Misplaced Pages

Bay

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A bay is a recessed, coastal body of water that directly connects to a larger main body of water, such as an ocean , a lake , or another bay. A large bay is usually called a gulf , sea , sound , or bight . A cove is a small, circular bay with a narrow entrance. A fjord is an elongated bay formed by glacial action. The term embayment is also used for related features , such as extinct bays or freshwater environments.

#878121

103-605: A bay can be the estuary of a river, such as the Chesapeake Bay , an estuary of the Susquehanna River . Bays may also be nested within each other; for example, James Bay is an arm of Hudson Bay in northeastern Canada . Some large bays, such as the Bay of Bengal and Hudson Bay, have varied marine geology . The land surrounding a bay often reduces the strength of winds and blocks waves . Bays may have as wide

206-400: A considerable depth. Another cause of gully erosion is grazing, which often results in ground compaction. Because the soil is exposed, it loses the ability to absorb excess water, and erosion can develop in susceptible areas. Valley or stream erosion occurs with continued water flow along a linear feature. The erosion is both downward , deepening the valley, and headward , extending

309-421: A free connection to the open sea . Estuaries form a transition zone between river environments and maritime environments and are an example of an ecotone . Estuaries are subject both to marine influences such as tides , waves , and the influx of saline water , and to fluvial influences such as flows of freshwater and sediment. The mixing of seawater and freshwater provides high levels of nutrients both in

412-573: A harsh environment for organisms. Sediment often settles in intertidal mudflats which are extremely difficult to colonize. No points of attachment exist for algae , so vegetation based habitat is not established. Sediment can also clog feeding and respiratory structures of species, and special adaptations exist within mudflat species to cope with this problem. Lastly, dissolved oxygen variation can cause problems for life forms. Nutrient-rich sediment from human-made sources can promote primary production life cycles, perhaps leading to eventual decay removing

515-452: A larger amount of surface runoff than less compacted soils. Vegetation acts as an interface between the atmosphere and the soil . It increases the permeability of the soil to rainwater , thus decreasing runoff. It shelters the soil from winds , which results in decreased wind erosion , as well as advantageous changes in microclimate . The roots of the plants bind the soil together, and interweave with other roots, forming

618-499: A more solid mass that is less susceptible to both water and wind erosion . The removal of vegetation increases the rate of surface erosion . The topography of the land determines the velocity at which surface runoff will flow, which in turn determines the erosivity of the runoff. Longer, steeper slopes (especially those without adequate vegetative cover) are more susceptible to very high rates of erosion during heavy rains than shorter, less steep slopes. Steeper terrain

721-566: A more vigorous hydrological cycle, including more extreme rainfall events. The rise in sea levels that has occurred as a result of climate change has also greatly increased coastal erosion rates. Studies on soil erosion suggest that increased rainfall amounts and intensities will lead to greater rates of soil erosion. Thus, if rainfall amounts and intensities increase in many parts of the world as expected, erosion will also increase, unless amelioration measures are taken. Soil erosion rates are expected to change in response to changes in climate for

824-529: A number of coastal water bodies such as coastal lagoons and brackish seas. A more comprehensive definition of an estuary is "a semi-enclosed body of water connected to the sea as far as the tidal limit or the salt intrusion limit and receiving freshwater runoff; however the freshwater inflow may not be perennial, the connection to the sea may be closed for part of the year and tidal influence may be negligible". This broad definition also includes fjords , lagoons , river mouths , and tidal creeks . An estuary

927-517: A soil structure that is more susceptible to erosion and increased runoff due to increased soil surface sealing and crusting; e) a shift of winter precipitation from non-erosive snow to erosive rainfall due to increasing winter temperatures; f) melting of permafrost, which induces an erodible soil state from a previously non-erodible one; and g) shifts in land use made necessary to accommodate new climatic regimes. Studies by Pruski and Nearing indicated that, other factors such as land use unconsidered, it

1030-428: A spoon-shaped isostatic depression , in which the material has begun to slide downhill. In some cases, the slump is caused by water beneath the slope weakening it. In many cases it is simply the result of poor engineering along highways where it is a regular occurrence. Surface creep is the slow movement of soil and rock debris by gravity which is usually not perceptible except through extended observation. However,

1133-408: A type of ecosystem in some estuaries that have been negatively impacted by eutrophication. Cordgrass vegetation dominates the salt marsh landscape. Excess nutrients allow the plants to grow at greater rates in above ground biomass, however less energy is allocated to the roots since nutrients is abundant. This leads to a lower biomass in the vegetation below ground which destabilizes the banks of

SECTION 10

#1732757734879

1236-677: A variety of reasons. The most direct is the change in the erosive power of rainfall. Other reasons include: a) changes in plant canopy caused by shifts in plant biomass production associated with moisture regime; b) changes in litter cover on the ground caused by changes in both plant residue decomposition rates driven by temperature and moisture dependent soil microbial activity as well as plant biomass production rates; c) changes in soil moisture due to shifting precipitation regimes and evapo-transpiration rates, which changes infiltration and runoff ratios; d) soil erodibility changes due to decrease in soil organic matter concentrations in soils that lead to

