Misplaced Pages

Brevard Fault

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks.

#511488

43-634: The Brevard Fault Zone is a 700-km long and several km-wide thrust fault that extends from the North Carolina-Virginia border, runs through the north metro Atlanta area, and ends near Montgomery , Alabama. It is an important Paleozoic era feature in the uplift of the Appalachian Mountains . Arthur Keith from the United States Geological Survey first identified an exposed segment of

86-455: A fault-bend fold . Fault-propagation folds form at the tip of a thrust fault where propagation along the decollement has ceased, but displacement on the thrust behind the fault tip continues. The formation of an asymmetric anticline-syncline fold pair accommodates the continuing displacement. As displacement continues, the thrust tip starts to propagate along the axis of the syncline. Such structures are also known as tip-line folds . Eventually,

129-480: A thin section using a method like the Gazzi-Dickinson Method . This yields the relative percentages of quartz, feldspar, and lithic grains and the amount of clay matrix. The composition of a sandstone can provide important information on the genesis of the sediments when used with a triangular Q uartz, F eldspar, L ithic fragment ( QFL diagrams ). However, geologist have not been able to agree on

172-478: A sandstone goes through as the degree of kinetic processing of the sediments increases. Dott's (1964) sandstone classification scheme is one of many such schemes used by geologists for classifying sandstones. Dott's scheme is a modification of Gilbert's classification of silicate sandstones, and it incorporates R.L. Folk's dual textural and compositional maturity concepts into one classification system. The philosophy behind combining Gilbert's and R. L. Folk's schemes

215-462: A set of boundaries separating regions of the QFL triangle. Visual aids are diagrams that allow geologists to interpret different characteristics of a sandstone. For example, a QFL chart can be marked with a provenance model that shows the likely tectonic origin of sandstones with various compositions of framework grains. Likewise, the stage of textural maturity chart illustrates the different stages that

258-409: A thrust that has propagated along the lower detachment, known as the floor thrust , cuts up to the upper detachment, known as the roof thrust , it forms a ramp within the stronger layer. With continued displacement on the thrust, higher stresses are developed in the footwall of the ramp due to the bend on the fault. This may cause renewed propagation along the floor thrust until it again cuts up to join

301-445: A twofold classification: Cement is what binds the siliciclastic framework grains together. Cement is a secondary mineral that forms after deposition and during burial of the sandstone. These cementing materials may be either silicate minerals or non-silicate minerals, such as calcite. Sandstone that becomes depleted of its cement binder through weathering gradually becomes friable and unstable. This process can be somewhat reversed by

344-837: Is a distinction that can be recognized in the field . In turn, the distinction between an orthoquartzite and a metaquartzite is the onset of recrystallization of existing grains. The dividing line may be placed at the point where strained quartz grains begin to be replaced by new, unstrained, small quartz grains, producing a mortar texture that can be identified in thin sections under a polarizing microscope. With increasing grade of metamorphism, further recrystallization produces foam texture , characterized by polygonal grains meeting at triple junctions, and then porphyroblastic texture , characterized by coarse, irregular grains, including some larger grains ( porphyroblasts .) Sandstone has been used since prehistoric times for construction, decorative art works and tools. It has been widely employed around

387-404: Is characterized by ductile behavior as indicated by the widespread presence of mylonitic and phyllonitic rocks. Thrust fault A thrust fault is a type of reverse fault that has a dip of 45 degrees or less. If the angle of the fault plane is lower (often less than 15 degrees from the horizontal ) and the displacement of the overlying block is large (often in the kilometer range)

430-550: Is composed of quartz or feldspar , because they are the most resistant minerals to the weathering processes at the Earth's surface. Like uncemented sand , sandstone may be imparted any color by impurities within the minerals, but the most common colors are tan, brown, yellow, red, grey, pink, white, and black. Because sandstone beds can form highly visible cliffs and other topographic features, certain colors of sandstone have become strongly identified with certain regions, such as

