Boishakh ( Bengali : বৈশাখ , Nepali : बैशाख , Bôishakh , Baishakh ) is the first month in the Assamese calendar , Bengali calendar and Nepali calendar . This month lies between the second half of April and the first half of May.
105-685: The name of the month is derived from the position of the Sun near the star Bishakha ( বিশাখা ). The first day of Boishakh is celebrated as the Pôhela Bôishakh or Bengali New Year's Day. The day is observed with cultural programs, festivals and carnivals all around the country. The day of is also the beginning of all business activities in Bangladesh and neighboring Indian state of West Bengal and Tripura . The traders starts new fiscal account book called হালখাতা Halkhata . The accounting in
210-423: A trillion years until only a small fraction of the entire star is hydrogen. Luminosity and temperature steadily increase during this time, just as for more-massive main-sequence stars, but the length of time involved means that the temperature eventually increases by about 50% and the luminosity by around 10 times. Eventually the level of helium increases to the point where the star ceases to be fully convective and
315-489: A 1 M ☉ star the habitable zone lasts from 100 million years for a planet with an orbit similar to that of Mars to 210 million years for one that orbits at Saturn 's distance to the Sun, the maximum time (370 million years) corresponding for planets orbiting at the distance of Jupiter . However, planets orbiting a 0.5 M ☉ star in equivalent orbits to those of Jupiter and Saturn would be in
420-407: A carbon–oxygen core. A star below about 8 M ☉ will never start fusion in its degenerate carbon–oxygen core. Instead, at the end of the asymptotic-giant-branch phase the star will eject its outer layers, forming a planetary nebula with the core of the star exposed, ultimately becoming a white dwarf . The ejection of the outer mass and the creation of a planetary nebula finally ends
525-515: A distance of one astronomical unit (AU) from the Sun (that is, at or near Earth's orbit). Sunlight on the surface of Earth is attenuated by Earth's atmosphere , so that less power arrives at the surface (closer to 1,000 W/m ) in clear conditions when the Sun is near the zenith . Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light. The atmosphere filters out over 70% of solar ultraviolet, especially at
630-403: A fairly small amount of power being generated per cubic metre . Theoretical models of the Sun's interior indicate a maximum power density, or energy production, of approximately 276.5 watts per cubic metre at the center of the core, which, according to Karl Kruszelnicki , is about the same power density inside a compost pile . The fusion rate in the core is in a self-correcting equilibrium:
735-414: A few millimeters. Re-emission happens in a random direction and usually at slightly lower energy. With this sequence of emissions and absorptions, it takes a long time for radiation to reach the Sun's surface. Estimates of the photon travel time range between 10,000 and 170,000 years. In contrast, it takes only 2.3 seconds for neutrinos , which account for about 2% of the total energy production of
840-401: A granular appearance called the solar granulation at the smallest scale and supergranulation at larger scales. Turbulent convection in this outer part of the solar interior sustains "small-scale" dynamo action over the near-surface volume of the Sun. The Sun's thermal columns are Bénard cells and take the shape of roughly hexagonal prisms. The visible surface of the Sun, the photosphere,
945-432: A large carbon abundance at the surface. The second, and sometimes third, dredge-up occurs during helium shell burning on the asymptotic-giant branch and convects carbon to the surface in sufficiently massive stars. The stellar limb of a red giant is not sharply defined, contrary to their depiction in many illustrations. Rather, due to the very low mass density of the envelope, such stars lack a well-defined photosphere , and
1050-439: A much larger effect would be Roche lobe overflow causing mass-transfer from the star to the planet when the giant expands out to the orbital distance of the planet. (A similar process in multiple star systems is believed to be the cause of most novas and type Ia supernovas .) Many of the well-known bright stars are red giants, because they are luminous and moderately common. The red-giant branch variable star Gamma Crucis
1155-520: A period known as the Maunder minimum . This coincided in time with the era of the Little Ice Age , when Europe experienced unusually cold temperatures. Earlier extended minima have been discovered through analysis of tree rings and appear to have coincided with lower-than-average global temperatures. The temperature of the photosphere is approximately 6,000 K, whereas the temperature of
SECTION 10
#17327830024941260-485: A phenomenon described by Hale's law . During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number and size. At solar-cycle minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, differential rotation shifts magnetic energy back from
