Misplaced Pages

BRITE

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

BRITE-Constellation is an ongoing space mission carrying out two-band photometry in wide fields with a constellation of six (presently, three operational) BRIght Target Explorer (BRITE) nanosatellites . The mission was built by a consortium of three countries, Canada, Austria, and Poland, each operating two BRITE satellites. The six satellites were launched into low-Earth orbits between February 2013 and August 2014. Each satellite is a cube-shaped spacecraft with sides of 20 centimetres (7.9 in) hosting an optical telescope of 3 centimetres (1.2 in) aperture feeding an uncooled CCD with a field of view of approximately 20° × 24°. The satellites were intended for photometry of the brightest stars in single passband located in the blue (three satellites) or red (the other three satellites) part of the optical range.

#433566

40-410: The idea of using microsatellite for scientific observations, especially for photometry of bright stars, was born during discussions on possible designs for Canada's first scientific satellite. Discussions led by Kieran Carroll and Slawek Rucinski ( University of Toronto ) led to three concepts, including a wide-field imager for photometric measurements. A design concept for an astronomical nano-satellite

80-435: A formation . The generic term "small satellite" or "smallsat" is also sometimes used, as is "satlet". Examples: Astrid-1 and Astrid-2, as well as the set of satellites currently announced for LauncherOne (below) In 2018, the two Mars Cube One microsats—massing just 13.5 kg (30 lb) each—became the first CubeSats to leave Earth orbit for use in interplanetary space. They flew on their way to Mars alongside

120-464: A 10 kg (22 lb) payload into a 250 km (160 mi) orbit to an even-more-capable clustered "20/450 Nano/Micro Satellite Launch Vehicle" (NMSLV) capable of delivering 20 kg (44 lb) payloads into 450 km (280 mi) circular orbits . The Boeing Small Launch Vehicle is an air-launched three-stage-to-orbit launch vehicle concept aimed to launch small payloads of 45 kg (100 lb) into low Earth orbit. The program

160-435: A larger "mother" satellite for communication with ground controllers or for launching and docking with picosatellites. Picosatellites are emerging as a new alternative for do-it-yourself kitbuilders. Picosatellites are currently commercially available across the full range of 0.1–1 kg (0.22–2.2 lb). Launch opportunities are now available for $ 12,000 to $ 18,000 for sub-1 kg picosat payloads that are approximately

200-425: A market value estimated at US$ 7.4 billion . By mid-2015, many more launch options had become available for smallsats, and rides as secondary payloads had become both greater in quantity and easier to schedule on shorter notice. In a surprising turn of events, the U.S. Department of Defense , which had for decades procured heavy satellites on decade-long procurement cycles, is making a transition to smallsats in

240-433: A mass of no more than 1.33 kilograms (2.9 lb) per unit. The CubeSat concept was first developed in 1999 by a collaborative team of California Polytechnic State University and Stanford University , and the specifications, for use by anyone planning to launch a CubeSat-style nanosatellite, are maintained by this group. With continued advances in the miniaturization and capability increase of electronic technology and

280-474: A number of companies began development of launch vehicles specifically targeted at the smallsat market. In particular, with larger numbers of smallsats flying, the secondary payload paradigm does not provide the specificity required for many small satellites that have unique orbital and launch-timing requirements. Some USA-based private companies that at some point in time have launched smallsat launch vehicles commercially: The term "microsatellite" or "microsat"

320-626: A program for improving the infrastructure of Austrian Universities was established by the Austrian Ministry of Science and Technology, to which the University of Vienna submitted a proposal for UniBRITE (PI: Werner W. Weiss), which was accepted in October 2005 and UniBRITE was ordered at SFL. Following an initiative by Slavek Rucinski, Aleksander Schwarzenberg-Czerny ( CAMK ) was able to obtain funding for two Polish BRITE satellites at

360-512: A year later, in May 2020, BRITE-Lem started to suffer from similar problems and observations with this satellite, also after more than six years in orbit, were suspended. Currently, the three remaining satellites, BRITE-Austria, BRITE-Toronto and BRITE-Heweliusz, are still active. Regardless of their status, observations with the BRITE satellites, and thus the entire mission, are expected to be completed by

400-681: Is designed to form a quantum communication network as well as communicate with Earth through an optical ground station. The term "small satellite", or sometimes "minisatellite", often refers to an artificial satellite with a wet mass (including fuel) between 100 and 500 kg (220 and 1,100 lb), but in other usage has come to mean any satellite under 500 kg (1,100 lb). Small satellite examples include Demeter , Essaim , Parasol , Picard , MICROSCOPE , TARANIS , ELISA , SSOT , SMART-1 , Spirale-A and -B , and Starlink satellites. Although smallsats have traditionally been launched as secondary payloads on larger launch vehicles,

