Misplaced Pages

Badge

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A badge is a device or accessory, often containing the insignia of an organization , which is presented or displayed to indicate some feat of service, a special accomplishment, a symbol of authority granted by taking an oath (e.g., police and fire), a sign of legitimate employment or student status, or as a simple means of identification. They are also used in advertising, publicity, and for branding purposes.

#491508

62-559: Badges can be made from metal , plastic , leather , textile , rubber , etc., and they are commonly attached to clothing, bags, footwear , vehicles, home electrical equipment, etc. Textile badges or patches can be either woven or embroidered, and can be attached by gluing, ironing-on, sewing or applique. Badges have become highly collectable: in the UK , for example, the Badge Collectors' Circle has been in existence since 1980. In

124-580: A chemical element such as iron ; an alloy such as stainless steel ; or a molecular compound such as polymeric sulfur nitride . The general science of metals is called metallurgy , a subtopic of materials science ; aspects of the electronic and thermal properties are also within the scope of condensed matter physics and solid-state chemistry , it is a multidisciplinary topic. In colloquial use materials such as steel alloys are referred to as metals, while others such as polymers, wood or ceramics are nonmetallic materials . A metal conducts electricity at

186-578: A plasma (physics) is a metallic conductor and the charged particles in a plasma have many properties in common with those of electrons in elemental metals, particularly for white dwarf stars. Metals are relatively good conductors of heat , which in metals is transported mainly by the conduction electrons. At higher temperatures the electrons can occupy slightly higher energy levels given by Fermi–Dirac statistics . These have slightly higher momenta ( kinetic energy ) and can pass on thermal energy. The empirical Wiedemann–Franz law states that in many metals

248-435: A semiconducting metalloid such as boron has an electrical conductivity 1.5 × 10 S/cm. With one exception, metallic elements reduce their electrical conductivity when heated. Plutonium increases its electrical conductivity when heated in the temperature range of around −175 to +125 °C, with anomalously large thermal expansion coefficient and a phase change from monoclinic to face-centered cubic near 100  °C. There

310-454: A base metal as it is oxidized relatively easily, although it does not react with HCl. The term noble metal (also for elements) is commonly used in opposition to base metal . Noble metals are less reactive, resistant to corrosion or oxidation , unlike most base metals . They tend to be precious metals, often due to perceived rarity. Examples include gold, platinum, silver, rhodium , iridium, and palladium. In alchemy and numismatics ,

372-493: A chain around the neck. Shapes are manifold, with municipal police departments tending to have some variation of a shield shape, and sheriff's departments usually going with a 5, 6, or 7 point star shape. In most cases, an enameled seal of the organization, city, county, or company can be found in the center of the badge. In computing , badges are used to demonstrate skills. In education, digital badges are used as alternative forms of credentials, similar to those being used in

434-690: A few micrometres appear opaque, but gold leaf transmits green light. This is due to the freely moving electrons which reflect light. Although most elemental metals have higher densities than nonmetals , there is a wide variation in their densities, lithium being the least dense (0.534 g/cm ) and osmium (22.59 g/cm ) the most dense. Some of the 6d transition metals are expected to be denser than osmium, but their known isotopes are too unstable for bulk production to be possible Magnesium, aluminium and titanium are light metals of significant commercial importance. Their respective densities of 1.7, 2.7, and 4.5 g/cm can be compared to those of

496-443: A few—beryllium, chromium, manganese, gallium, and bismuth—are brittle. Arsenic and antimony, if admitted as metals, are brittle. Low values of the ratio of bulk elastic modulus to shear modulus ( Pugh's criterion ) are indicative of intrinsic brittleness. A material is brittle if it is hard for dislocations to move, which is often associated with large Burgers vectors and only a limited number of slip planes. A refractory metal

558-511: A lower atomic number) by neutron capture , with the two main modes of this repetitive capture being the s-process and the r-process . In the s-process ("s" stands for "slow"), singular captures are separated by years or decades, allowing the less stable nuclei to beta decay , while in the r-process ("rapid"), captures happen faster than nuclei can decay. Therefore, the s-process takes a more-or-less clear path: for example, stable cadmium-110 nuclei are successively bombarded by free neutrons inside