1365-473: A result, the outward-flowing solar wind stretches the interplanetary magnetic field outward, forcing it into a roughly radial structure. For a simple dipolar solar magnetic field, with opposite hemispherical polarities on either side of the solar magnetic equator, a thin current sheet is formed in the solar wind. At great distances, the rotation of the Sun twists the dipolar magnetic field and corresponding current sheet into an Archimedean spiral structure called
1470-410: A shorter lifetime than less massive stars. When the star has mostly exhausted the hydrogen fuel in its core, the core's rate of nuclear reactions declines, and thus so do the radiation and thermal pressure the core generates, which are what support the star against gravitational contraction . The star further contracts, increasing the pressures and thus temperatures inside the star (as described by
1575-410: A slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the density and hence the fusion rate and correcting the perturbation ; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the density and increasing the fusion rate and again reverting it to its present rate. The radiative zone
1680-520: A so-called helium flash . In more-massive stars, the collapsing core will reach these temperatures before it is dense enough to be degenerate, so helium fusion will begin much more smoothly, and produce no helium flash. The core helium fusing phase of a star's life is called the horizontal branch in metal-poor stars , so named because these stars lie on a nearly horizontal line in the H–R diagram of many star clusters. Metal-rich helium-fusing stars instead lie on
1785-553: A star initially forms from a collapsing molecular cloud in the interstellar medium , it contains primarily hydrogen and helium, with trace amounts of " metals " (in astrophysics, this refers to all elements heavier than hydrogen and helium). These elements are all uniformly mixed throughout the star. The star "enters" the main sequence when its core reaches a temperature (several million kelvins ) high enough to begin fusing hydrogen-1 (the predominant isotope), and establishes hydrostatic equilibrium . (In astrophysics, stellar fusion
1890-406: A transition layer, the tachocline . This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear between the two—a condition where successive horizontal layers slide past one another. Presently, it is hypothesized that a magnetic dynamo, or solar dynamo , within this layer generates
1995-570: Is 1 astronomical unit ( 1.496 × 10 km ) or about 8 light-minutes away. Its diameter is about 1,391,400 km ( 864,600 mi ), 109 times that of Earth. Its mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. Roughly three-quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen , carbon , neon , and iron . The Sun
2100-494: Is a G-type main-sequence star (G2V), informally called a yellow dwarf , though its light is actually white. It formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud . Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System . The central mass became so hot and dense that it eventually initiated nuclear fusion in its core . Every second,
2205-510: Is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ( M ☉ )) in a late phase of stellar evolution . The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around 5,000 K [K] (4,700 °C; 8,500 °F) or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars . Red giants vary in
SECTION 20
#17327830024942310-643: Is by far the brightest object in the Earth's sky , with an apparent magnitude of −26.74. This is about 13 billion times brighter than the next brightest star, Sirius , which has an apparent magnitude of −1.46. One astronomical unit (about 150 million kilometres; 93 million miles) is defined as the mean distance between the centres of the Sun and the Earth. The instantaneous distance varies by about ± 2.5 million km or 1.55 million miles as Earth moves from perihelion on ~ January 3rd to aphelion on ~ July 4th. At its average distance, light travels from
2415-436: Is defined to begin at the distance where the flow of the solar wind becomes superalfvénic —that is, where the flow becomes faster than the speed of Alfvén waves, at approximately 20 solar radii ( 0.1 AU ). Turbulence and dynamic forces in the heliosphere cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through
2520-402: Is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma. The transition region does not occur at a well-defined altitude, but forms a kind of nimbus around chromospheric features such as spicules and filaments , and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but
2625-411: Is often referred to as "burning", with hydrogen fusion sometimes termed " hydrogen burning ".) Over its main sequence life, the star slowly fuses the hydrogen in the core into helium; its main-sequence life ends when nearly all the hydrogen in the core has been fused. For the Sun, the main-sequence lifetime is approximately 10 billion years. More massive stars burn disproportionately faster and so have
2730-409: Is only 84% of what it was in the protostellar phase (before nuclear fusion in the core started). In the future, helium will continue to accumulate in the core, and in about 5 billion years this gradual build-up will eventually cause the Sun to exit the main sequence and become a red giant . The chemical composition of the photosphere is normally considered representative of the composition of