440-517: Is proposed to drive down launch costs for U.S. military small satellites to as low as US$ 300,000 per launch ($ 7,000/kg) and, if the development program was funded, as of 2012 could be operational by 2020. The Swiss company Swiss Space Systems (S3) has announced plans in 2013 to develop a suborbital spaceplane named SOAR that would launch a microsat launch vehicle capable of putting a payload of up to 250 kg (550 lb) into low Earth orbit. The Spanish company PLD Space born in 2011 with

SECTION 10

#1732793625434

480-695: Is the opportunity to enable missions that a larger satellite could not accomplish, such as: The nanosatellite and microsatellite segments of the satellite launch industry have been growing rapidly in the 2010s. Development activity in the 1–50 kg (2.2–110.2 lb) range has been significantly exceeding that in the 50–100 kg (110–220 lb) range. In the 1–50 kg range alone, fewer than 15 satellites were launched annually in 2000 to 2005, 34 in 2006, then fewer than 30 launches annually during 2007 to 2011. This rose to 34 launched in 2012 and 92 launched in 2013. European analyst Euroconsult projects more than 500 smallsats being launched in 2015–2019 with

520-478: Is to reduce the cost; heavier satellites require larger rockets with greater thrust that also have greater cost to finance. In contrast, smaller and lighter satellites require smaller and cheaper launch vehicles and can sometimes be launched in multiples. They can also be launched 'piggyback', using excess capacity on larger launch vehicles. Miniaturized satellites allow for cheaper designs and ease of mass production. Another major reason for developing small satellites

560-422: Is usually applied to the name of an artificial satellite with a wet mass between 10 and 100 kg (22 and 220 lb). However, this is not an official convention and sometimes those terms can refer to satellites larger than that, or smaller than that (e.g., 1–50 kg (2.2–110.2 lb)). Sometimes, designs or proposed designs from some satellites of these types have microsatellites working together or in

600-486: The PicoSAT series of microsatellites) is usually applied to artificial satellites with a wet mass between 0.1 and 1 kg (0.22 and 2.2 lb), although it is sometimes used to refer to any satellite that is under 1 kg in launch mass. Again, designs and proposed designs of these types usually have multiple picosatellites working together or in formation (sometimes the term "swarm" is applied). Some designs require

640-606: The 2020s. The office of space acquisition and integration said in January 2023 that "the era of massive satellites needs to be in the rear view mirror for the Department of Defense" with small satellites being procured for DoD needs in all orbital regimes, regardless of "whether it's LEO MEO or GEO " while aiming for procurements in under three years. The smaller satellites are deemed to be harder for an enemy to target, as well as providing more resilience through redundancy in

680-528: The DARPA SeeMe program that intended to release a " constellation of 24 micro-satellites (~20 kg (44 lb) range) each with 1-m imaging resolution ." The program was cancelled in December 2015. In April 2013, Garvey Spacecraft was awarded a US$ 200,000 contract to evolve their Prospector 18 suborbital launch vehicle technology into an orbital nanosat launch vehicle capable of delivering

720-457: The ISS external platform Materials International Space Station Experiment (MISSE-8) for testing. In April 2014, the nanosatellite KickSat was launched aboard a Falcon 9 rocket with the intention of releasing 104 femtosatellite-sized chipsats, or "Sprites". In the event, they were unable to complete the deployment on time due to a failure of an onboard clock and the deployment mechanism reentered

760-927: The atmosphere and burned up. Small satellites usually require innovative propulsion, attitude control , communication and computation systems. Larger satellites usually use monopropellants or bipropellant combustion systems for propulsion and attitude control; these systems are complex and require a minimal amount of volume to surface area to dissipate heat. These systems may be used on larger small satellites, while other micro/nanosats have to use electric propulsion, compressed gas, vaporizable liquids such as butane or carbon dioxide or other innovative propulsion systems that are simple, cheap and scalable. Small satellites can use conventional radio systems in UHF, VHF, S-band and X-band, although often miniaturized using more up-to-date technology as compared to larger satellites. Tiny satellites such as nanosats and small microsats may lack