620-466: A metal (today often plastic) cap badge denoting the soldier's regiment became standard by the 17th century, as in most European armies (though not always navies). By the 19th century a badge was an almost invariable part of any uniform , including school uniforms , which in the UK usually still feature the school's badge in cloth on the breast pocket of the jacket or blazer . One of the best-known badges

682-514: A real metal. In this respect they resemble degenerate semiconductors . This explains why the electrical properties of semimetals are partway between those of metals and semiconductors . There are additional types, in particular Weyl and Dirac semimetals . The classic elemental semimetallic elements are arsenic , antimony , bismuth , α- tin (gray tin) and graphite . There are also chemical compounds , such as mercury telluride (HgTe), and some conductive polymers . Metallic elements up to

SECTION 10

#1732790720492

744-407: A result of a neutron star merger, thereby increasing the abundance of elements heavier than helium in the interstellar medium . When gravitational attraction causes this matter to coalesce and collapse new stars and planets are formed . The Earth's crust is made of approximately 25% of metallic elements by weight, of which 80% are light metals such as sodium, magnesium, and aluminium. Despite

806-483: A role as investments and a store of value . Palladium and platinum, as of summer 2024, were valued at slightly less than half the price of gold, while silver is substantially less expensive. In electrochemistry, a valve metal is a metal which passes current in only one direction due to the formation of any insulating oxide later. There are many ceramic compounds which have metallic electrical conduction, but are not simple combinations of metallic elements. (They are not

868-677: A star that are heavier than helium . In this sense the first four "metals" collecting in stellar cores through nucleosynthesis are carbon , nitrogen , oxygen , and neon . A star fuses lighter atoms, mostly hydrogen and helium, into heavier atoms over its lifetime. The metallicity of an astronomical object is the proportion of its matter made up of the heavier chemical elements. The strength and resilience of some metals has led to their frequent use in, for example, high-rise building and bridge construction , as well as most vehicles, many home appliances , tools, pipes, and railroad tracks. Precious metals were historically used as coinage , but in

930-400: A star until they form cadmium-115 nuclei which are unstable and decay to form indium-115 (which is nearly stable, with a half-life 30 000 times the age of the universe). These nuclei capture neutrons and form indium-116, which is unstable, and decays to form tin-116, and so on. In contrast, there is no such path in the r-process. The s-process stops at bismuth due to the short half-lives of

992-471: A temperature of absolute zero , which is a consequence of delocalized states at the Fermi energy. Many elements and compounds become metallic under high pressures, for example, iodine gradually becomes a metal at a pressure of between 40 and 170 thousand times atmospheric pressure . Sodium becomes a nonmetal at pressure of just under two million times atmospheric pressure, and at even higher pressures it

1054-457: Is a material that, when polished or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. These properties are all associated with having electrons available at the Fermi level , as against nonmetallic materials which do not. Metals are typically ductile (can be drawn into wires) and malleable (they can be hammered into thin sheets). A metal may be

1116-403: Is a metal that is very resistant to heat and wear. Which metals belong to this category varies; the most common definition includes niobium, molybdenum, tantalum, tungsten, and rhenium as well as their alloys. They all have melting points above 2000 °C, and a high hardness at room temperature. Several compounds such as titanium nitride are also described as refractory metals. A white metal

1178-611: Is any of a range of white-colored alloys with relatively low melting points used mainly for decorative purposes. In Britain, the fine art trade uses the term "white metal" in auction catalogues to describe foreign silver items which do not carry British Assay Office marks, but which are nonetheless understood to be silver and are priced accordingly. A heavy metal is any relatively dense metal, either single element or multielement. Magnesium , aluminium and titanium alloys are light metals of significant commercial importance. Their densities of 1.7, 2.7 and 4.5 g/cm range from 19 to 56% of

1240-484: Is composed mostly of iron, is thought to be the source of Earth's protective magnetic field. The core lies above Earth's solid inner core and below its mantle. If it could be rearranged into a column having a 5 m (54 sq ft) footprint it would have a height of nearly 700 light years. The magnetic field shields the Earth from the charged particles of the solar wind, and cosmic rays that would otherwise strip away