2835-441: Is readily observable from space by instruments sensitive to extreme ultraviolet . The corona is the next layer of the Sun. The low corona, near the surface of the Sun, has a particle density around 10 m to 10 m . The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K. Although no complete theory yet exists to account for
2940-410: Is strongly attenuated by Earth's ozone layer , so that the amount of UV varies greatly with latitude and has been partially responsible for many biological adaptations, including variations in human skin color . High-energy gamma ray photons initially released with fusion reactions in the core are almost immediately absorbed by the solar plasma of the radiative zone, usually after traveling only
3045-422: Is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium , relative to the abundances of these elements in so-called Population II , heavy-element-poor, stars. The heavy elements could most plausibly have been produced by endothermic nuclear reactions during a supernova, or by transmutation through neutron absorption within a massive second-generation star. The Sun
3150-470: Is tens to hundreds of kilometers thick, and is slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening . The spectrum of sunlight has approximately the spectrum of a black-body radiating at 5,772 K (9,930 °F), interspersed with atomic absorption lines from
3255-460: Is that, unlike Sun-like stars whose photospheres have a large number of small convection cells ( solar granules ), red-giant photospheres, as well as those of red supergiants , have just a few large cells, the features of which cause the variations of brightness so common on both types of stars. Red giants are evolved from main-sequence stars with masses in the range from about 0.3 M ☉ to around 8 M ☉ . When
Boishakh - Misplaced Pages Continue
3360-493: Is the subgiant stage. When the envelope of the star cools sufficiently it becomes convective , the star stops expanding, its luminosity starts to increase, and the star is ascending the red-giant branch of the Hertzsprung–Russell (H–R) diagram . The evolutionary path the star takes as it moves along the red-giant branch depends on the mass of the star. For the Sun and stars of less than about 2 M ☉
3465-437: Is the layer below which the Sun becomes opaque to visible light. Photons produced in this layer escape the Sun through the transparent solar atmosphere above it and become solar radiation, sunlight. The change in opacity is due to the decreasing amount of H ions , which absorb visible light easily. Conversely, the visible light perceived is produced as electrons react with hydrogen atoms to produce H ions. The photosphere
3570-424: Is the most prominent variation in which the number and size of sunspots waxes and wanes. The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma carries the Sun's magnetic field into space, forming what is called the interplanetary magnetic field . In an approximation known as ideal magnetohydrodynamics , plasma particles only move along magnetic field lines. As
3675-485: Is the nearest M-class giant star at 88 light-years. The K1.5 red-giant branch star Arcturus is 36 light-years away. The Sun will exit the main sequence in approximately 5 billion years and start to turn into a red giant. As a red giant, the Sun will grow so large (over 200 times its present-day radius : ~ 215 R ☉ ; ~ 1 AU ) that it will engulf Mercury , Venus , and likely Earth. It will lose 38% of its mass growing, then will die into
3780-531: Is the only region of the Sun that produces an appreciable amount of thermal energy through fusion; 99% of the Sun's power is generated in the innermost 24% of its radius, and almost no fusion occurs beyond 30% of the radius. The rest of the Sun is heated by this energy as it is transferred outward through many successive layers, finally to the solar photosphere where it escapes into space through radiation (photons) or advection (massive particles). The proton–proton chain occurs around 9.2 × 10 times each second in
3885-420: Is the thickest layer of the Sun, at 0.45 solar radii. From the core out to about 0.7 solar radii , thermal radiation is the primary means of energy transfer. The temperature drops from approximately 7 million to 2 million kelvins with increasing distance from the core. This temperature gradient is less than the value of the adiabatic lapse rate and hence cannot drive convection, which explains why
3990-444: Is theorized to become a super dense black dwarf , giving off negligible energy. The English word sun developed from Old English sunne . Cognates appear in other Germanic languages , including West Frisian sinne , Dutch zon , Low German Sünn , Standard German Sonne , Bavarian Sunna , Old Norse sunna , and Gothic sunnō . All these words stem from Proto-Germanic * sunnōn . This
4095-538: Is ultimately related to the word for sun in other branches of the Indo-European language family, though in most cases a nominative stem with an l is found, rather than the genitive stem in n , as for example in Latin sōl , ancient Greek ἥλιος ( hēlios ), Welsh haul and Czech slunce , as well as (with *l > r ) Sanskrit स्वर् ( svár ) and Persian خور ( xvar ). Indeed,
