described, although some authorities have also referred to the steam turbine and devices such as Hero's aeolipile as "steam engines". The essential feature of steam engines
9720-463: The four-stroke cycle. This is due to several factors, such as the two-stroke design's narrow powerband which is not particularly suitable for automotive use and the necessity for complicated and expensive built-in lubrication systems and scavenging measures. The cost effectiveness (and proportion of added weight) of these technologies has less of an impact on larger, more expensive engines, while engines intended for shipping or stationary use can be run at
9840-616: The fuel and forced it into the engine through a nozzle (a similar principle to an aerosol spray). The nozzle opening was closed by a pin valve actuated by the camshaft . Although the engine was also required to drive an air compressor used for air-blast injection, the efficiency was nonetheless better than other combustion engines of the time. However the system was heavy and it was slow to react to changing torque demands, making it unsuitable for road vehicles. A unit injector system, also known as "Pumpe-Düse" ( pump-nozzle in German) combines
9960-700: The fuel injection transformed the direct injection engine by allowing much greater control over the combustion. Common rail (CR) direct injection systems do not have the fuel metering, pressure-raising and delivery functions in a single unit, as in the case of a Bosch distributor-type pump, for example. A high-pressure pump supplies the CR. The requirements of each cylinder injector are supplied from this common high pressure reservoir of fuel. An Electronic Diesel Control (EDC) controls both rail pressure and injections depending on engine operating conditions. The injectors of older CR systems have solenoid -driven plungers for lifting
10080-405: The fuel pump measures out the correct amount of fuel and determines the timing of each injection. These engines use injectors that are very precise spring-loaded valves that open and close at a specific fuel pressure. Separate high-pressure fuel lines connect the fuel pump with each cylinder. Fuel volume for each single combustion is controlled by a slanted groove in the plunger which rotates only
10200-461: The gaseous fuel. Such engines do not require any type of spark ignition and operate similar to regular diesel engines. The fuel is injected at high pressure into either the combustion chamber , "swirl chamber" or "pre-chamber," unlike petrol engines where the fuel is often added in the inlet manifold or carburetor . Engines where the fuel is injected into the main combustion chamber are called direct injection (DI) engines, while those which use
10320-463: The higher volumes at reduced pressures, giving improved efficiency. These stages were called expansions, with double- and triple-expansion engines being common, especially in shipping where efficiency was important to reduce the weight of coal carried. Steam engines remained the dominant source of power until the early 20th century, when advances in the design of the steam turbine , electric motors , and internal combustion engines gradually resulted in
10440-419: The injection needle, whilst newer CR injectors use plungers driven by piezoelectric actuators that have less moving mass and therefore allow even more injections in a very short period of time. Early common rail system were controlled by mechanical means. The injection pressure of modern CR systems ranges from 140 MPa to 270 MPa. An indirect diesel injection system (IDI) engine delivers fuel into
10560-553: The injector and fuel pump into a single component, which is positioned above each cylinder. This eliminates the high-pressure fuel lines and achieves a more consistent injection. Under full load, the injection pressure can reach up to 220 MPa. Unit injectors are operated by a cam and the quantity of fuel injected is controlled either mechanically (by a rack or lever) or electronically. Due to increased performance requirements, unit injectors have been largely replaced by common rail injection systems. The average diesel engine has
10680-429: The late 18th century. At least one engine was still known to be operating in 1820. The first commercially successful engine that could transmit continuous power to a machine was the atmospheric engine , invented by Thomas Newcomen around 1712. It improved on Savery's steam pump, using a piston as proposed by Papin. Newcomen's engine was relatively inefficient, and mostly used for pumping water. It worked by creating