1302-572: Is evidence that this and comparable behavior in transuranic elements is due to more complex relativistic and spin interactions which are not captured in simple models. All of the metallic alloys as well as conducting ceramics and polymers are metals by the same definition; for instance titanium nitride has delocalized states at the Fermi level. They have electrical conductivities similar to those of elemental metals. Liquid forms are also metallic conductors or electricity, for instance mercury . In normal conditions no gases are metallic conductors. However,

SECTION 20

#1732790720492

1364-422: Is expected to become a metal again. When discussing the periodic table and some chemical properties the term metal is often used to denote those elements which in pure form and at standard conditions are metals in the sense of electrical conduction mentioned above. The related term metallic may also be used for types of dopant atoms or alloying elements. In astronomy metal refers to all chemical elements in

1426-548: Is no external voltage . When a voltage is applied some move a little faster in a given direction, some a little slower so there is a net drift velocity which leads to an electric current. This involves small changes in which wavefunctions the electrons are in, changing to those with the higher momenta. Quantum mechanics dictates that one can only have one electron in a given state, the Pauli exclusion principle . Therefore there have to be empty delocalized electron states (with

1488-474: Is not. In the context of metals, an alloy is a substance having metallic properties which is composed of two or more elements . Often at least one of these is a metallic element; the term "alloy" is sometimes used more generally as in silicon–germanium alloys. An alloy may have a variable or fixed composition. For example, gold and silver form an alloy in which the proportions of gold or silver can be varied; titanium and silicon form an alloy TiSi 2 in which

1550-575: Is positioned at the center of a cube of eight others. In fcc and hcp, each atom is surrounded by twelve others, but the stacking of the layers differs. Some metals adopt different structures depending on the temperature. Many other metals with different elements have more complicated structures, such as rock-salt structure in titanium nitride or perovskite (structure) in some nickelates. The electronic structure of metals means they are relatively good conductors of electricity . The electrons all have different momenta , which average to zero when there

1612-860: Is the typically star-shaped U.S. sheriff 's badge, made famous in Westerns . The Chairman Mao badge is probably the most famous political badge. Members of fraternities and sororities often refer to the pins that signify their membership as badges. The BBC children's programme Blue Peter also awards its own " Blue Peter badge " to members of the public who appear on the show. These are highly collectable as they cannot be bought—except from people who have been awarded one and wish to sell it. Case badges are thick, about 3 mm (0.12 in) deep, 3-by-3-centimetre (1.2 in × 1.2 in) lucite stickers that are often packaged with various computer parts, such as processors and video cards. Modern computer cases are frequently embellished with an indentation on

1674-479: Is used in political campaigning and often given as part of a birthday greeting such as a birthday card . In the United States, the badges used by law enforcement , fire , and security guards are usually made of metal in various colors and finishes and are worn above the left chest pocket on the uniform shirt or jacket. Detectives and other plainclothes personnel may wear them on a belt holder, or on

1736-474: The Burgers vector of the dislocations are fairly small, which also means that the energy needed to produce one is small. In contrast, in an ionic compound like table salt the Burgers vectors are much larger and the energy to move a dislocation is far higher. Reversible elastic deformation in metals can be described well by Hooke's Law for the restoring forces, where the stress is linearly proportional to

1798-611: The MacArthur Foundation 's Badges for Lifelong Learning initiative. In Japan , lawyers are often issued lapel pin badges which serve as an identification tool in court, or during their normal course of work. Since lawyers are vested with special powers by law, such as the power to compel government agencies to provide information, these badges provide a quick way for lawyers to identify themselves as such. Metal A metal (from Ancient Greek μέταλλον ( métallon )  'mine, quarry, metal')

1860-630: The military , badges are used to denote the unit or arm to which the wearer belongs, and also qualifications received through military training, rank, etc. Similarly, youth organizations such as scouting and guiding use them to show group membership, awards and rank. Badges were as popular as jewellery in the Middle Ages , and varied from extremely expensive works of jewellery, like the Dunstable Swan Jewel , to simple mold-made badges in lead or other base metals. Specialized forms were