4200-402: Is wave heating, in which sound, gravitational or magnetohydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient matter in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in
4305-547: The Alfvén surface , the boundary separating the corona from the solar wind, defined as where the coronal plasma's Alfvén speed and the large-scale solar wind speed are equal. During the flyby, Parker Solar Probe passed into and out of the corona several times. This proved the predictions that the Alfvén critical surface is not shaped like a smooth ball, but has spikes and valleys that wrinkle its surface. The Sun emits light across
Boishakh - Misplaced Pages Continue
4410-474: The Halkhata begins only after this day. It is celebrated with sweets and gifts with customers. The month of Boishakh also marks the official start of Summer. The month is notorious for the afternoon storms called Kalboishakhi ( Nor'wester ). The storms usually start with strong gusts from the north-western direction at the end of a hot day and cause widespread destruction. Boishakh is the month when many of
4515-524: The Parker spiral . Sunspots are visible as dark patches on the Sun's photosphere and correspond to concentrations of magnetic field where convective transport of heat is inhibited from the solar interior to the surface. As a result, sunspots are slightly cooler than the surrounding photosphere, so they appear dark. At a typical solar minimum , few sunspots are visible, and occasionally none can be seen at all. Those that do appear are at high solar latitudes. As
4620-410: The corona , and the heliosphere . The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100 K . This part of the Sun is cool enough to allow for the existence of simple molecules such as carbon monoxide and water. The chromosphere, transition region, and corona are much hotter than the surface of
4725-400: The ideal gas law ). Eventually a "shell" layer around the core reaches temperatures sufficient to fuse hydrogen and thus generate its own radiation and thermal pressure, which "re-inflates" the star's outer layers and causes them to expand. The hydrogen-burning shell results in a situation that has been described as the mirror principle : when the core within the shell contracts, the layers of
4830-614: The l -stem survived in Proto-Germanic as well, as * sōwelan , which gave rise to Gothic sauil (alongside sunnō ) and Old Norse prosaic sól (alongside poetic sunna ), and through it the words for sun in the modern Scandinavian languages: Swedish and Danish sol , Icelandic sól , etc. The principal adjectives for the Sun in English are sunny for sunlight and, in technical contexts, solar ( / ˈ s oʊ l ər / ), from Latin sol . From
4935-414: The main sequence and will not have become giants yet) and more massive stars are expected to have more massive planets. However, the masses of the planets that have been found around giant stars do not correlate with the masses of the stars; therefore, the planets could be growing in mass during the stars' red giant phase. The growth in planet mass could be partly due to accretion from stellar wind, although
5040-428: The photosphere . For the purpose of measurement, the Sun's radius is considered to be the distance from its center to the edge of the photosphere, the apparent visible surface of the Sun. By this measure, the Sun is a near-perfect sphere with an oblateness estimated at 9 millionths, which means that its polar diameter differs from its equatorial diameter by only 10 kilometers (6.2 mi). The tidal effect of
5145-444: The visible spectrum , so its color is white , with a CIE color-space index near (0.3, 0.3), when viewed from space or when the Sun is high in the sky. The Solar radiance per wavelength peaks in the green portion of the spectrum when viewed from space. When the Sun is very low in the sky, atmospheric scattering renders the Sun yellow, red, orange, or magenta, and in rare occasions even green or blue . Some cultures mentally picture
5250-465: The Greek helios comes the rare adjective heliac ( / ˈ h iː l i æ k / ). In English, the Greek and Latin words occur in poetry as personifications of the Sun, Helios ( / ˈ h iː l i ə s / ) and Sol ( / ˈ s ɒ l / ), while in science fiction Sol may be used to distinguish the Sun from other stars. The term sol with a lowercase s is used by planetary astronomers for
5355-409: The H–R diagram, at the right end constituting red supergiants . These usually end their life as a type II supernova . The most massive stars can become Wolf–Rayet stars without becoming giants or supergiants at all. Although traditionally it has been suggested the evolution of a star into a red giant will render its planetary system , if present, uninhabitable, some research suggests that, during
SECTION 50
#17327830024945460-446: The Solar System . Long-term secular change in sunspot number is thought, by some scientists, to be correlated with long-term change in solar irradiance, which, in turn, might influence Earth's long-term climate. The solar cycle influences space weather conditions, including those surrounding Earth. For example, in the 17th century, the solar cycle appeared to have stopped entirely for several decades; few sunspots were observed during