10800-476: The mistake that he made; his rational heat motor was supposed to utilise a constant temperature cycle (with isothermal compression) that would require a much higher level of compression than that needed for compression ignition. Diesel's idea was to compress the air so tightly that the temperature of the air would exceed that of combustion. However, such an engine could never perform any usable work. In his 1892 US patent (granted in 1895) #542846, Diesel describes
10920-399: The nature of the gas although compressed air has been used in steam engines without change. As with all heat engines, the majority of primary energy must be emitted as waste heat at relatively low temperature. The simplest cold sink is to vent the steam to the environment. This is often used on steam locomotives to avoid the weight and bulk of condensers. Some of the released steam
11040-518: The pace of the Industrial Revolution. The meaning of high pressure, together with an actual value above ambient, depends on the era in which the term was used. For early use of the term Van Reimsdijk refers to steam being at a sufficiently high pressure that it could be exhausted to atmosphere without reliance on a vacuum to enable it to perform useful work. Ewing 1894 , p. 22 states that Watt's condensing engines were known, at
11160-534: The past, however electronic governors are more common on modern engines. Mechanical governors are usually driven by the engine's accessory belt or a gear-drive system and use a combination of springs and weights to control fuel delivery relative to both load and speed. Electronically governed engines use an electronic control unit (ECU) or electronic control module (ECM) to control the fuel delivery. The ECM/ECU uses various sensors (such as engine speed signal, intake manifold pressure and fuel temperature) to determine
11280-456: The performance of steam engines is the steam engine indicator. Early versions were in use by 1851, but the most successful indicator was developed for the high speed engine inventor and manufacturer Charles Porter by Charles Richard and exhibited at London Exhibition in 1862. The steam engine indicator traces on paper the pressure in the cylinder throughout the cycle, which can be used to spot various problems and calculate developed horsepower. It
11400-480: The piston (not shown on the P-V indicator diagram). When combustion is complete the combustion gases expand as the piston descends further; the high pressure in the cylinder drives the piston downward, supplying power to the crankshaft. As well as the high level of compression allowing combustion to take place without a separate ignition system, a high compression ratio greatly increases the engine's efficiency. Increasing
11520-456: The piston axis in vertical position. In time the horizontal arrangement became more popular, allowing compact, but powerful engines to be fitted in smaller spaces. The acme of the horizontal engine was the Corliss steam engine , patented in 1849, which was a four-valve counter flow engine with separate steam admission and exhaust valves and automatic variable steam cutoff. When Corliss was given
11640-403: The piston-cylinder combination between 2 and 4. The difference between these two increments of work is the indicated work output per cycle, and is represented by the area enclosed by the pV loop. The adiabatic expansion is in a higher pressure range than that of the compression because the gas in the cylinder is hotter during expansion than during compression. It is for this reason that the loop has
11760-417: The pollutants can be removed from the exhaust gas using exhaust gas treatment technology. Road vehicle diesel engines have no sulfur dioxide emissions, because motor vehicle diesel fuel has been sulfur-free since 2003. Helmut Tschöke argues that particulate matter emitted from motor vehicles has negative impacts on human health. The particulate matter in diesel exhaust emissions is sometimes classified as
11880-408: The pressure falls to that of the surrounding air, but the loss of efficiency caused by this unresisted expansion is justified by the practical difficulties involved in recovering it (the engine would have to be much larger). After the opening of the exhaust valve, the exhaust stroke follows, but this (and the following induction stroke) are not shown on the diagram. If shown, they would be represented by
12000-406: The reciprocating steam engine is no longer in widespread commercial use, various companies are exploring or exploiting the potential of the engine as an alternative to internal combustion engines. There are two fundamental components of a steam plant: the boiler or steam generator , and the "motor unit", referred to itself as a "steam engine". Stationary steam engines in fixed buildings may have
12120-417: The replacement of reciprocating (piston) steam engines, with merchant shipping relying increasingly upon diesel engines , and warships on the steam turbine. As the development of steam engines progressed through the 18th century, various attempts were made to apply them to road and railway use. In 1784, William Murdoch , a Scottish inventor, built a model steam road locomotive. An early working model of