1922-415: The periodic table . If there are several, the most stable allotrope is considered. The situation changes with pressure: at extremely high pressures, all elements (and indeed all substances) are expected to metallize. Arsenic (As) has both a stable metallic allotrope and a metastable semiconducting allotrope at standard conditions. A similar situation affects carbon (C): graphite is metallic, but diamond

Badge - Misplaced Pages Continue

1984-557: The pilgrim badge , worn by those who had completed a pilgrimage , and heraldic or livery badges , worn to denote service or allegiance to a political figure — these last were especially popular in England, and became very controversial in the period leading up to the Wars of the Roses . One royal celebration in 1483 was marked by the distribution of 13,000 badges, a huge number relative to

2046-539: The strain . A temperature change may lead to the movement of structural defects in the metal such as grain boundaries , point vacancies , line and screw dislocations , stacking faults and twins in both crystalline and non-crystalline metals. Internal slip , creep , and metal fatigue may also ensue. The atoms of simple metallic substances are often in one of three common crystal structures , namely body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp). In bcc, each atom

2108-486: The vicinity of iron (in the periodic table) are largely made via stellar nucleosynthesis . In this process, lighter elements from hydrogen to silicon undergo successive fusion reactions inside stars, releasing light and heat and forming heavier elements with higher atomic numbers. Heavier elements are not usually formed this way since fusion reactions involving such nuclei would consume rather than release energy. Rather, they are largely synthesised (from elements with

2170-483: The addition of chromium , nickel , and molybdenum to carbon steels (more than 10%) results in stainless steels with enhanced corrosion resistance. Other significant metallic alloys are those of aluminum , titanium , copper , and magnesium . Copper alloys have been known since prehistory— bronze gave the Bronze Age its name—and have many applications today, most importantly in electrical wiring. The alloys of

2232-599: The air to form oxides over various timescales ( potassium burns in seconds while iron rusts over years) which depend upon whether the native oxide forms a passivation layer that acts as a diffusion barrier . Some others, like palladium , platinum , and gold , do not react with the atmosphere at all; gold can form compounds where it gains an electron (aurides, e.g. caesium auride ). The oxides of elemental metals are often basic . However, oxides with very high oxidation states such as CrO 3 , Mn 2 O 7 , and OsO 4 often have strictly acidic reactions; and oxides of

2294-403: The case's front panel to facilitate the affixing of a case badge. Button badges are a highly collectible round badge with a plastic coating over a design or image. They often have a metal pin back or a safety pin style back. The most popular size is 25.4-millimetre (1.00 in) but the badges can range anywhere from this size right up to 120-millimetre (4.7 in) badges. This style of badge

2356-406: The densities of other structural metals, such as iron (7.9) and copper (8.9) and their alloys. The term base metal refers to a metal that is easily oxidized or corroded , such as reacting easily with dilute hydrochloric acid (HCl) to form a metal chloride and hydrogen . The term is normally used for the elements, and examples include iron, nickel , lead , and zinc. Copper is considered

2418-495: The detailed structure of the metal's ion lattice. Taking into account the positive potential caused by the arrangement of the ion cores enables consideration of the electronic band structure and binding energy of a metal. Various models are applicable, the simplest being the nearly free electron model . Modern methods such as density functional theory are typically used. The elements which form metals usually form cations through electron loss. Most will react with oxygen in

2480-456: The elements from fermium (Fm) onwards are shown in gray because they are extremely radioactive and have never been produced in bulk. Theoretical and experimental evidence suggests that these uninvestigated elements should be metals, except for oganesson (Og) which DFT calculations indicate would be a semiconductor. Metallic Network covalent Molecular covalent Single atoms Unknown Background color shows bonding of simple substances in

2542-433: The f-block elements. They have a strong affinity for oxygen and mostly exist as relatively low-density silicate minerals. Chalcophile elements are mainly the less reactive d-block elements, and the period 4–6 p-block metals. They are usually found in (insoluble) sulfide minerals. Being denser than the lithophiles, hence sinking lower into the crust at the time of its solidification, the chalcophiles tend to be less abundant than