5565-433: The Sun ( L ☉ ); spectral types of K or M have surface temperatures of 3,000–4,000 K (compared with the Sun's photosphere temperature of nearly 6,000 K ) and radii up to about 200 times the Sun ( R ☉ ). Stars on the horizontal branch are hotter, with only a small range of luminosities around 75 L ☉ . Asymptotic-giant-branch stars range from similar luminosities as
5670-443: The Sun as yellow and some even red; the cultural reasons for this are debated. The Sun is classed as a G2 star, meaning it is a G-type star , with 2 indicating its surface temperature is in the second range of the G class. The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1,368 W/m (watts per square meter) at
5775-424: The Sun extends from the center to about 20–25% of the solar radius. It has a density of up to 150 g/cm (about 150 times the density of water) and a temperature of close to 15.7 million kelvin (K). By contrast, the Sun's surface temperature is about 5800 K . Recent analysis of SOHO mission data favors the idea that the core is rotating faster than the radiative zone outside it. Through most of
5880-438: The Sun into a red giant . This process will make the Sun large enough to render Earth uninhabitable approximately five billion years from the present. After the red giant phase, models suggest the Sun will shed its outer layers and become a dense type of cooling star (a white dwarf ), and no longer produce energy by fusion, but will still glow and give off heat from its previous fusion for perhaps trillions of years. After that, it
5985-413: The Sun's magnetic field . The Sun's convection zone extends from 0.7 solar radii (500,000 km) to near the surface. In this layer, the solar plasma is not dense or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. Material heated at
6090-398: The Sun's core by radiation rather than by convection (see Radiative zone below), so the fusion products are not lifted outward by heat; they remain in the core, and gradually an inner core of helium has begun to form that cannot be fused because presently the Sun's core is not hot or dense enough to fuse helium. In the current photosphere, the helium fraction is reduced, and the metallicity
6195-437: The Sun's core fuses about 600 billion kilograms (kg) of hydrogen into helium and converts 4 billion kg of matter into energy . About 4 to 7 billion years from now, when hydrogen fusion in the Sun's core diminishes to the point where the Sun is no longer in hydrostatic equilibrium , its core will undergo a marked increase in density and temperature which will cause its outer layers to expand, eventually transforming
6300-403: The Sun's horizon to Earth's horizon in about 8 minutes and 20 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. The energy of this sunlight supports almost all life on Earth by photosynthesis , and drives Earth's climate and weather. The Sun does not have a definite boundary, but its density decreases exponentially with increasing height above
6405-499: The Sun's life, energy has been produced by nuclear fusion in the core region through the proton–proton chain ; this process converts hydrogen into helium. Currently, 0.8% of the energy generated in the Sun comes from another sequence of fusion reactions called the CNO cycle ; the proportion coming from the CNO cycle is expected to increase as the Sun becomes older and more luminous. The core
SECTION 60
#17327830024946510-551: The Sun's life, they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere. All heavier elements, called metals in astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant. The Sun's original chemical composition was inherited from the interstellar medium out of which it formed. Originally it would have been about 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements. The hydrogen and most of
6615-438: The Sun, to reach the surface. Because energy transport in the Sun is a process that involves photons in thermodynamic equilibrium with matter , the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state if the rate of energy generation in its core were suddenly changed. Electron neutrinos are released by fusion reactions in
6720-402: The Sun. The reason is not well understood, but evidence suggests that Alfvén waves may have enough energy to heat the corona. Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines. It is called the chromosphere from the Greek root chroma , meaning color, because the chromosphere is visible as a colored flash at
6825-486: The beginning and end of total solar eclipses. The temperature of the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top. In the upper part of the chromosphere helium becomes partially ionized . Above the chromosphere, in a thin (about 200 km ) transition region, the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to 1,000,000 K . The temperature increase
6930-483: The body of the star gradually transitions into a ' corona '. The coolest red giants have complex spectra, with molecular lines , emission features, and sometimes masers , particularly from thermally pulsing AGB stars. Observations have also provided evidence of a hot chromosphere above the photosphere of red giants, where investigating the heating mechanisms for the chromospheres to form requires 3D simulations of red giants. Another noteworthy feature of red giants