1339-496: A variety of shoreline characteristics as other shorelines. In some cases, bays have beaches , which "are usually characterized by a steep upper foreshore with a broad, flat fronting terrace". Bays were significant in the history of human settlement because they provided easy access to marine resources like fisheries . Later they were important in the development of sea trade as the safe anchorage they provide encouraged their selection as ports . The United Nations Convention on

1442-563: A well-mixed water column and the disappearance of the vertical salinity gradient . The freshwater-seawater boundary is eliminated due to the intense turbulent mixing and eddy effects . The lower reaches of Delaware Bay and the Raritan River in New Jersey are examples of vertically homogeneous estuaries. Inverse estuaries occur in dry climates where evaporation greatly exceeds the inflow of freshwater. A salinity maximum zone

1545-436: A wholly marine embayment to any of the other estuary types. The most important variable characteristics of estuary water are the concentration of dissolved oxygen, salinity and sediment load. There is extreme spatial variability in salinity, with a range of near-zero at the tidal limit of tributary rivers to 3.4% at the estuary mouth. At any one point, the salinity will vary considerably over time and seasons, making it

1648-477: A wide effect on the surrounding water bodies.  In turn, this can decrease fishing industry sales in one area and across the country. Production in 2016 from recreational and commercial fishing contributes billions of dollars to the United States' gross domestic product (GDP). A decrease in production within this industry can affect any of the 1.7 million people the fishing industry employs yearly across

1751-455: Is a dynamic ecosystem having a connection to the open sea through which the sea water enters with the rhythm of the tides . The effects of tides on estuaries can show nonlinear effects on the movement of water which can have important impacts on the ecosystem and waterflow. The seawater entering the estuary is diluted by the fresh water flowing from rivers and streams. The pattern of dilution varies between different estuaries and depends on

1854-532: Is also more prone to mudslides, landslides, and other forms of gravitational erosion processes. Unsustainable agricultural practices increase rates of erosion by one to two orders of magnitude over the natural rate and far exceed replacement by soil production. The tillage of agricultural lands, which breaks up soil into finer particles, is one of the primary factors. The problem has been exacerbated in modern times, due to mechanized agricultural equipment that allows for deep plowing , which severely increases

1957-606: Is an extensive global data collection effort produced the Global Rainfall Erosivity Database (GloREDa) which includes rainfall erosivity for 3,625 stations and covers 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on sophisticated geostatistical process. According to a new study published in Nature Communications, almost 36 billion tons of soil

2060-513: Is derived from the Latin word aestuarium meaning tidal inlet of the sea, which in itself is derived from the term aestus , meaning tide. There have been many definitions proposed to describe an estuary. The most widely accepted definition is: "a semi-enclosed coastal body of water, which has a free connection with the open sea, and within which seawater is measurably diluted with freshwater derived from land drainage". However, this definition excludes

2163-411: Is formed, and both riverine and oceanic water flow close to the surface towards this zone. This water is pushed downward and spreads along the bottom in both the seaward and landward direction. Examples of an inverse estuary are Spencer Gulf , South Australia, Saloum River and Casamance River , Senegal. Estuary type varies dramatically depending on freshwater input, and is capable of changing from

SECTION 20

#1732757734879

2266-566: Is less restricted, and there is a slow but steady exchange of water between the estuary and the ocean. Fjord-type estuaries can be found along the coasts of Alaska , the Puget Sound region of western Washington state , British Columbia , eastern Canada, Greenland , Iceland , New Zealand, and Norway. These estuaries are formed by subsidence or land cut off from the ocean by land movement associated with faulting , volcanoes , and landslides . Inundation from eustatic sea-level rise during

2369-521: Is lost every year because of drought , deforestation and climate change . In Africa , if current trends of soil degradation continue, the continent might be able to feed just 25% of its population by 2025, according to UNU 's Ghana-based Institute for Natural Resources in Africa. Recent modeling developments have quantified rainfall erosivity at global scale using high temporal resolution (<30 min) and high fidelity rainfall recordings. The results

2472-462: Is lost every year due to water, and deforestation and other changes in land use make the problem worse. The study investigates global soil erosion dynamics by means of high-resolution spatially distributed modelling (c. 250 × 250 m cell size). The geo-statistical approach allows, for the first time, the thorough incorporation into a global soil erosion model of land use and changes in land use, the extent, types, spatial distribution of global croplands and

2575-463: Is much more severe in arid areas and during times of drought. For example, in the Great Plains , it is estimated that soil loss due to wind erosion can be as much as 6100 times greater in drought years than in wet years. Mass movement is the downward and outward movement of rock and sediments on a sloped surface, mainly due to the force of gravity . Mass movement is an important part of