473-412: Is difficult to detect, especially in peneplain areas. Thrust faults, particularly those involved in thin-skinned style of deformation, have a so-called ramp-flat geometry. Thrusts mainly propagate along zones of weakness within a sedimentary sequence, such as mudstones or halite layers; these parts of the thrust are called decollements . If the effectiveness of the decollement becomes reduced,

SECTION 10

#1732773405512

516-523: Is likely formed during eogenesis. Deeper burial is accompanied by mesogenesis , during which most of the compaction and lithification takes place. Compaction takes place as the sand comes under increasing pressure from overlying sediments. Sediment grains move into more compact arrangements, ductile grains (such as mica grains) are deformed, and pore space is reduced. In addition to this physical compaction, chemical compaction may take place via pressure solution . Points of contact between grains are under

559-431: Is redeposited in the unstrained pore spaces. Mechanical compaction takes place primarily at depths less than 1,000 meters (3,300 ft). Chemical compaction continues to depths of 2,000 meters (6,600 ft), and most cementation takes place at depths of 2,000–5,000 meters (6,600–16,400 ft). Unroofing of buried sandstone is accompanied by telogenesis , the third and final stage of diagenesis. As erosion reduces

602-443: Is that it is better able to "portray the continuous nature of textural variation from mudstone to arenite and from stable to unstable grain composition". Dott's classification scheme is based on the mineralogy of framework grains, and on the type of matrix present in between the framework grains. In this specific classification scheme, Dott has set the boundary between arenite and wackes at 15% matrix. In addition, Dott also breaks up

645-545: The Appalachians are prominent examples of compressional orogenies with numerous overthrust faults. Thrust faults occur in the foreland basin , marginal to orogenic belts. Here, compression does not result in appreciable mountain building, which is mostly accommodated by folding and stacking of thrusts. Instead, thrust faults generally cause a thickening of the stratigraphic section . When thrusts are developed in orogens formed in previously rifted margins, inversion of

688-412: The ocean trench margin of subduction zones, where oceanic sediments are scraped off the subducted plate and accumulate. Here, the accretionary wedge must thicken by up to 200%, and this is achieved by stacking thrust fault upon thrust fault in a melange of disrupted rock, often with chaotic folding. Here, ramp flat geometries are not usually observed because the compressional force is at a steep angle to

731-624: The Brevard Fault Zone has undergone both thrust and strike-slip movement. The Brevard Fault Zone is a part of a much larger system of faults at the base of the Appalachian thrust sheet that played a key role in uplifting the Appalachian Mountains. The extent of its role remains uncertain because most of the fault is buried beneath Quaternary sediment. Many studies of the fault come from Grandfather Mountain in

774-527: The Brevard Fault in 1905, believing it to be a syncline . In 1932, Anna Jonas Stose ’s used local petrology to identify the site as a thrust fault . Stose, the first to trace the fault, is also credited with identifying that the rocks in the area must have been formed through deformation , placing the Brevard Fault in a regional perspective. Using modern methods of seismic reflection and high-resolution profiling, geologists have since discovered that

817-510: The Earth's surface, it is called a blind thrust fault. Because of the lack of surface evidence, blind thrust faults are difficult to detect until rupture. The destructive 1994 earthquake in Northridge, Los Angeles, California , was caused by a previously undiscovered blind thrust fault. Because of their low dip , thrusts are also difficult to appreciate in mapping, where lithological offsets are generally subtle and stratigraphic repetition

860-559: The Linville Fall Quadrangle , which contains the exposed region that was first discovered by Arthur Keith. This region is only 1–3 km of its 700 km length. The Brevard Fault experienced multiple phases of deformation and minimal stratigraphic displacement. The Brevard Fault Zone contains diverse lithologies , but it is primarily composed of mylonitic metagraywacke, schist , amphibolite , and gneiss that underwent metamorphism 350–360 million years ago. The Fault Zone

903-491: The application of tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) which will deposit amorphous silicon dioxide between the sand grains. The reaction is as follows. Pore space includes the open spaces within a rock or a soil. The pore space in a rock has a direct relationship to the porosity and permeability of the rock. The porosity and permeability are directly influenced by the way the sand grains are packed together. Sandstones are typically classified by point-counting