7035-418: The brighter stars of the red-giant branch, up to several times more luminous at the end of the thermal pulsing phase. Among the asymptotic-giant-branch stars belong the carbon stars of type C-N and late C-R, produced when carbon and other elements are convected to the surface in what is called a dredge-up . The first dredge-up occurs during hydrogen shell burning on the red-giant branch, but does not produce
7140-419: The core will become dense enough that electron degeneracy pressure will prevent it from collapsing further. Once the core is degenerate , it will continue to heat until it reaches a temperature of roughly 1 × 10 K , hot enough to begin fusing helium to carbon via the triple-alpha process . Once the degenerate core reaches this temperature, the entire core will begin helium fusion nearly simultaneously in
7245-460: The core, but, unlike photons, they rarely interact with matter, so almost all are able to escape the Sun immediately. However, measurements of the number of these neutrinos produced in the Sun are lower than theories predict by a factor of 3. In 2001, the discovery of neutrino oscillation resolved the discrepancy: the Sun emits the number of electron neutrinos predicted by the theory, but neutrino detectors were missing 2 ⁄ 3 of them because
7350-501: The core, converting about 3.7 × 10 protons into alpha particles (helium nuclei) every second (out of a total of ~8.9 × 10 free protons in the Sun), or about 6.2 × 10 kg/s . However, each proton (on average) takes around 9 billion years to fuse with another using the PP chain. Fusing four free protons (hydrogen nuclei) into a single alpha particle (helium nucleus) releases around 0.7% of
7455-401: The corona reaches 1,000,000–2,000,000 K . The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere. It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first
7560-400: The duration of a solar day on another planet such as Mars . The astronomical symbol for the Sun is a circle with a center dot, [REDACTED] . It is used for such units as M ☉ ( Solar mass ), R ☉ ( Solar radius ) and L ☉ ( Solar luminosity ). The scientific study of the Sun is called heliology . The Sun is a G-type main-sequence star that makes up about 99.86% of
7665-491: The energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is by far the most important source of energy for life on Earth . The Sun has been an object of veneration in many cultures. It has been a central subject for astronomical research since antiquity . The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years . From Earth, it
7770-486: The evolution of a 1 M ☉ star along the red-giant branch, it could harbor a habitable zone for several billion years at 2 astronomical units (AU) out to around 100 million years at 9 AU out, giving perhaps enough time for life to develop on a suitable world. After the red-giant stage, there would for such a star be a habitable zone between 7 and 22 AU for an additional one billion years. Later studies have refined this scenario, showing how for
7875-563: The external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength; but an internal toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the convective zone forces emergence of the toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west and having footprints with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle,
7980-438: The form of large solar flares and myriad similar but smaller events— nanoflares . Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona. In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms. Red giant A red giant
8085-404: The fused mass as energy, so the Sun releases energy at the mass–energy conversion rate of 4.26 billion kg/s (which requires 600 billion kg of hydrogen ), for 384.6 yottawatts ( 3.846 × 10 W ), or 9.192 × 10 megatons of TNT per second. The large power output of the Sun is mainly due to the huge size and density of its core (compared to Earth and objects on Earth), with only
8190-424: The fusion of helium. These "intermediate" stars cool somewhat and increase their luminosity but never achieve the tip of the red-giant branch and helium core flash. When the ascent of the red-giant branch ends they puff off their outer layers much like a post-asymptotic-giant-branch star and then become a white dwarf. Very-low-mass stars are fully convective and may continue to fuse hydrogen into helium for up to
8295-440: The habitable zone for 5.8 billion years and 2.1 billion years, respectively; for stars more massive than the Sun, the times are considerably shorter. As of 2023, several hundred giant planets have been discovered around giant stars. However, these giant planets are more massive than the giant planets found around solar-type stars. This could be because giant stars are more massive than the Sun (less massive stars will still be on
8400-482: The heliosphere, forming the solar magnetic field into a spiral shape, until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause. In late 2012, Voyager 1 recorded a marked increase in cosmic ray collisions and a sharp drop in lower energy particles from the solar wind, which suggested that
