General Applied Science Laboratory ( GASL ) is an American aerospace company, known as a pioneer of hypersonic propulsion.
33-524: GASL can refer to: General Applied Science Laboratory , purchased by Alliant Techsystems in 2003 German Academy of Sciences Leopoldina , in German Deutsche Akademie der Naturforscher Leopoldina German-American Soccer League , historic name of Cosmopolitan Soccer League German acronym for Gesellschaft der Arno-Schmidt-Leser , society for author Arno Schmidt Topics referred to by
66-425: A channel becomes supersonic, one significant change takes place. The conservation of mass flow rate leads one to expect that contracting the flow channel would increase the flow speed (i.e. making the channel narrower results in faster air flow) and at subsonic speeds this holds true. However, once the flow becomes supersonic, the relationship of flow area and speed is reversed: expanding the channel actually increases
99-439: A corresponding speed of sound (Mach 1) of 295.0 meters per second (967.8 ft/s; 659.9 mph; 1,062 km/h; 573.4 kn), 86.7% of the sea level value. The terms subsonic and supersonic are used to refer to speeds below and above the local speed of sound, and to particular ranges of Mach values. This occurs because of the presence of a transonic regime around flight (free stream) M = 1 where approximations of
132-711: A division named "Marquardt Marine Products", which was sold to Ametek in 1971. In 1967, Antonio Ferri resigned as President of GASL and Louis M. Nucci was elected president. Antonio Ferri became the Vincent Astor Professor of Aerospace Sciences at New York University . The company participated in the National Aero-Space Plane (X-30) and NASA X-43 programs in the 1990s. GASL has a propulsion and combustion test complex with seven high pressure, high temperature test cells, and NASA 's Hypersonic Pulse Facility (HYPULSE). GASL, Inc.
165-407: A gas or a liquid. The boundary can be travelling in the medium, or it can be stationary while the medium flows along it, or they can both be moving, with different velocities : what matters is their relative velocity with respect to each other. The boundary can be the boundary of an object immersed in the medium, or of a channel such as a nozzle , diffuser or wind tunnel channelling the medium. As
198-466: A sharp object, there is no air between the nose and the shock wave: the shock wave starts from the nose.) As the Mach number increases, so does the strength of the shock wave and the Mach cone becomes increasingly narrow. As the fluid flow crosses the shock wave, its speed is reduced and temperature, pressure, and density increase. The stronger the shock, the greater the changes. At high enough Mach numbers
231-599: A supersonic compressible flow can be found from the Rayleigh supersonic pitot equation (above) using parameters for air: M ≈ 0.88128485 ( q c p + 1 ) ( 1 − 1 7 M 2 ) 2.5 {\displaystyle \mathrm {M} \approx 0.88128485{\sqrt {\left({\frac {q_{c}}{p}}+1\right)\left(1-{\frac {1}{7\,\mathrm {M} ^{2}}}\right)^{2.5}}}} where: As can be seen, M appears on both sides of
264-769: A supersonic compressible flow is derived from the Rayleigh supersonic pitot equation: p t p = [ γ + 1 2 M 2 ] γ γ − 1 ⋅ [ γ + 1 1 − γ + 2 γ M 2 ] 1 γ − 1 {\displaystyle {\frac {p_{t}}{p}}=\left[{\frac {\gamma +1}{2}}\mathrm {M} ^{2}\right]^{\frac {\gamma }{\gamma -1}}\cdot \left[{\frac {\gamma +1}{1-\gamma +2\gamma \,\mathrm {M} ^{2}}}\right]^{\frac {1}{\gamma -1}}} Mach number
297-461: Is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound . It is named after the Austrian physicist and philosopher Ernst Mach . M = u c , {\displaystyle \mathrm {M} ={\frac {u}{c}},} where: By definition, at Mach 1, the local flow velocity u is equal to
330-642: Is a function of temperature and true airspeed. Aircraft flight instruments , however, operate using pressure differential to compute Mach number, not temperature. Assuming air to be an ideal gas , the formula to compute Mach number in a subsonic compressible flow is found from Bernoulli's equation for M < 1 (above): M = 5 [ ( q c p + 1 ) 2 7 − 1 ] {\displaystyle \mathrm {M} ={\sqrt {5\left[\left({\frac {q_{c}}{p}}+1\right)^{\frac {2}{7}}-1\right]}}\,} The formula to compute Mach number in
363-583: Is different from Wikidata All article disambiguation pages All disambiguation pages General Applied Science Laboratory General Applied Science Laboratory was founded in 1956 by Antonio Ferri and became a developer and testing house for advanced propulsion systems. Another early researcher was Theodore von Kármán . Its expertise in hypersonic harsh environments has allowed it to research and test materials and methods for extreme high temperatures as well as combustion systems relevant to current power generation and clean energy. The company
SECTION 10