2678-514: Is naturally sparse. Wind erosion requires strong winds, particularly during times of drought when vegetation is sparse and soil is dry (and so is more erodible). Other climatic factors such as average temperature and temperature range may also affect erosion, via their effects on vegetation and soil properties. In general, given similar vegetation and ecosystems, areas with more precipitation (especially high-intensity rainfall), more wind, or more storms are expected to have more erosion. In some areas of

2781-403: Is of two primary varieties: deflation , where the wind picks up and carries away loose particles; and abrasion , where surfaces are worn down as they are struck by airborne particles carried by wind. Deflation is divided into three categories: (1) surface creep , where larger, heavier particles slide or roll along the ground; (2) saltation , where particles are lifted a short height into

2884-526: Is often referred to in general terms as a landslide . However, landslides can be classified in a much more detailed way that reflects the mechanisms responsible for the movement and the velocity at which the movement occurs. One of the visible topographical manifestations of a very slow form of such activity is a scree slope. Slumping happens on steep hillsides, occurring along distinct fracture zones, often within materials like clay that, once released, may move quite rapidly downhill. They will often show

2987-545: Is reasonable to expect approximately a 1.7% change in soil erosion for each 1% change in total precipitation under climate change. In recent studies, there are predicted increases of rainfall erosivity by 17% in the United States, by 18% in Europe, and globally 30 to 66% Due to the severity of its ecological effects, and the scale on which it is occurring, erosion constitutes one of the most significant global environmental problems we face today. Water and wind erosion are now

3090-529: Is reduced, and invertebrates are also unable to survive and reproduce. While the sedimentation event itself might be relatively short-lived, the ecological disruption caused by the mass die off often persists long into the future. One of the most serious and long-running water erosion problems worldwide is in the People's Republic of China , on the middle reaches of the Yellow River and the upper reaches of

3193-559: Is sometimes divided into water erosion, glacial erosion , snow erosion, wind (aeolian) erosion , zoogenic erosion and anthropogenic erosion such as tillage erosion . Soil erosion may be a slow process that continues relatively unnoticed, or it may occur at an alarming rate causing a serious loss of topsoil . The loss of soil from farmland may be reflected in reduced crop production potential, lower surface water quality and damaged drainage networks. Soil erosion could also cause sinkholes . Human activities have increased by 10–50 times

Bay - Misplaced Pages Continue

3296-607: Is the Colorado River Delta in Mexico, historically covered with marshlands and forests, but now essentially a salt flat. Soil erosion Soil erosion is the denudation or wearing away of the upper layer of soil . It is a form of soil degradation . This natural process is caused by the dynamic activity of erosive agents, that is, water , ice (glaciers), snow , air (wind), plants , and animals (including humans ). In accordance with these agents, erosion

3399-492: Is the Universal Soil Loss Equation (USLE). This was developed in the 1960s and 1970s. It estimates the average annual soil loss A on a plot-sized area as: where R is the rainfall erosivity factor , K is the soil erodibility factor , L and S are topographic factors representing length and slope, C is the cover and management factor and P is the support practices factor. Despite

3502-473: Is the wearing away of the banks of a stream or river . This is distinguished from changes on the bed of the watercourse, which is referred to as scour . Erosion and changes in the form of river banks may be measured by inserting metal rods into the bank and marking the position of the bank surface along the rods at different times. Thermal erosion is the result of melting and weakening permafrost due to moving water. It can occur both along rivers and at

3605-646: Is the whitefish species from the European Alps . Eutrophication reduced the oxygen levels in their habitats so greatly that whitefish eggs could not survive, causing local extinctions. However, some animals, such as carnivorous fish, tend to do well in nutrient-enriched environments and can benefit from eutrophication. This can be seen in populations of bass or pikes. Eutrophication can affect many marine habitats which can lead to economic consequences. The commercial fishing industry relies upon estuaries for approximately 68 percent of their catch by value because of

3708-483: Is the world's largest bay. Bays also form through coastal erosion by rivers and glaciers . A bay formed by a glacier is a fjord . Rias are created by rivers and are characterised by more gradual slopes. Deposits of softer rocks erode more rapidly, forming bays, while harder rocks erode less quickly, leaving headlands . Estuary An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with

3811-748: The Holocene Epoch has also contributed to the formation of these estuaries. There are only a small number of tectonically produced estuaries; one example is the San Francisco Bay , which was formed by the crustal movements of the San Andreas Fault system causing the inundation of the lower reaches of the Sacramento and San Joaquin rivers . In this type of estuary, river output greatly exceeds marine input and tidal effects have minor importance. Freshwater floats on top of

3914-547: The Mandovi estuary in Goa during the monsoon period. As tidal forcing increases, river output becomes less than the marine input. Here, current induced turbulence causes mixing of the whole water column such that salinity varies more longitudinally rather than vertically, leading to a moderately stratified condition. Examples include the Chesapeake Bay and Narragansett Bay . Tidal mixing forces exceed river output, resulting in