12240-578: The river is injected into the exhaust steam from the engine. Cooling water and condensate mix. While this was also applied for sea-going vessels, generally after only a few days of operation the boiler would become coated with deposited salt, reducing performance and increasing the risk of a boiler explosion. Starting about 1834, the use of surface condensers on ships eliminated fouling of the boilers, and improved engine efficiency. Evaporated water cannot be used for subsequent purposes (other than rain somewhere), whereas river water can be re-used. In all cases,
12360-412: The steam plant boiler feed water, which must be kept pure, is kept separate from the cooling water or air. Most steam boilers have a means to supply water whilst at pressure, so that they may be run continuously. Utility and industrial boilers commonly use multi-stage centrifugal pumps ; however, other types are used. Another means of supplying lower-pressure boiler feed water is an injector , which uses
12480-489: The temperature of the steam above its saturated vapour point, and various mechanisms to increase the draft for fireboxes. When coal is used, a chain or screw stoking mechanism and its drive engine or motor may be included to move the fuel from a supply bin (bunker) to the firebox. The heat required for boiling the water and raising the temperature of the steam can be derived from various sources, most commonly from burning combustible materials with an appropriate supply of air in
12600-544: The test bench. In the January 1896 report, this was considered a success. In February 1896, Diesel considered supercharging the third prototype. Imanuel Lauster , who was ordered to draw the third prototype " Motor 250/400 ", had finished the drawings by 30 April 1896. During summer that year the engine was built, it was completed on 6 October 1896. Tests were conducted until early 1897. First public tests began on 1 February 1897. Moritz Schröter 's test on 17 February 1897
12720-482: The time, as low pressure compared to high pressure, non-condensing engines of the same period. Watt's patent prevented others from making high pressure and compound engines. Shortly after Watt's patent expired in 1800, Richard Trevithick and, separately, Oliver Evans in 1801 introduced engines using high-pressure steam; Trevithick obtained his high-pressure engine patent in 1802, and Evans had made several working models before then. These were much more powerful for
12840-890: The timing of the start of injection of fuel into the cylinder is similar to controlling the ignition timing in a petrol engine. It is therefore a key factor in controlling the power output, fuel consumption and exhaust emissions. There are several different ways of categorising diesel engines, as outlined in the following sections. Günter Mau categorises diesel engines by their rotational speeds into three groups: High-speed engines are used to power trucks (lorries), buses , tractors , cars , yachts , compressors , pumps and small electrical generators . As of 2018, most high-speed engines have direct injection . Many modern engines, particularly in on-highway applications, have common rail direct injection . On bigger ships, high-speed diesel engines are often used for powering electric generators. The highest power output of high-speed diesel engines
12960-532: Was a student at the "Polytechnikum" in Munich , attended the lectures of Carl von Linde . Linde explained that steam engines are capable of converting just 6–10% of the heat energy into work, but that the Carnot cycle allows conversion of much more of the heat energy into work by means of isothermal change in condition. According to Diesel, this ignited the idea of creating a highly efficient engine that could work on
13080-488: Was attacked and criticised over several years. Critics claimed that Diesel never invented a new motor and that the invention of the diesel engine is fraud. Otto Köhler and Emil Capitaine [ de ] were two of the most prominent critics of Diesel's time. Köhler had published an essay in 1887, in which he describes an engine similar to the engine Diesel describes in his 1893 essay. Köhler figured that such an engine could not perform any work. Emil Capitaine had built
13200-477: Was built in Augsburg . On 10 August 1893, the first ignition took place, the fuel used was petrol. In winter 1893/1894, Diesel redesigned the existing engine, and by 18 January 1894, his mechanics had converted it into the second prototype. During January that year, an air-blast injection system was added to the engine's cylinder head and tested. Friedrich Sass argues that, it can be presumed that Diesel copied