Badge - Misplaced Pages Continue

2604-420: The first known appearance of bronze in the fifth millennium BCE. Subsequent developments include the production of early forms of steel; the discovery of sodium —the first light metal —in 1809; the rise of modern alloy steels ; and, since the end of World War II, the development of more sophisticated alloys. Most metals are shiny and lustrous , at least when polished, or fractured. Sheets of metal thicker than

2666-724: The higher momenta) available at the highest occupied energies as sketched in the Figure. In a semiconductor like silicon or a nonmetal like strontium titanate there is an energy gap between the highest filled states of the electrons and the lowest unfilled, so no accessible states with slightly higher momenta. Consequently, semiconductors and nonmetals are poor conductors, although they can carry some current when doped with elements that introduce additional partially occupied energy states at higher temperatures. The elemental metals have electrical conductivity values of from 6.9 × 10 S /cm for manganese to 6.3 × 10 S/cm for silver . In contrast,

2728-436: The known examples of half-metals are oxides , sulfides , or Heusler alloys . A semimetal is a material with a small energy overlap between the bottom of the conduction band and the top of the valence band , but they do not overlap in momentum space . Unlike a regular metal, semimetals have charge carriers of both types (holes and electrons), although the charge carriers typically occur in much smaller numbers than in

2790-482: The less electropositive metals such as BeO, Al 2 O 3 , and PbO, can display both basic and acidic properties. The latter are termed amphoteric oxides. The elements that form exclusively metallic structures under ordinary conditions are shown in yellow on the periodic table below. The remaining elements either form covalent network structures (light blue), molecular covalent structures (dark blue), or remain as single atoms (violet). Astatine (At), francium (Fr), and

2852-408: The lithophiles. On the other hand, gold is a siderophile, or iron-loving element. It does not readily form compounds with either oxygen or sulfur. At the time of the Earth's formation, and as the most noble (inert) of metallic elements, gold sank into the core due to its tendency to form high-density metallic alloys. Consequently, it is relatively rare. Some other (less) noble ones—molybdenum, rhenium,

2914-407: The metallic alloys in use today, the alloys of iron ( steel , stainless steel , cast iron , tool steel , alloy steel ) make up the largest proportion both by quantity and commercial value. Iron alloyed with various proportions of carbon gives low-, mid-, and high-carbon steels, with increasing carbon levels reducing ductility and toughness. The addition of silicon will produce cast irons, while

2976-412: The modern era, coinage metals have extended to at least 23 of the chemical elements. There is also extensive use of multi-element metals such as titanium nitride or degenerate semiconductors in the semiconductor industry. The history of refined metals is thought to begin with the use of copper about 11,000 years ago. Gold, silver, iron (as meteoric iron), lead, and brass were likewise in use before

3038-401: The next two elements, polonium and astatine, which decay to bismuth or lead. The r-process is so fast it can skip this zone of instability and go on to create heavier elements such as thorium and uranium. Metals condense in planets as a result of stellar evolution and destruction processes. Stars lose much of their mass when it is ejected late in their lifetimes, and sometimes thereafter as

3100-493: The nitrogen. However, unlike most elemental metals, ceramic metals are often not particularly ductile. Their uses are widespread, for instance titanium nitride finds use in orthopedic devices and as a wear resistant coating. In many cases their utility depends upon there being effective deposition methods so they can be used as thin film coatings. There are many polymers which have metallic electrical conduction, typically associated with extended aromatic components such as in

3162-623: The older structural metals, like iron at 7.9 and copper at 8.9 g/cm . The most common lightweight metals are aluminium and magnesium alloys. Metals are typically malleable and ductile, deforming under stress without cleaving . The nondirectional nature of metallic bonding contributes to the ductility of most metallic solids, where the Peierls stress is relatively low allowing for dislocation motion, and there are also many combinations of planes and directions for plastic deformation . Due to their having close packed arrangements of atoms