#1732794588055396-418: Is not a constant; in a gas, it increases proportionally to the square root of the absolute temperature , and since atmospheric temperature generally decreases with increasing altitude between sea level and 11,000 meters (36,089 ft), the speed of sound also decreases. For example, the standard atmosphere model lapses temperature to −56.5 °C (−69.7 °F) at 11,000 meters (36,089 ft) altitude, with
429-951: Is now based in Ronkonkoma, New York . In 1965, GASL became a subsidiary of The Marquardt Corporation of Van Nuys, California. At that time the company was located in Westbury, Long Island, New York. GASL also had an electronics division with two locations in Syosset, Long Island. Part of the electronics operation was the manufacture of Janus doppler navigation devices for docking large ships. GASL also manufactured oscilloscopes and produced very advanced devices for laboratory use. The electronic products operations were made part of Marquardt Industrial Products Company (MIPCO), headquartered in Pomona, California, in 1967. The Janus products were ultimately transferred to Van Nuys, California, and formed
462-621: Is that range of speeds within which the airflow over different parts of an aircraft is between subsonic and supersonic. So the regime of flight from Mcrit up to Mach 1.3 is called the transonic range. Aircraft designed to fly at supersonic speeds show large differences in their aerodynamic design because of the radical differences in the behavior of flows above Mach 1. Sharp edges, thin aerofoil sections, and all-moving tailplane / canards are common. Modern combat aircraft must compromise in order to maintain low-speed handling. Flight can be roughly classified in six categories: At transonic speeds,
495-750: The Navier-Stokes equations used for subsonic design no longer apply; the simplest explanation is that the flow around an airframe locally begins to exceed M = 1 even though the free stream Mach number is below this value. Meanwhile, the supersonic regime is usually used to talk about the set of Mach numbers for which linearised theory may be used, where for example the ( air ) flow is not chemically reacting, and where heat-transfer between air and vehicle may be reasonably neglected in calculations. Generally, NASA defines high hypersonic as any Mach number from 10 to 25, and re-entry speeds as anything greater than Mach 25. Aircraft operating in this regime include
528-483: The Space Shuttle and various space planes in development. The subsonic speed range is that range of speeds within which, all of the airflow over an aircraft is less than Mach 1. The critical Mach number (Mcrit) is lowest free stream Mach number at which airflow over any part of the aircraft first reaches Mach 1. So the subsonic speed range includes all speeds that are less than Mcrit. The transonic speed range
561-551: The compressibility characteristics of fluid flow : the fluid (air) behaves under the influence of compressibility in a similar manner at a given Mach number, regardless of other variables. As modeled in the International Standard Atmosphere , dry air at mean sea level , standard temperature of 15 °C (59 °F), the speed of sound is 340.3 meters per second (1,116.5 ft/s; 761.23 mph; 1,225.1 km/h; 661.49 kn). The speed of sound
594-400: The sound barrier ), a large pressure difference is created just in front of the aircraft . This abrupt pressure difference, called a shock wave , spreads backward and outward from the aircraft in a cone shape (a so-called Mach cone ). It is this shock wave that causes the sonic boom heard as a fast moving aircraft travels overhead. A person inside the aircraft will not hear this. The higher
627-562: The GASL team at ATK (NYSE: ATK), executed a successful test flight achieving Mach 8.5 and acquiring the first-ever data on dual-mode-to-scramjet propulsion transition. GASL provides research, engineering and testing to government and businesses in 12 primary areas: 38°53′41″N 77°4′21″W / 38.89472°N 77.07250°W / 38.89472; -77.07250 Mach number The Mach number ( M or Ma ), often only Mach , ( / m ɑː k / ; German: [max] )
660-399: The Mach number is defined as the ratio of two speeds, it is a dimensionless quantity. If M < 0.2–0.3 and the flow is quasi-steady and isothermal , compressibility effects will be small and simplified incompressible flow equations can be used. The Mach number is named after the physicist and philosopher Ernst Mach , in honour of his achievements, according to a proposal by
693-809: The NASA-HYPULSE test facility to simulate Mach 7 and Mach 10 flight speeds. In January 2010, ATK's Center for Energy and Aerospace Innovation (CEAI) was dedicated at GASL to develop clean energy technologies. One project, funded by the US Advanced Research Projects Agency-Energy (ARPA-E) uses experience from hypersonic wind tunnel tests to improve CO 2 capture from power plants. Another 2010 project uses GASL expertise in managing hydrogen to develop storage systems for hydrogen vehicles . In May 2012, The Hypersonic International Flight Research Experimentation (HIFiRE), Flight 2 Payload System, designed and built by