8505-432: The helium in the Sun would have been produced by Big Bang nucleosynthesis in the first 20 minutes of the universe, and the heavier elements were produced by previous generations of stars before the Sun was formed, and spread into the interstellar medium during the final stages of stellar life and by events such as supernovae . Since the Sun formed, the main fusion process has involved fusing hydrogen into helium. Over
8610-505: The mass of the Solar System. It has an absolute magnitude of +4.83, estimated to be brighter than about 85% of the stars in the Milky Way , most of which are red dwarfs . It is more massive than 95% of the stars within 7 pc (23 ly). The Sun is a Population I , or heavy-element-rich, star. Its formation approximately 4.6 billion years ago may have been triggered by shockwaves from one or more nearby supernovae . This
8715-444: The neutrinos had changed flavor by the time they were detected. The Sun has a stellar magnetic field that varies across its surface. Its polar field is 1–2 gauss (0.0001–0.0002 T ), whereas the field is typically 3,000 gauss (0.3 T) in features on the Sun called sunspots and 10–100 gauss (0.001–0.01 T) in solar prominences . The magnetic field varies in time and location. The quasi-periodic 11-year solar cycle
8820-419: The past 4.6 billion years, the amount of helium and its location within the Sun has gradually changed. The proportion of helium within the core has increased from about 24% to about 60% due to fusion, and some of the helium and heavy elements have settled from the photosphere toward the center of the Sun because of gravity . The proportions of heavier elements are unchanged. Heat is transferred outward from
8925-414: The photospheric surface. Both coronal mass ejections and high-speed streams of solar wind carry plasma and the interplanetary magnetic field outward into the Solar System. The effects of solar activity on Earth include auroras at moderate to high latitudes and the disruption of radio communications and electric power . Solar activity is thought to have played a large role in the formation and evolution of
9030-455: The planets is weak and does not significantly affect the shape of the Sun. The Sun rotates faster at its equator than at its poles . This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at
9135-473: The poles. Viewed from Earth as it orbits the Sun, the apparent rotational period of the Sun at its equator is about 28 days. Viewed from a vantage point above its north pole, the Sun rotates counterclockwise around its axis of spin. A survey of solar analogs suggest the early Sun was rotating up to ten times faster than it does today. This would have made the surface much more active, with greater X-ray and UV emission. Sun spots would have covered 5–30% of
9240-557: The poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change, then, in the overall polarity of the Sun's large-scale magnetic field. The Sun's magnetic field leads to many effects that are collectively called solar activity . Solar flares and coronal mass ejections tend to occur at sunspot groups. Slowly changing high-speed streams of solar wind are emitted from coronal holes at
9345-448: The primordial Solar System. Typically, the solar heavy-element abundances described above are measured both by using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by the settling of heavy elements. The two methods generally agree well. The core of
9450-470: The probe had passed through the heliopause and entered the interstellar medium , and indeed did so on August 25, 2012, at approximately 122 astronomical units (18 Tm) from the Sun. The heliosphere has a heliotail which stretches out behind it due to the Sun's peculiar motion through the galaxy. On April 28, 2021, NASA's Parker Solar Probe encountered the specific magnetic and particle conditions at 18.8 solar radii that indicated that it penetrated
9555-427: The red-giant phase of the star's evolution. The red-giant phase typically lasts only around a billion years in total for a solar mass star, almost all of which is spent on the red-giant branch. The horizontal-branch and asymptotic-giant-branch phases proceed tens of times faster. If the star has about 0.2 to 0.5 M ☉ , it is massive enough to become a red giant but does not have enough mass to initiate
9660-634: The remaining hydrogen locked in the core is consumed in only a few billion more years. Depending on mass, the temperature and luminosity continue to increase for a time during hydrogen shell burning, the star can become hotter than the Sun and tens of times more luminous than when it formed although still not as luminous as the Sun. After some billions more years, they start to become less luminous and cooler even though hydrogen shell burning continues. These become cool helium white dwarfs. Very-high-mass stars develop into supergiants that follow an evolutionary track that takes them back and forth horizontally over