4017-640: The Mid-Atlantic coast, and Galveston Bay and Tampa Bay along the Gulf Coast . Bar-built estuaries are found in a place where the deposition of sediment has kept pace with rising sea levels so that the estuaries are shallow and separated from the sea by sand spits or barrier islands. They are relatively common in tropical and subtropical locations. These estuaries are semi-isolated from ocean waters by barrier beaches ( barrier islands and barrier spits ). Formation of barrier beaches partially encloses

4120-734: The Severn Estuary in the United Kingdom and the Ems Dollard along the Dutch-German border. The width-to-depth ratio of these estuaries is typically large, appearing wedge-shaped (in cross-section) in the inner part and broadening and deepening seaward. Water depths rarely exceed 30 m (100 ft). Examples of this type of estuary in the U.S. are the Hudson River , Chesapeake Bay , and Delaware Bay along

4223-751: The Yangtze River . From the Yellow River , over 1.6 billion tons of sediment flows into the ocean each year. The sediment originates primarily from water erosion in the Loess Plateau region of the northwest. Soil particles picked up during wind erosion of soil are a major source of air pollution , in the form of airborne particulates —"dust". These airborne soil particles are often contaminated with toxic chemicals such as pesticides or petroleum fuels, posing ecological and public health hazards when they later land, or are inhaled/ingested. Dust from erosion acts to suppress rainfall and changes

Bay - Misplaced Pages Continue

4326-478: The black-tailed godwit , rely on estuaries. Two of the main challenges of estuarine life are the variability in salinity and sedimentation . Many species of fish and invertebrates have various methods to control or conform to the shifts in salt concentrations and are termed osmoconformers and osmoregulators . Many animals also burrow to avoid predation and to live in a more stable sedimental environment. However, large numbers of bacteria are found within

4429-756: The causes of soil erosion , make predictions of erosion under a range of possible conditions , and plan the implementation of preventative and restorative strategies for erosion . However, the complexity of erosion processes and the number of scientific disciplines that must be considered to understand and model them (e.g. climatology, hydrology, geology, soil science, agriculture, chemistry, physics, etc.) makes accurate modelling challenging. Erosion models are also non-linear, which makes them difficult to work with numerically, and makes it difficult or impossible to scale up to making predictions about large areas from data collected by sampling smaller plots. The most commonly used model for predicting soil loss from water erosion

4532-501: The impact of a falling raindrop creates a small crater in the soil, ejecting soil particles. The distance these soil particles travel can be as much as 0.6 m (two feet) vertically and 1.5 m (five feet) horizontally on level ground. If the soil is saturated , or if the rainfall rate is greater than the rate at which water can infiltrate into the soil, surface runoff occurs. If the runoff has sufficient flow energy , it will transport loosened soil particles ( sediment ) down

4635-555: The sky color from blue to white, which leads to an increase in red sunsets . Dust events have been linked to a decline in the health of coral reefs across the Caribbean and Florida, primarily since the 1970s. Similar dust plumes originate in the Gobi desert , which combined with pollutants, spread large distances downwind, or eastward, into North America. Monitoring and modeling of erosion processes can help people better understand

4738-400: The surface runoff which may result from rainfall, produces four main types of soil erosion: splash erosion , sheet erosion , rill erosion , and gully erosion . Splash erosion is generally seen as the first and least severe stage in the soil erosion process, which is followed by sheet erosion, then rill erosion and finally gully erosion (the most severe of the four). In splash erosion ,

4841-551: The 50 years since the introduction of the USLE, many other soil erosion models have been developed. But because of the complexity of soil erosion and its constituent processes, all erosion models can only roughly approximate actual erosion rates when validated i.e. when model predictions are compared with real-world measurements of erosion. Thus new soil erosion models continue to be developed. Some of these remain USLE-based, e.g.

4944-641: The G2 model. Other soil erosion models have largely (e.g. the Water Erosion Prediction Project model ) or wholly (e.g. RHEM, the Rangeland Hydrology and Erosion Model ) abandoned usage of USLE elements. Global studies continue to be based on the USLE. On a smaller scale (e.g. for individual channels , dams , or spillways ), there are erosion rate models available based on the critical shear stress of erosion as well as

5047-503: The Law of the Sea defines a bay as a well-marked indentation in the coastline, whose penetration is in such proportion to the width of its mouth as to contain land-locked waters and constitute more than a mere curvature of the coast. An indentation, however, shall not be regarded as a bay unless its area is as large as (or larger than) that of the semi-circle whose diameter is a line drawn across

5150-435: The USLE's plot-scale spatial basis, the model has often been used to estimate soil erosion on much larger areas, such as watersheds , continents , and globally. One major problem is that the USLE cannot simulate gully erosion, and so erosion from gullies is ignored in any USLE-based assessment of erosion. Yet erosion from gullies can be a substantial proportion (10–80%) of total erosion on cultivated and grazed land. During

5253-400: The United States. Estuaries are incredibly dynamic systems, where temperature, salinity, turbidity, depth and flow all change daily in response to the tides. This dynamism makes estuaries highly productive habitats, but also make it difficult for many species to survive year-round. As a result, estuaries large and small experience strong seasonal variation in their fish communities. In winter,