SECTION 20
#1732794588055726-456: The aeronautical engineer Jakob Ackeret in 1929. The word Mach is always capitalized since it derives from a proper name, and since the Mach number is a dimensionless quantity rather than a unit of measure , the number comes after the word Mach. It was also known as Mach's number by Lockheed when reporting the effects of compressibility on the P-38 aircraft in 1942. Mach number is a measure of
759-473: The equation, and for practical purposes a root-finding algorithm must be used for a numerical solution (the equation is a septic equation in M and, though some of these may be solved explicitly, the Abel–Ruffini theorem guarantees that there exists no general form for the roots of these polynomials). It is first determined whether M is indeed greater than 1.0 by calculating M from the subsonic equation. If M
792-408: The flow field around the object includes both sub- and supersonic parts. The transonic period begins when first zones of M > 1 flow appear around the object. In case of an airfoil (such as an aircraft's wing), this typically happens above the wing. Supersonic flow can decelerate back to subsonic only in a normal shock; this typically happens before the trailing edge. (Fig.1a) As the speed increases,
825-405: The same term [REDACTED] This disambiguation page lists articles associated with the title GASL . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=GASL&oldid=1073129991 " Category : Disambiguation pages Hidden categories: Short description
858-463: The speed of sound is known, the Mach number at which an aircraft is flying can be calculated by M = u c {\displaystyle \mathrm {M} ={\frac {u}{c}}} where: and the speed of sound varies with the thermodynamic temperature as: c = γ ⋅ R ∗ ⋅ T , {\displaystyle c={\sqrt {\gamma \cdot R_{*}\cdot T}},} where: If
891-779: The speed of sound is not known, Mach number may be determined by measuring the various air pressures (static and dynamic) and using the following formula that is derived from Bernoulli's equation for Mach numbers less than 1.0. Assuming air to be an ideal gas , the formula to compute Mach number in a subsonic compressible flow is: M = 2 γ − 1 [ ( q c p + 1 ) γ − 1 γ − 1 ] {\displaystyle \mathrm {M} ={\sqrt {{\frac {2}{\gamma -1}}\left[\left({\frac {q_{c}}{p}}+1\right)^{\frac {\gamma -1}{\gamma }}-1\right]}}\,} where: The formula to compute Mach number in
924-418: The speed of sound. At Mach 0.65, u is 65% of the speed of sound (subsonic), and, at Mach 1.35, u is 35% faster than the speed of sound (supersonic). The local speed of sound, and hence the Mach number, depends on the temperature of the surrounding gas. The Mach number is primarily used to determine the approximation with which a flow can be treated as an incompressible flow . The medium can be
957-405: The speed, the more narrow the cone; at just over M = 1 it is hardly a cone at all, but closer to a slightly concave plane. At fully supersonic speed, the shock wave starts to take its cone shape and flow is either completely supersonic, or (in case of a blunt object), only a very small subsonic flow area remains between the object's nose and the shock wave it creates ahead of itself. (In the case of
990-425: The speed. The obvious result is that in order to accelerate a flow to supersonic, one needs a convergent-divergent nozzle, where the converging section accelerates the flow to sonic speeds, and the diverging section continues the acceleration. Such nozzles are called de Laval nozzles and in extreme cases they are able to reach hypersonic speeds (Mach 13 (15,900 km/h; 9,900 mph) at 20 °C). When
1023-399: The temperature increases so much over the shock that ionization and dissociation of gas molecules behind the shock wave begin. Such flows are called hypersonic. It is clear that any object travelling at hypersonic speeds will likewise be exposed to the same extreme temperatures as the gas behind the nose shock wave, and hence choice of heat-resistant materials becomes important. As a flow in
GASL - Misplaced Pages Continue
1056-437: The zone of M > 1 flow increases towards both leading and trailing edges. As M = 1 is reached and passed, the normal shock reaches the trailing edge and becomes a weak oblique shock: the flow decelerates over the shock, but remains supersonic. A normal shock is created ahead of the object, and the only subsonic zone in the flow field is a small area around the object's leading edge. (Fig.1b) When an aircraft exceeds Mach 1 (i.e.
1089-477: Was founded in 1956 as Gruen Applied Science Laboratories, Inc. Later in 1958 it changed its name to General Applied Science Laboratories, Inc. and subsequently changed its name to GASL, Inc. in 1995. On November 20, 2003, Alliant Techsystems (ATK) acquired GASL from Allied Aerospace. GASL developed Scramjet technology for propulsion such as the GASL Projectile fired in 2001. GASL upgraded
#54945