SECTION 50

#1732790720492

3224-702: The other three metals have been developed relatively recently; due to their chemical reactivity they need electrolytic extraction processes. The alloys of aluminum, titanium, and magnesium are valued for their high strength-to-weight ratios; magnesium can also provide electromagnetic shielding . These materials are ideal for situations where high strength-to-weight ratio is more important than material cost, such as in aerospace and some automotive applications. Alloys specially designed for highly demanding applications, such as jet engines , may contain more than ten elements. Metals can be categorised by their composition, physical or chemical properties. Categories described in

3286-400: The overall scarcity of some heavier metals such as copper, they can become concentrated in economically extractable quantities as a result of mountain building, erosion, or other geological processes. Metallic elements are primarily found as lithophiles (rock-loving) or chalcophiles (ore-loving). Lithophile elements are mainly the s-block elements, the more reactive of the d-block elements, and

3348-420: The platinum group metals (ruthenium, rhodium, palladium, osmium, iridium, and platinum), germanium, and tin—can be counted as siderophiles but only in terms of their primary occurrence in the Earth (core, mantle, and crust), rather the crust. These otherwise occur in the crust, in small quantities, chiefly as chalcophiles (less so in their native form). The rotating fluid outer core of the Earth's interior, which

3410-547: The polymers indicated in the Figure. The conduction of the aromatic regions is similar to that of graphite, so is highly directional. A half-metal is any substance that acts as a conductor to electrons of one spin orientation, but as an insulator or semiconductor to those of the opposite spin. They were first described in 1983, as an explanation for the electrical properties of manganese -based Heusler alloys . Although all half-metals are ferromagnetic (or ferrimagnetic ), most ferromagnets are not half-metals. Many of

3472-470: The population at the time. Other types were funerary badges, presumably presented to mourners for the funeral of important figures, and simple decorative badges with animals or hearts. The grandest form of badge was worn as a pendant to a metal collar, often in gold or silver-gilt . From the livery badge, various badges of service evolved, worn by officials, soldiers and servants. In the British Army

3534-408: The ratio between thermal and electrical conductivities is proportional to temperature, with a proportionality constant that is roughly the same for all metals. The contribution of a metal's electrons to its heat capacity and thermal conductivity, and the electrical conductivity of the metal itself can be approximately calculated from the free electron model . However, this does not take into account

3596-415: The ratio of the two components is fixed (also known as an intermetallic compound ). Most pure metals are either too soft, brittle, or chemically reactive for practical use. Combining different ratios of metals and other elements in alloys modifies the properties to produce desirable characteristics, for instance more ductile, harder, resistant to corrosion, or have a more desirable color and luster. Of all

3658-416: The same as cermets which are composites of a non-conducting ceramic and a conducting metal.) One set, the transition metal nitrides has significant ionic character to the bonding, so can be classified as both ceramics and metals. They have partially filled states at the Fermi level so are good thermal and electrical conductors, and there is often significant charge transfer from the transition metal atoms to

3720-635: The subsections below include ferrous and non-ferrous metals; brittle metals and refractory metals ; white metals; heavy and light metals; base , noble , and precious metals as well as both metallic ceramics and polymers . The term "ferrous" is derived from the Latin word meaning "containing iron". This can include pure iron, such as wrought iron , or an alloy such as steel . Ferrous metals are often magnetic , but not exclusively. Non-ferrous metals and alloys lack appreciable amounts of iron. While nearly all elemental metals are malleable or ductile,

3782-474: The term base metal is contrasted with precious metal , that is, those of high economic value. Most coins today are made of base metals with low intrinsic value ; in the past, coins frequently derived their value primarily from their precious metal content; gold , silver , platinum , and palladium each have an ISO 4217 currency code. Currently they have industrial uses such as platinum and palladium in catalytic converters , are used in jewellery and also

SECTION 60

#1732790720492

3844-496: The upper atmosphere (including the ozone layer that limits the transmission of ultraviolet radiation). Metallic elements are often extracted from the Earth by mining ores that are rich sources of the requisite elements, such as bauxite . Ores are located by prospecting techniques, followed by the exploration and examination of deposits. Mineral sources are generally divided into surface mines , which are mined by excavation using heavy equipment, and subsurface mines . In some cases,

#491508