SECTION 50

#1732757734879

5356-513: The above definition of an estuary and could be fully saline. Many estuaries suffer degeneration from a variety of factors including soil erosion , deforestation , overgrazing , overfishing and the filling of wetlands. Eutrophication may lead to excessive nutrients from sewage and animal wastes; pollutants including heavy metals , polychlorinated biphenyls , radionuclides and hydrocarbons from sewage inputs; and diking or damming for flood control or water diversion. The word "estuary"

5459-476: The air, and bounce and saltate across the surface of the soil; and (3) suspension , where very small and light particles are lifted into the air by the wind, and are often carried for long distances. Saltation is responsible for the majority (50–70%) of wind erosion, followed by suspension (30–40%), and then surface creep (5–25%). Silty soils tend to be the most affected by wind erosion; silt particles are relatively easily detached and carried away. Wind erosion

5562-472: The amount of soil that is available for transport by water erosion. Others include monocropping , farming on steep slopes, pesticide and chemical fertilizer usage (which kill organisms that bind soil together), row-cropping, and the use of surface irrigation . A complex overall situation with respect to defining nutrient losses from soils, could arise as a result of the size selective nature of soil erosion events. Loss of total phosphorus , for instance, in

5665-452: The bottom where they are harmless. Historically the oysters filtered the estuary's entire water volume of excess nutrients every three or four days. Today that process takes almost a year, and sediment, nutrients, and algae can cause problems in local waters. Some major rivers that run through deserts historically had vast, expansive estuaries that have been reduced to a fraction of their former size, because of dams and diversions. One example

5768-515: The canopy. However, the intact forest floor, with its layers of leaf litter and organic matter, is still able to absorb the impact of the rainfall. Deforestation causes increased erosion rates due to exposure of mineral soil by removing the humus and litter layers from the soil surface, removing the vegetative cover that binds soil together, and causing heavy soil compaction from logging equipment. Once trees have been removed by fire or logging, infiltration rates become high and erosion low to

5871-402: The clay helps bind soil particles together. Soil containing high levels of organic materials are often more resistant to erosion, because the organic materials coagulate soil colloids and create a stronger, more stable soil structure. The amount of water present in the soil before the precipitation also plays an important role, because it sets limits on the amount of water that can be absorbed by

5974-526: The coast. Rapid river channel migration observed in the Lena River of Siberia is due to thermal erosion , as these portions of the banks are composed of permafrost-cemented non-cohesive materials. Much of this erosion occurs as the weakened banks fail in large slumps. Thermal erosion also affects the Arctic coast, where wave action and near-shore temperatures combine to undercut permafrost bluffs along

6077-557: The degree the forest floor remains intact. Severe fires can lead to significant further erosion if followed by heavy rainfall. Globally one of the largest contributors to erosive soil loss in the year 2006 is the slash and burn treatment of tropical forests . In a number of regions of the earth, entire sectors of a country have been rendered unproductive. For example, on the Madagascar high central plateau , comprising approximately ten percent of that country's land area, virtually

6180-409: The dissolved oxygen from the water; thus hypoxic or anoxic zones can develop. Nitrogen is often the lead cause of eutrophication in estuaries in temperate zones. During a eutrophication event, biogeochemical feedback decreases the amount of available silica . These feedbacks also increase the supply of nitrogen and phosphorus, creating conditions where harmful algal blooms can persist. Given

6283-415: The effects of different regional cropping systems. The loss of soil fertility due to erosion is further problematic because the response is often to apply chemical fertilizers, which leads to further water and soil pollution , rather than to allow the land to regenerate. Soil erosion (especially from agricultural activity) is considered to be the leading global cause of diffuse water pollution , due to

SECTION 60

#1732757734879

6386-401: The effects of modifying the estuarine circulation. Fjord -type estuaries are formed in deeply eroded valleys formed by glaciers . These U-shaped estuaries typically have steep sides, rock bottoms, and underwater sills contoured by glacial movement. The estuary is shallowest at its mouth, where terminal glacial moraines or rock bars form sills that restrict water flow. In the upper reaches of

6489-570: The effects of the excess sediments flowing into the world's waterways. The sediments themselves act as pollutants, as well as being carriers for other pollutants, such as attached pesticide molecules or heavy metals. The effect of increased sediments loads on aquatic ecosystems can be catastrophic. Silt can smother the spawning beds of fish, by filling in the space between gravel on the stream bed. It also reduces their food supply, and causes major respiratory issues for them as sediment enters their gills . The biodiversity of aquatic plant and algal life

6592-442: The entire landscape is sterile of vegetation , with gully erosive furrows typically in excess of 50 metres (160 ft) deep and 1 kilometre (0.6 miles) wide. Shifting cultivation is a farming system which sometimes incorporates the slash and burn method in some regions of the world. This degrades the soil and causes the soil to become less and less fertile. Human Impact has major effects on erosion processes—first by denuding

