The General Electric CF6 , US military designations F103 and F138 , is a family of high-bypass turbofan engines produced by GE Aviation . Based on the TF39 , the first high-power high-bypass jet engine, the CF6 powers a wide variety of civilian airliners. The basic engine core also powers the LM2500 and LM6000 marine and power generation turboshafts . It is gradually being replaced by the newer GEnx family.
26-766: After developing the TF39 for the C-5 Galaxy in the late 1960s, GE offered a more powerful variant for civilian use, the CF6. GE quickly found interest in two designs being offered for a recent Eastern Airlines contract, the Lockheed L-1011 and the McDonnell Douglas DC-10 . Lockheed eventually selected the Rolls-Royce RB211 , but the latter stuck with the CF6 and entered service in 1971. It
52-464: A 25:1 compressor pressure ratio, and a 2,500 °F (1,370 °C) turbine temperature made possible by advanced forced-air cooling. The first engine went for testing in 1965. Between 1968 and 1971, 463 TF39-1 and -1A engines were produced and delivered to power the C-5A fleet. The TF39 was a revolutionary 1960s engine rated from 41,000 to 43,000 lb f (191 to 205 kN ) of thrust. It introduced use of
78-555: A 62.5-inch-diameter lift-fan driven by a gas generator (J85). The bpr in VTOL operation was 12.3. This tip-turbine driven lift-fan concept was turned 90 degrees and developed as an 80-inch-diameter "cruise fan" demonstrator, driven by a J79 gas generator. For the CX-X program GE demonstrated a half-scale engine, the GE1/6, with 15,830 lb thrust and an sfc of 0.336. This was developed into
104-546: A large by-pass ratio which, together with advances in core technology, contributed to a significant improvement in fuel efficiency over engines available at the time. The engine included features developed from previous GE engines: The high-bypass ratio of 8:1 for the TF-39 had its origins in the lift-fan technology demonstrated by GE in the XV-5 Vertifan aircraft. This aircraft had two X353-5 engines, each consisting of
130-698: A relatively high bypass ratio of 5.72. The overall pressure ratio of the compression system is 24.3. At maximum take-off power, the engine develops a static thrust of 41,500 lb (185.05 kN). The General Electric CF6-32 was to be a lower thrust derivative of the CF6-6 for the Boeing 757. In 1981, GE formally abandoned development of the engine, leaving the Boeing 757 engine market to Pratt & Whitney and Rolls-Royce. The CF6-50 series are high-bypass turbofan engines rated between 51,000 and 54,000 lb (227.41 to 240.79 kN, or '25 tons') of thrust. The CF6-50
156-461: Is 28.0, with a bypass ratio of 4.66. Static thrust is 48,000 lb f (214 kN). The basic mechanical configuration is the same as the -50 series. For the CF6-80C2-A1, the fan diameter is increased to 93 in (2.36 m), with an airflow of 1750 lb/s (790 kg/s). Overall pressure ratio is 30.4, with a bypass ratio of 5.15. Static thrust is 59,000 lb (263 kN). An extra stage
182-620: Is a military designation given to the specificially modified version of the CF6-80C2, to produce 50,400–51,600 lbf, with Strict Noise Regulations and Green Emissions, specially and specifically designed for Lockheed Martin C-5M Super Galaxy . This CF6 variant became the new standard for C-5 Galaxies in 2017 after the CF6's predecessor, the GE TF-39, was retired. The CF6-80E1 has the highest thrust power of CF6-80 Series family, with
208-732: Is added to the LP compressor, and a 5th to the LP turbine. The CF6-80C2 is currently certified on fifteen commercial and military widebody aircraft models including the Boeing 747-400 , and McDonnell Douglas MD-11 . The CF6-80C2 is also certified for ETOPS-180 for the Airbus A300 , Airbus A310 , Boeing 767 , KC-767A/J , E-767J , Kawasaki C-2 , and (as the F138) the Lockheed C-5M Super Galaxy and VC-25A . The F138-GE-100