800-608: The atmosphere on 14 May 2014, without having deployed any of the 5-gram femtosats. ThumbSat is another project intending to launch femtosatellites in the late 2010s. ThumbSat announced a launch agreement with CubeCat in 2017 to launch up to 1000 of the very small satellites. In March 2019, the CubeSat KickSat-2 deployed 105 femtosats called "ChipSats" into Earth orbit. Each of the ChipSats weighed 4 grams. The satellites were tested for 3 days, and they then reentered

840-683: The design of LauncherOne". Virgin Orbit has been working on the LauncherOne concept since late 2008, and as of 2015 , is making it a larger part of Virgin's core business plan as the Virgin human spaceflight program has experienced multiple delays and a fatal accident in 2014. In December 2012, DARPA announced that the Airborne Launch Assist Space Access program would provide the microsatellite rocket booster for

SECTION 20

#1732793625434

880-670: The design of a large distributed network of satellite assets . In 2021, the first autonomous nanosatellites , part of the Adelis-SAMSON mission, designed and developed by the Technion and Rafael in Israel were launched into space. In 2023, SpaceX launched a 20cm quantum communication nano satellite developed by the Tel Aviv University , it is the world's first quantum communication satellite. TAU's nanosatellite

920-428: The emergence of the technological advances of miniaturization and increased capital to support private spaceflight initiatives in the 2010s, several startups have been formed to pursue opportunities with developing a variety of small-payload Nanosatellite Launch Vehicle (NLV) technologies. NLVs proposed or under development include: Actual NS launches: The term "picosatellite" or "picosat" (not to be confused with

960-669: The end of 2009. Following that, the Canadian Space Agency (CSA) finally funded BRITE-Toronto and BRITE-Montréal (PI: Anthony Moffat , University of Montréal ) in 2011. Hence, BRITE-Constellation was born as a collaboration between Austria, Canada and Poland. The six BRITE nanosatellites were lifted into low-Earth orbits in four independent launches carried out by three space agencies: Indian Space Research Organisation (two Austrian satellites), Roscosmos (two Canadian satellites and Polish BRITE-Lem), and China National Space Administration (Polish BRITE-Heweliusz). Details of

1000-434: The end of 2024. BRITE satellites are made up of the following subsystems: Small satellite#Microsatellites A small satellite , miniaturized satellite , or smallsat is a satellite of low mass and size, usually under 1,200 kg (2,600 lb). While all such satellites can be referred to as "small", different classifications are used to categorize them based on mass . Satellites can be built small to reduce

1040-462: The large economic cost of launch vehicles and the costs associated with construction. Miniature satellites, especially in large numbers, may be more useful than fewer, larger ones for some purposes – for example, gathering of scientific data and radio relay . Technical challenges in the construction of small satellites may include the lack of sufficient power storage or of room for a propulsion system . One rationale for miniaturizing satellites

1080-530: The launches are summarised in the table below. Canadian BRITE-Montréal failed to detach from the launcher for unknown reasons and was lost. The other five satellites successfully passed the commissioning phase and began regular observations. The nominal lifetime of the BRITE satellites was foreseen to be two years. Due to problems with the attitude control system (ACS), observations with UniBRITE were suspended in August 2019, more than six years after its launch. About

1120-482: The objective of developing low cost launch vehicles called Miura 1 and Miura 5 with the capacity to place up to 150 kg (330 lb) into orbit. The term "nanosatellite" or "nanosat" is applied to an artificial satellite with a wet mass between 1 and 10 kg (2.2 and 22.0 lb). Designs and proposed designs of these types may be launched individually, or they may have multiple nanosatellites working together or in formation, in which case, sometimes

1160-803: The opportunity to test new hardware with reduced expense in testing. Furthermore, since the overall cost risk in the mission is much lower, more up-to-date but less space-proven technology can be incorporated into micro and nanosats than can be used in much larger, more expensive missions with less appetite for risk. Small satellites are difficult to track with ground-based radar, so it is difficult to predict if they will collide with other satellites or human-occupied spacecraft. The U.S. Federal Communications Commission has rejected at least one small satellite launch request on these safety grounds. Radio relay Radio stations that cannot communicate directly due to distance, terrain or other difficulties sometimes use an intermediate radio relay station to relay

1200-514: The power supply or mass for large conventional radio transponders , and various miniaturized or innovative communications systems have been proposed, such as laser receivers, antenna arrays and satellite-to-satellite communication networks. Few of these have been demonstrated in practice. Electronics need to be rigorously tested and modified to be "space hardened" or resistant to the outer space environment (vacuum, microgravity, thermal extremes, and radiation exposure). Miniaturized satellites allow for