6695-549: The erosional process, and is often the first stage in the breakdown and transport of weathered materials in mountainous areas. It moves material from higher elevations to lower elevations where other eroding agents such as streams and glaciers can then pick up the material and move it to even lower elevations. Mass-movement processes are always occurring continuously on all slopes; some mass-movement processes act very slowly; others occur very suddenly, often with disastrous results. Any perceptible down-slope movement of rock or sediment

6798-601: The estuary impacted by human activities, and over time may shift the basic composition of the ecosystem, and the reversible or irreversible changes in the abiotic and biotic parts of the systems from the bottom up. For example, Chinese and Russian industrial pollution, such as phenols and heavy metals, has devastated fish stocks in the Amur River and damaged its estuary soil. Estuaries tend to be naturally eutrophic because land runoff discharges nutrients into estuaries. With human activities, land run-off also now includes

6901-424: The estuary, the depth can exceed 300 m (1,000 ft). The width-to-depth ratio is generally small. In estuaries with very shallow sills, tidal oscillations only affect the water down to the depth of the sill, and the waters deeper than that may remain stagnant for a very long time, so there is only an occasional exchange of the deep water of the estuary with the ocean. If the sill depth is deep, water circulation

7004-776: The estuary, with only narrow inlets allowing contact with the ocean waters. Bar-built estuaries typically develop on gently sloping plains located along tectonically stable edges of continents and marginal sea coasts. They are extensive along the Atlantic and Gulf coasts of the U.S. in areas with active coastal deposition of sediments and where tidal ranges are less than 4 m (13 ft). The barrier beaches that enclose bar-built estuaries have been developed in several ways: Fjords were formed where Pleistocene glaciers deepened and widened existing river valleys so that they become U-shaped in cross-sections. At their mouths there are typically rocks, bars or sills of glacial deposits , which have

7107-413: The farm. The amount and intensity of precipitation is the main climatic factor governing soil erosion by water. The relationship is particularly strong if heavy rainfall occurs at times when, or in locations where, the soil's surface is not well protected by vegetation . This might be during periods when agricultural activities leave the soil bare, or in semi-arid regions where vegetation

7210-433: The finer eroded fraction is greater relative to the whole soil. Extrapolating this evidence to predict subsequent behaviour within receiving aquatic systems, the reason is that this more easily transported material may support a lower solution P concentration compared to coarser sized fractions. Tillage also increases wind erosion rates, by dehydrating the soil and breaking it up into smaller particles that can be picked up by

7313-609: The fish community is dominated by hardy marine residents, and in summer a variety of marine and anadromous fishes move into and out of estuaries, capitalizing on their high productivity. Estuaries provide a critical habitat to a variety of species that rely on estuaries for life-cycle completion. Pacific Herring ( Clupea pallasii ) are known to lay their eggs in estuaries and bays, surfperch give birth in estuaries, juvenile flatfish and rockfish migrate to estuaries to rear, and anadromous salmonids and lampreys use estuaries as migration corridors. Also, migratory bird populations, such as

7416-582: The flood regions result from glacial Lake Missoula , which created the channeled scablands in the Columbia Basin region of eastern Washington . Wind erosion is a major geomorphological force, especially in arid and semi-arid regions. It is also a major source of land degradation, evaporation, desertification, harmful airborne dust, and crop damage—especially after being increased far above natural rates by human activities such as deforestation , urbanization , and agriculture . Wind erosion

7519-416: The forest floor. These two layers form a protective mat over the soil that absorbs the impact of rain drops. They are porous and highly permeable to rainfall, and allow rainwater to slow percolate into the soil below, instead of flowing over the surface as runoff . The roots of the trees and plants hold together soil particles, preventing them from being washed away. The vegetative cover acts to reduce

7622-400: The great biodiversity of this ecosystem. During an algal bloom , fishermen have noticed a significant increase in the quantity of fish. A sudden increase in primary productivity causes spikes in fish populations which leads to more oxygen being utilized. It is the continued deoxygenation of the water that then causes a decline in fish populations. These effects can begin in estuaries and have

7725-420: The impacts do not end there. Plant death alters the entire food web structure which can result in the death of animals within the afflicted biome . Estuaries are hotspots for biodiversity , containing a majority of commercial fish catch, making the impacts of eutrophication that much greater within estuaries. Some specific estuarine animals feel the effects of eutrophication more strongly than others. One example

7828-455: The land of vegetative cover, altering drainage patterns, and compacting the soil during construction; and next by covering the land in an impermeable layer of asphalt or concrete that increases the amount of surface runoff and increases surface wind speeds. Much of the sediment carried in runoff from urban areas (especially roads) is highly contaminated with fuel, oil, and other chemicals. This increased runoff, in addition to eroding and degrading

7931-410: The land that it flows over, also causes major disruption to surrounding watersheds by altering the volume and rate of water that flows through them, and filling them with chemically polluted sedimentation. The increased flow of water through local waterways also causes a large increase in the rate of bank erosion. The warmer atmospheric temperatures observed over the past decades are expected to lead to