SECTION 20

#1732773405512

946-514: The buried paleo-rifts can induce the nucleation of thrust ramps. Foreland basin thrusts also usually observe the ramp-flat geometry, with thrusts propagating within units at very low angle "flats" (at 1–5 degrees) and then moving up-section in steeper ramps (at 5–20 degrees) where they offset stratigraphic units. Thrusts have also been detected in cratonic settings, where "far-foreland" deformation has advanced into intracontinental areas. Thrusts and duplexes are also found in accretionary wedges in

989-473: The common minerals most resistant to weathering processes at the Earth's surface, as seen in the Goldich dissolution series . Framework grains can be classified into several different categories based on their mineral composition: Matrix is very fine material, which is present within interstitial pore space between the framework grains. The nature of the matrix within the interstitial pore space results in

1032-462: The crust by thickening the section rather than by folding and deformation. Large overthrust faults occur in areas that have undergone great compressional forces. These conditions exist in the orogenic belts that result from either two continental tectonic collisions or from subduction zone accretion. The resultant compressional forces produce mountain ranges. The Himalayas , the Alps , and

1075-456: The depositional environment, older sand is buried by younger sediments, and it undergoes diagenesis . This mostly consists of compaction and lithification of the sand. Early stages of diagenesis, described as eogenesis , take place at shallow depths (a few tens of meters) and are characterized by bioturbation and mineralogical changes in the sands, with only slight compaction. The red hematite that gives red bed sandstones their color

1118-407: The depth of burial, renewed exposure to meteoric water produces additional changes to the sandstone, such as dissolution of some of the cement to produce secondary porosity . Framework grains are sand-sized (0.0625-to-2-millimeter (0.00246 to 0.07874 in) diameter) detrital fragments that make up the bulk of a sandstone. Most framework grains are composed of quartz or feldspar , which are

1161-446: The different types of framework grains that can be present in a sandstone into three major categories: quartz, feldspar, and lithic grains. When sandstone is subjected to the great heat and pressure associated with regional metamorphism , the individual quartz grains recrystallize, along with the former cementing material, to form the metamorphic rock called quartzite . Most or all of the original texture and sedimentary structures of

1204-430: The fault is called an overthrust or overthrust fault . Erosion can remove part of the overlying block, creating a fenster (or window ) – when the underlying block is exposed only in a relatively small area. When erosion removes most of the overlying block, leaving island-like remnants resting on the lower block, the remnants are called klippen (singular klippe ). If the fault plane terminates before it reaches

1247-433: The greatest strain, and the strained mineral is more soluble than the rest of the grain. As a result, the contact points are dissolved away, allowing the grains to come into closer contact. Lithification follows closely on compaction, as increased temperatures at depth hasten deposition of cement that binds the grains together. Pressure solution contributes to cementing, as the mineral dissolved from strained contact points

1290-442: The hardness of individual grains, uniformity of grain size and friability of their structure, some types of sandstone are excellent materials from which to make grindstones , for sharpening blades and other implements. Non-friable sandstone can be used to make grindstones for grinding grain, e.g., gritstone . A type of pure quartz sandstone, orthoquartzite, with more of 90–95 percent of quartz, has been proposed for nomination to

1333-410: The horses, which dip away from the foreland. Occasionally, the displacement on the individual horses is more significant, such that each horse lies more or less vertically above the other; this is known as an antiformal stack or imbricate stack . If the individual displacements are still greater, the horses have a foreland dip. Duplexing is a very efficient mechanism of accommodating the shortening of

Brevard Fault - Misplaced Pages Continue

1376-493: The much lower temperatures and pressures associated with diagenesis of sedimentary rock, but diagenesis has cemented the rock so thoroughly that microscopic examination is necessary to distinguish it from metamorphic quartzite. The term orthoquartzite is used to distinguish such sedimentary rock from metaquartzite produced by metamorphism. By extension, the term orthoquartzite has occasionally been more generally applied to any quartz-cemented quartz arenite . Orthoquartzite (in

1419-441: The name of Thrust-planes. They are strictly reversed faults, but with so low a hade that the rocks on their upthrown side have been, as it were, pushed horizontally forward. Sandstone Sandstone is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains, cemented together by another mineral. Sandstones comprise about 20–25% of all sedimentary rocks . Most sandstone