1240-934: The same mission cost, with significantly increased revisit times: every area of the globe can be imaged every 3.5 hours rather than the once per 24 hours with the RapidEye constellation. More rapid revisit times are a significant improvement for nations performing disaster response, which was the purpose of the RapidEye constellation. Additionally, the nanosat option would allow more nations to own their own satellite for off-peak (non-disaster) imaging data collection. As costs lower and production times shorten, nanosatellites are becoming increasingly feasible ventures for companies. Example nanosatellites: ExoCube (CP-10) , ArduSat , SPROUT Nanosatellite developers and manufacturers include EnduroSat , GomSpace , NanoAvionics , NanoSpace, Spire , Surrey Satellite Technology , NovaWurks , Dauria Aerospace , Planet Labs and Reaktor . In

BRITE - Misplaced Pages Continue

1280-690: The secondary payload paradigm does not provide the specificity required for many increasingly sophisticated small satellites that have unique orbital and launch-timing requirements. In July 2012, Virgin Orbit announced LauncherOne , an orbital launch vehicle designed to launch "smallsat" primary payloads of 100 kg (220 lb) into low Earth orbit , with launches projected to begin in 2016. Several commercial customers have already contracted for launches, including GeoOptics , Skybox Imaging , Spaceflight Industries , and Planetary Resources . Both Surrey Satellite Technology and Sierra Nevada Space Systems are developing satellite buses "optimized to

1320-400: The signals. A radio relay receives weak signals and retransmits them, often in a different direction, as a stronger signal. Examples include airborne radio relay , microwave radio relay , and communications satellite . The American Radio Relay League was founded for this purpose but did not change its name when this became a less important part of its work. This article related to radio

1360-482: The size of a soda can. The term "femtosatellite" or "femtosat" is usually applied to artificial satellites with a wet mass below 100 g (3.5 oz). Like picosatellites, some designs require a larger "mother" satellite for communication with ground controllers. Three prototype "chip satellites" were launched to the ISS on Space Shuttle Endeavour on its final mission in May 2011. They were attached to

1400-613: The successful Mars InSight lander mission. The two microsats accomplished a flyby of Mars in November 2018, and both continued communicating with ground stations on Earth through late December. Both went silent by early January 2019. A number of commercial and military-contractor companies are currently developing microsatellite launch vehicles to perform the increasingly targeted launch requirements of microsatellites. While microsatellites have been carried to space for many years as secondary payloads aboard larger launchers ,

1440-564: The ten years of nanosat launches prior to 2014, only 75 nanosats were launched. Launch rates picked up substantially when in the three-month period from November 2013–January 2014 94 nanosats were launched. One challenge of using nanosats has been the economic delivery of such small satellites to anywhere beyond low Earth orbit . By late 2014, proposals were being developed for larger spacecraft specifically designed to deliver swarms of nanosats to trajectories that are beyond Earth orbit for applications such as exploring distant asteroids. With

1480-417: The term "satellite swarm" or " fractionated spacecraft " may be applied. Some designs require a larger "mother" satellite for communication with ground controllers or for launching and docking with nanosatellites. Over 2300 nanosatellites have been launched as of December 2023. A CubeSat is a common type of nanosatellite, built in cube form based on multiples of 10 cm × 10 cm × 10 cm, with

1520-414: The use of satellite constellations , nanosatellites are increasingly capable of performing commercial missions that previously required microsatellites. For example, a 6U CubeSat standard has been proposed to enable a satellite constellation of thirty five 8 kg (18 lb) Earth-imaging satellites to replace a constellation of five 156 kg (344 lb) RapidEye Earth-imaging satellites, at

1560-536: Was developed in 2002 by the Institute for Aerospace Studies at the University of Toronto under the Canadian Advanced Nanospace eXperiment Program as Can X-3 in cooperation with a team of Canadian astronomers, headed by Slavek Rucinski, as a first fully three-axis stabilized satellite of 20 cm × 20 cm × 20 cm size. In September 2004, a workshop on nano-satellites for astronomy

1600-697: Was organized in Vienna in cooperation with the Austrian Space Agency (ASA, now Aeronautics and Space Agency of the FFG ). A proposal from the Institute of Communication Networks and Satellite Communications of the Graz University of Technology , led by Otto Koudelka, for funding of BRITE-Austria (TUGSat-1) was accepted by ASA in 2006 and was built at TUG in cooperation with SFL. In March 2005

#433566