8034-525: The many chemicals used as fertilizers in agriculture as well as waste from livestock and humans. Excess oxygen-depleting chemicals in the water can lead to hypoxia and the creation of dead zones . This can result in reductions in water quality, fish, and other animal populations. Overfishing also occurs. Chesapeake Bay once had a flourishing oyster population that has been almost wiped out by overfishing. Oysters filter these pollutants, and either eat them or shape them into small packets that are deposited on

8137-422: The marine environment, such as plastics , pesticides , furans , dioxins , phenols and heavy metals . Such toxins can accumulate in the tissues of many species of aquatic life in a process called bioaccumulation . They also accumulate in benthic environments, such as estuaries and bay muds : a geological record of human activities of the last century. The elemental composition of biofilm reflect areas of

8240-575: The marsh causing increased rates of erosion . A similar phenomenon occurs in mangrove swamps , which are another potential ecosystem in estuaries. An increase in nitrogen causes an increase in shoot growth and a decrease in root growth. Weaker root systems cause a mangrove tree to be less resilient in seasons of drought, which can lead to the death of the mangrove. This shift in above ground and below ground biomass caused by eutrophication could hindered plant success in these ecosystems. Across all biomes, eutrophication often results in plant death but

8343-455: The mouth of that indentation — otherwise it would be referred to as a bight . There are various ways in which bays can form. The largest bays have developed through plate tectonics . As the super-continent Pangaea broke up along curved and indented fault lines, the continents moved apart and left large bays; these include the Gulf of Guinea , the Gulf of Mexico , and the Bay of Bengal , which

8446-440: The now off-balance nitrogen cycle , estuaries can be driven to phosphorus limitation instead of nitrogen limitation. Estuaries can be severely impacted by an unbalanced phosphorus cycle, as phosphorus interacts with nitrogen and silica availability. With an abundance of nutrients in the ecosystem, plants and algae overgrow and eventually decompose, which produce a significant amount of carbon dioxide. While releasing CO 2 into

8549-409: The order of a few centimeters (about an inch) or less and along-channel slopes may be quite steep. This means that rills exhibit hydraulic physics very different from water flowing through the deeper wider channels of streams and rivers. Gully erosion occurs when runoff water accumulates and rapidly flows in narrow channels during or immediately after heavy rains or melting snow, removing soil to

8652-545: The rate at which erosion is occurring world-wide. Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes ) ecological collapse , both because of loss of the nutrient-rich upper soil layers . In some cases, the eventual result is desertification . Off-site effects include sedimentation of waterways and eutrophication of water bodies, as well as sediment-related damage to roads and houses. Water and wind erosion are

8755-427: The seawater in a layer that gradually thins as it moves seaward. The denser seawater moves landward along the bottom of the estuary, forming a wedge-shaped layer that is thinner as it approaches land. As a velocity difference develops between the two layers, shear forces generate internal waves at the interface, mixing the seawater upward with the freshwater. An examples of a salt wedge estuary is Mississippi River and

8858-411: The sediment which has a very high oxygen demand. This reduces the levels of oxygen within the sediment often resulting in partially anoxic conditions, which can be further exacerbated by limited water flow. Phytoplankton are key primary producers in estuaries. They move with the water bodies and can be flushed in and out with the tides . Their productivity is largely dependent upon the turbidity of

8961-502: The shoreline and cause them to fail. Annual erosion rates along a 100-kilometre (62-mile) segment of the Beaufort Sea shoreline averaged 5.6 metres (18 feet) per year from 1955 to 2002. At extremely high flows, kolks , or vortices are formed by large volumes of rapidly rushing water. Kolks cause extreme local erosion, plucking bedrock and creating pothole-type geographical features called rock-cut basins . Examples can be seen in

9064-416: The slope. Sheet erosion is the transport of loosened soil particles by overland flow. Rill erosion refers to the development of small, ephemeral concentrated flow paths which function as both sediment source and sediment delivery systems for erosion on hillslopes. Generally, where water erosion rates on disturbed upland areas are greatest, rills are active. Flow depths in rills are typically of

9167-405: The soil (and hence prevented from flowing on the surface as erosive runoff). Wet, saturated soils will not be able to absorb as much rainwater, leading to higher levels of surface runoff and thus higher erosivity for a given volume of rainfall. Soil compaction also affects the permeability of the soil to water, and hence the amount of water that flows away as runoff. More compacted soils will have

9270-430: The stream meanders across the valley floor. In all stages of stream erosion, by far the most erosion occurs during times of flood, when more and faster-moving water is available to carry a larger sediment load. In such processes, it is not the water alone that erodes: suspended abrasive particles, pebbles and boulders can also act erosively as they traverse a surface , in a process known as traction . Bank erosion

9373-436: The term can also describe the rolling of dislodged soil particles 0.5 to 1.0 mm (0.02 to 0.04 in) in diameter by wind along the soil surface. Tillage erosion is a form of soil erosion occurring in cultivated fields due to the movement of soil by tillage . There is growing evidence that tillage erosion is a major soil erosion process in agricultural lands, surpassing water and wind erosion in many fields all around