9765-513: The seasonal fruits, especially mango , watermelon , and jackfruit become available. Green unripe mangoes are a particular delicacy of the month. This Nepal -related article is a stub . You can help Misplaced Pages by expanding it . Sun The Sun is the star at the center of the Solar System . It is a massive, nearly perfect sphere of hot plasma , heated to incandescence by nuclear fusion reactions in its core, radiating
9870-437: The shorter wavelengths. Solar ultraviolet radiation ionizes Earth's dayside upper atmosphere, creating the electrically conducting ionosphere . Ultraviolet light from the Sun has antiseptic properties and can be used to sanitize tools and water. This radiation causes sunburn , and has other biological effects such as the production of vitamin D and sun tanning . It is the main cause of skin cancer . Ultraviolet light
9975-410: The so-called red clump in the H–R diagram. An analogous process occurs when the core helium is exhausted, and the star collapses once again, causing helium in a shell to begin fusing. At the same time, hydrogen may begin fusion in a shell just outside the burning helium shell. This puts the star onto the asymptotic giant branch , a second red-giant phase. The helium fusion results in the build-up of
10080-425: The solar cycle progresses toward its maximum , sunspots tend to form closer to the solar equator, a phenomenon known as Spörer's law . The largest sunspots can be tens of thousands of kilometers across. An 11-year sunspot cycle is half of a 22-year Babcock –Leighton dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields. At solar-cycle maximum,
10185-449: The star outside the shell must expand. The detailed physical processes that cause this are complex. Still, the behavior is necessary to satisfy simultaneous conservation of gravitational and thermal energy in a star with the shell structure. The core contracts and heats up due to the lack of fusion, and so the outer layers of the star expand greatly, absorbing most of the extra energy from shell fusion. This process of cooling and expanding
10290-497: The supply of hydrogen in its core and has begun thermonuclear fusion of hydrogen in a shell surrounding the core. They have radii tens to hundreds of times larger than that of the Sun . However, their outer envelope is lower in temperature, giving them a yellowish-orange hue. Despite the lower energy density of their envelope, red giants are many times more luminous than the Sun because of their great size. Red-giant-branch stars have luminosities up to nearly three thousand times that of
10395-417: The surface. The rotation rate was gradually slowed by magnetic braking , as the Sun's magnetic field interacted with the outflowing solar wind. A vestige of this rapid primordial rotation still survives at the Sun's core, which has been found to be rotating at a rate of once per week; four times the mean surface rotation rate. The Sun consists mainly of the elements hydrogen and helium . At this time in
10500-431: The tachocline picks up heat and expands, thereby reducing its density and allowing it to rise. As a result, an orderly motion of the mass develops into thermal cells that carry most of the heat outward to the Sun's photosphere above. Once the material diffusively and radiatively cools just beneath the photospheric surface, its density increases, and it sinks to the base of the convection zone, where it again picks up heat from
10605-424: The temperature of the corona, at least some of its heat is known to be from magnetic reconnection . The corona is the extended atmosphere of the Sun, which has a volume much larger than the volume enclosed by the Sun's photosphere. A flow of plasma outward from the Sun into interplanetary space is the solar wind . The heliosphere, the tenuous outermost atmosphere of the Sun, is filled with solar wind plasma and
10710-422: The tenuous layers above the photosphere. The photosphere has a particle density of ~10 m (about 0.37% of the particle number per volume of Earth's atmosphere at sea level). The photosphere is not fully ionized—the extent of ionization is about 3%, leaving almost all of the hydrogen in atomic form. The Sun's atmosphere is composed of five layers: the photosphere, the chromosphere , the transition region ,
10815-404: The top of the radiative zone and the convective cycle continues. At the photosphere, the temperature has dropped 350-fold to 5,700 K (9,800 °F) and the density to only 0.2 g/m (about 1/10,000 the density of air at sea level, and 1 millionth that of the inner layer of the convective zone). The thermal columns of the convection zone form an imprint on the surface of the Sun giving it
10920-418: The transfer of energy through this zone is by radiation instead of thermal convection. Ions of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions. The density drops a hundredfold (from 20 000 kg/m to 200 kg/m ) between 0.25 solar radii and 0.7 radii, the top of the radiative zone. The radiative zone and the convective zone are separated by
11025-416: The way by which they generate energy: Many of the well-known bright stars are red giants because they are luminous and moderately common. The K0 RGB star Arcturus is 36 light-years away, and Gacrux is the nearest M-class giant at 88 light-years' distance. A red giant will usually produce a planetary nebula and become a white dwarf at the end of its life. A red giant is a star that has exhausted
#493506