13320-627: Was demonstrated and published in 1921 and 1928. Advances in the design of electric motors and internal combustion engines resulted in the gradual replacement of steam engines in commercial usage. Steam turbines replaced reciprocating engines in power generation, due to lower cost, higher operating speed, and higher efficiency. Note that small scale steam turbines are much less efficient than large ones. As of 2023 , large reciprocating piston steam engines are still being manufactured in Germany. As noted, one recorded rudimentary steam-powered engine
13440-546: Was developed by Trevithick and others in the 1810s. It was a compound cycle engine that used high-pressure steam expansively, then condensed the low-pressure steam, making it relatively efficient. The Cornish engine had irregular motion and torque through the cycle, limiting it mainly to pumping. Cornish engines were used in mines and for water supply until the late 19th century. Early builders of stationary steam engines considered that horizontal cylinders would be subject to excessive wear. Their engines were therefore arranged with
13560-450: Was either automatic, using a governor, or by a manual valve. The cylinder casting contained steam supply and exhaust ports. Engines equipped with a condenser are a separate type than those that exhaust to the atmosphere. Other components are often present; pumps (such as an injector ) to supply water to the boiler during operation, condensers to recirculate the water and recover the latent heat of vaporisation, and superheaters to raise
13680-531: Was entered in and won the Rainhill Trials . The Liverpool and Manchester Railway opened in 1830 making exclusive use of steam power for both passenger and freight trains. Steam locomotives continued to be manufactured until the late twentieth century in places such as China and the former East Germany (where the DR Class 52.80 was produced). The final major evolution of the steam engine design
13800-411: Was improved over time and coupled with variable steam cut off, good speed control in response to changes in load was attainable near the end of the 19th century. In a simple engine, or "single expansion engine" the charge of steam passes through the entire expansion process in an individual cylinder, although a simple engine may have one or more individual cylinders. It is then exhausted directly into
13920-479: Was not until after Richard Trevithick had developed the use of high-pressure steam, around 1800, that mobile steam engines became a practical proposition. The first half of the 19th century saw great progress in steam vehicle design, and by the 1850s it was becoming viable to produce them on a commercial basis. This progress was dampened by legislation which limited or prohibited the use of steam-powered vehicles on roads. Improvements in vehicle technology continued from
14040-496: Was routinely used by engineers, mechanics and insurance inspectors. The engine indicator can also be used on internal combustion engines. See image of indicator diagram below (in Types of motor units section). The centrifugal governor was adopted by James Watt for use on a steam engine in 1788 after Watt's partner Boulton saw one on the equipment of a flour mill Boulton & Watt were building. The governor could not actually hold
14160-763: Was the aeolipile described by Hero of Alexandria , a Hellenistic mathematician and engineer in Roman Egypt during the first century AD. In the following centuries, the few steam-powered engines known were, like the aeolipile, essentially experimental devices used by inventors to demonstrate the properties of steam. A rudimentary steam turbine device was described by Taqi al-Din in Ottoman Egypt in 1551 and by Giovanni Branca in Italy in 1629. The Spanish inventor Jerónimo de Ayanz y Beaumont received patents in 1606 for 50 steam-powered inventions, including
14280-424: Was the main test of Diesel's engine. The engine was rated 13.1 kW with a specific fuel consumption of 324 g·kW ·h , resulting in an effective efficiency of 26.2%. By 1898, Diesel had become a millionaire. The characteristics of a diesel engine are The diesel internal combustion engine differs from the gasoline powered Otto cycle by using highly compressed hot air to ignite the fuel rather than using
14400-438: Was the use of steam turbines starting in the late part of the 19th century. Steam turbines are generally more efficient than reciprocating piston type steam engines (for outputs above several hundred horsepower), have fewer moving parts, and provide rotary power directly instead of through a connecting rod system or similar means. Steam turbines virtually replaced reciprocating engines in electricity generating stations early in
#325674