9476-464: The two primary causes of land degradation ; combined, they are responsible for 84% of degraded acreage. Each year, about 75 billion tons of soil is eroded from the land—a rate that is about 13–40 times as fast as the natural rate of erosion. Approximately 40% of the world's agricultural land is seriously degraded. According to the United Nations , an area of fertile soil the size of Ukraine

9579-575: The two primary causes of land degradation ; combined, they are responsible for about 84% of the global extent of degraded land, making excessive erosion one of the most significant environmental problems worldwide. Intensive agriculture , deforestation , roads , acid rains , anthropogenic climate change and urban sprawl are amongst the most significant human activities in regard to their effect on stimulating erosion. However, there are many prevention and remediation practices that can curtail or limit erosion of vulnerable soils. Rainfall , and

9682-489: The valley into the hillside, creating head cuts and steep banks. In the earliest stage of stream erosion, the erosive activity is dominantly vertical, the valleys have a typical V cross-section and the stream gradient is relatively steep. When some base level is reached, the erosive activity switches to lateral erosion, which widens the valley floor and creates a narrow floodplain. The stream gradient becomes nearly flat, and lateral deposition of sediments becomes important as

9785-407: The velocity of the raindrops that strike the foliage and stems before hitting the ground, reducing their kinetic energy . However it is the forest floor, more than the canopy, that prevents surface erosion. The terminal velocity of rain drops is reached in about 8 metres (26 feet). Because forest canopies are usually higher than this, rain drops can often regain terminal velocity even after striking

9888-456: The volume of freshwater, the tidal range, and the extent of evaporation of the water in the estuary. Drowned river valleys are also known as coastal plain estuaries. In places where the sea level is rising relative to the land, sea water progressively penetrates into river valleys and the topography of the estuary remains similar to that of a river valley. This is the most common type of estuary in temperate climates. Well-studied estuaries include

9991-453: The water and atmosphere, these organisms are also intaking all or nearly all of the available oxygen creating a hypoxic environment and unbalanced oxygen cycle . The excess carbon in the form of CO 2 can lead to low pH levels and ocean acidification , which is more harmful for vulnerable coastal regions like estuaries. Eutrophication has been seen to negatively impact many plant communities in estuarine ecosystems . Salt marshes are

10094-624: The water column and in sediment , making estuaries among the most productive natural habitats in the world. Most existing estuaries formed during the Holocene epoch with the flooding of river-eroded or glacially scoured valleys when the sea level began to rise about 10,000–12,000 years ago. Estuaries are typically classified according to their geomorphological features or to water-circulation patterns. They can have many different names, such as bays , harbors , lagoons , inlets , or sounds , although some of these water bodies do not strictly meet

10197-835: The water. The main phytoplankton present are diatoms and dinoflagellates which are abundant in the sediment. A primary source of food for many organisms on estuaries, including bacteria , is detritus from the settlement of the sedimentation. Of the thirty-two largest cities in the world in the early 1990s, twenty-two were located on estuaries. As ecosystems, estuaries are under threat from human activities such as pollution and overfishing . They are also threatened by sewage, coastal settlement, land clearance and much more. Estuaries are affected by events far upstream, and concentrate materials such as pollutants and sediments. Land run-off and industrial, agricultural, and domestic waste enter rivers and are discharged into estuaries. Contaminants can be introduced which do not disintegrate rapidly in

10300-416: The wind. Exacerbating this is the fact that most of the trees are generally removed from agricultural fields, allowing winds to have long, open runs to travel over at higher speeds. Heavy grazing reduces vegetative cover and causes severe soil compaction, both of which increase erosion rates. In an undisturbed forest , the mineral soil is protected by a layer of leaf litter and an humus that cover

10403-510: The world (e.g. western Europe ), runoff and erosion result from relatively low intensities of stratiform rainfall falling onto previously saturated soil. In such situations, rainfall amount rather than intensity is the main factor determining the severity of soil erosion by water. The composition, moisture, and compaction of soil are all major factors in determining the erosivity of rainfall. Sediments containing more clay tend to be more resistant to erosion than those with sand or silt, because

10506-631: The world (e.g. the Midwestern United States and the Amazon Rainforest ), rainfall intensity is the primary determinant of erosivity, with higher intensity rainfall generally resulting in more soil erosion by water. The size and velocity of rain drops is also an important factor. Larger and higher-velocity rain drops have greater kinetic energy , and thus their impact will displace soil particles by larger distances than smaller, slower-moving rain drops. In other regions of

10609-458: The world, especially on sloping and hilly lands A signature spatial pattern of soil erosion shown in many water erosion handbooks and pamphlets, the eroded hilltops, is actually caused by tillage erosion as water erosion mainly causes soil losses in the midslope and lowerslope segments of a slope, not the hilltops. Tillage erosion results in soil degradation, which can lead to significant reduction in crop yield and, therefore, economic losses for

#878121