1462-464: The narrow sense) is often 99% SiO 2 with only very minor amounts of iron oxide and trace resistant minerals such as zircon , rutile and magnetite . Although few fossils are normally present, the original texture and sedimentary structures are preserved. The typical distinction between a true orthoquartzite and an ordinary quartz sandstone is that an orthoquartzite is so highly cemented that it will fracture across grains, not around them. This

1505-638: The product of physical and chemical weathering of bedrock. Weathering and erosion are most rapid in areas of high relief, such as volcanic arcs , areas of continental rifting , and orogenic belts . Eroded sand is transported by rivers or by the wind from its source areas to depositional environments where tectonics has created accommodation space for sediments to accumulate. Forearc basins tend to accumulate sand rich in lithic grains and plagioclase . Intracontinental basins and grabens along continental margins are also common environments for deposition of sand. As sediments continue to accumulate in

1548-402: The propagating thrust tip may reach another effective decollement layer, and a composite fold structure will develop with fault-bending and fault-propagation folds' characteristics. Duplexes occur where two decollement levels are close to each other within a sedimentary sequence, such as the top and base of a relatively strong sandstone layer bounded by two relatively weak mudstone layers. When

1591-712: The red rock deserts of Arches National Park and other areas of the American Southwest . Rock formations composed of sandstone usually allow the percolation of water and other fluids and are porous enough to store large quantities, making them valuable aquifers and petroleum reservoirs . Quartz-bearing sandstone can be changed into quartzite through metamorphism , usually related to tectonic compression within orogenic belts . Sandstones are clastic in origin (as opposed to either organic , like chalk and coal , or chemical , like gypsum and jasper ). The silicate sand grains from which they form are

1634-400: The roof thrust. Further displacement then takes place via the newly created ramp. This process may repeat many times, forming a series of fault-bounded thrust slices known as imbricates or horses , each with the geometry of a fault-bend fold of small displacement. The final result is typically a lozenge-shaped duplex. Most duplexes have only small displacements on the bounding faults between

1677-417: The sandstone are erased by the metamorphism. The grains are so tightly interlocked that when the rock is broken, it fractures through the grains to form an irregular or conchoidal fracture. Geologists had recognized by 1941 that some rocks show the macroscopic characteristics of quartzite, even though they have not undergone metamorphism at high pressure and temperature. These rocks have been subject only to

1720-890: The sedimentary layering. Thrust faults were unrecognised until the work of Arnold Escher von der Linth , Albert Heim and Marcel Alexandre Bertrand in the Alps working on the Glarus Thrust ; Charles Lapworth , Ben Peach and John Horne working on parts of the Moine Thrust in the Scottish Highlands ; Alfred Elis Törnebohm in the Scandinavian Caledonides and R. G. McConnell in the Canadian Rockies. The realisation that older strata could, via faulting, be found above younger strata

1763-438: The thrust will tend to cut up the section to a higher stratigraphic level until it reaches another effective decollement where it can continue as bedding parallel flat. The part of the thrust linking the two flats is known as a ramp and typically forms at an angle of about 15°–30° to the bedding. Continued displacement on a thrust over a ramp produces a characteristic fold geometry known as a ramp anticline or, more generally, as

Brevard Fault - Misplaced Pages Continue

1806-626: The world in constructing temples, churches, homes and other buildings, and in civil engineering . Although its resistance to weathering varies, sandstone is easy to work. That makes it a common building and paving material, including in asphalt concrete . However, some types that have been used in the past, such as the Collyhurst sandstone used in North West England , have had poor long-term weather resistance, necessitating repair and replacement in older buildings. Because of

1849-439: Was arrived at more or less independently by geologists in all these areas during the 1880s. Geikie in 1884 coined the term thrust-plane to describe this special set of faults. He wrote: By a system of reversed faults, a group of strata is made to cover a great breadth of ground and actually to overlie higher members of the same series. The most extraordinary dislocations, however, are those to which for distinction we have given

#511488