234-567: Is divided into four distinct models. The CF6-80A3, which has a thrust rating of 48,000 to 50,000 lb (214 to 222 kN), powered two twinjets, the Boeing 767 and Airbus A310 . The GE-powered 767 entered airline service in 1982 , and the GE powered A310 in early 1983 . It is rated for ETOPS operations. For the CF6-80A/A1, the fan diameter remains at 86.4 in (2.19 m), with an airflow of 1435 lb/s (651 kg/s). Overall pressure ratio
260-694: Is termed the CF6-45. The engine is designated the General Electric F103 in United States Air Force service on KC-10 Extenders and Boeing E-4s . The CF6-80 series are high-bypass turbofan engines with a thrust range of 48,000 to 75,000 lb (214 to 334 kN). Although the HP compressor still has 14 stages, GE did take the opportunity to tidy-up the design, by removing the empty air passage at compressor exit. The -80 series
286-550: The GE90s and GEnx , generating over 600 shop visits per year. GE will be delivering engines well into the 2020s and they will fly for 20 to 25 years, until 2045-50: more than 75 years since the first CF6. As express delivery spurs an air cargo resurgence, Boeing plans to increase the CF6-80C2-powered 767 delivery rate from 2.5 to 3 per month in 2020, a type introduced in 1982. As CF6-80E1s are still delivered for
SECTION 10
#1732780850254312-539: The McDonnell Douglas DC-10-10 . This initial version of the CF6 has a single-stage fan with one core booster stage, driven by a 5-stage LP (low pressure) turbine, turbocharging a 16-stage HP (high pressure) axial compressor driven by a 2-stage HP turbine; the combustor is annular; separate exhaust nozzles are used for the fan and core airflows. The 86.4-in (2.19-m) diameter fan generates an airflow of 1,300 lb/s (590 kg/s), resulting in
338-483: The NTSB believed that this number should be increased to include all -80 series engines with more than 3000 cycles since new or since last inspection. In May 2010, The NTSB warned that the low-pressure turbine rotor disks could fail. Four uncontained failures of CF6-45/50 engines in the preceding two years prompted it to issue an "urgent" recommendation to increase inspections of the engines on U.S. aircraft : none of
364-439: The "CX-X Program" in 1964, intending to produce a next-generation strategic airlifter . Of the several airframe and engine proposals returned for consideration, Lockheed's aircraft and General Electric's engine were selected for the new design in 1965. The high-bypass turbofan was a huge leap in engine performance, offering a thrust of 43,000 pounds, while improving fuel efficiency by about 25%. The TF39 had an 8:1 bypass ratio,
390-444: The 40 to 56 MW range for utility, industrial, and oil & gas applications. In 2023, Bloomberg reported that European aviation regulators had determined that London-based AOG Technics, majority owned by Jose Zamora Yrala, whose nationality is listed as British on some forms and Venezuelan on others, supplied parts of unknown origin and false documents for repairs on CF6's. In 1973 , a CF6-6 fan assembly disintegrated, resulting in
416-524: The Airbus A330 and Airbus A330 MRTT , CF6 production will grow from 50 to 60-80 per year by 2020. GE also studies reengining the Progress D-18 -powered Antonov An-124 freighters with CargoLogicAir , a Volga-Dnepr subsidiary. This would likely provide a range increase, and Volga-Dnepr Group operates 12 aircraft, implying a 50-60 engines with spares program. The CF6-6 was first used on
442-473: The HP compressor were removed which increased the overall pressure ratio to 29.3. Although the 86.4 in (2.19 m) diameter fan was retained, the airflow was raised to 1,450 lb/s (660 kg/s), yielding a static thrust of 51,000 lb f (227 kN). The increase in core flow decreased the bypass ratio to 4.26. In late 1969, the CF6-50 was selected to power the then new Airbus A300 . Air France became
468-529: The TF39 with a 97 in diameter fan. Data from Related development Comparable engines Related lists 1971 in aviation This is a list of aviation -related events from 1971. The deadliest crash of this year was All Nippon Airways Flight 58 , a Boeing 727 which collided with a Japanese Air Force Mitsubishi F-86F Sabre near Shizukuishi , Japan on 30 July, killing all 162 people onboard Flight 58. The deadliest single-aircraft accident
494-717: The airport in Sioux City, Iowa . In 2000, the National Transportation Safety Board (NTSB) warned that the high-pressure compressor could crack. Following a series of high-pressure turbine failures on 6 September 1997, 7 June 2000 and 8 December 2002, and resulting in 767s being written off on 22 September 2000, on 2 June 2006, and on 28 October 2016 , the Federal Aviation Administration issued an airworthiness directive mandating inspections for over 600 engines and
520-760: The fan tip diameters increased to 96.2 in (2.443m), and an overall pressure ratio of 32.6 and bypass ratio of 5.3. The 68,000 to 72,000 lbf (300 to 320 kN) variant competes with the Rolls-Royce Trent 700 and the Pratt & Whitney PW4000 to power the Airbus A330 . The industrial and marine development of the CF6-80C2, the LM6000 Series , has found wide use including fast ferry and high speed cargo ship applications, as well as in power generation. The LM6000 gas turbine family provides power in
546-522: The four incidents of rotor disk (rotating) unbalance and subsequent failure resulted in an accident, but parts of the engine did penetrate the engine housing in each case. Related development Comparable engines Related lists TF39 The General Electric TF39 is a high-bypass turbofan engine that was developed to power the Lockheed C-5 Galaxy . The TF39 was the first high-power, high-bypass jet engine developed. The TF39
SECTION 20
#1732780850254572-668: The launch customer for the A300 by ordering six aircraft in 1971 . In 1975 , KLM became the first airline to order the Boeing 747 powered by the CF6-50. This led further developments to the CF6 family such as the CF6-80. The CF6-50 also powered the Boeing YC-14 USAF AMST transport prototype. The basic CF6-50 engine was also offered with a 10% thrust derate for the 747SR, a short-range high-cycle version used by All Nippon Airways for domestic Japanese operations. This engine
598-481: The loss of cabin pressurization of National Airlines Flight 27 over New Mexico , United States. In 1979 a CF6-6 engine detached from the left wing of American Airlines Flight 191 due to faulty pylon maintenance, severing hydraulic lines and causing the aircraft to crash. In 1989 , a CF6-6 fan disk separated from the engine and damaged all three hydraulic systems. The flight, United Airlines Flight 232 , continued with no hydraulic power until it crash-landed at
624-504: Was also selected for versions of the Boeing 747 . Since then, the CF6 has powered versions of the Airbus A300 , A310 and A330 , Boeing 767 , Lockheed C-5M Galaxy , and McDonnell Douglas MD-11 . The high bypass of the CF6 represented a historic breakthrough in fuel efficiency. By 2018, GE has delivered more than 8,300 CF6s: 480 -6s, 2,200 -50s, 4,400 -80C2s, more than 730 -80E; and 3,000 LM6000 industrial and marine derivatives. The in-service fleet include 3,400 engines, more than all
650-467: Was developed into the LM5000 industrial turboshaft engines. It was launched in 1969 to power the long range McDonnell Douglas DC-10-30 , and was derived from the earlier CF6-6. Not long after the -6 entered service, an increase in thrust was required. It was obtained by increasing the mass flow through the core. Two booster stages were added to the LP (low pressure) compressor and the last two stages of
676-632: Was further developed into the CF6 series of engines, and formed the basis of the LM2500 and LM6000 marine and industrial gas turbine. On September 7, 2017, the last active C-5A powered with TF39 engines made its final flight to Davis-Monthan Air Force Base for retirement. The TF39 was effectively retired, and all remaining active C-5 Galaxies are Rebuilt C-5M Super Galaxies, powered by F138-GE-102 (derivative of General Electric CF6-80C2 , specifically for C-5M upgrade) engines. The United States Air Force opened
#253746